1
|
Todorov SK, Tomasikova F, Hansen M, Shetty R, Jansen CL, Jacobsen C, Hobley TJ, Lametsch R, Bang-Berthelsen CH. Using pre-fermented sugar beet pulp as a growth medium to produce Pleurotus ostreatus mycelium for meat alternatives. Int J Food Microbiol 2024; 425:110872. [PMID: 39163813 DOI: 10.1016/j.ijfoodmicro.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
This study aimed to determine the compatibility of pre-fermented sugar beet pulp to support the growth of Pleurotus ostreatus mycelium in submerged fermentation. The goal was to create a meat alternative based on mycelial-fermented pulp. It was further explored whether pre-fermentation with lactic acid bacteria (LAB) on the pulp increased meat-like properties, such as aroma, springiness, and hardness, in the final product. Three strains were selected from a high throughput screening of 105 plant-derived LAB based on their acidification and metabolite production in the pulp. Two homofermentative strains (Lactococcus lactis) and one heterofermentative strain (Levilactobacillus brevis) were selected based on their low ethanol production, high lactic acid production, and overall acidification of the pulp. Mycelium of P. ostreatus was grown in submerged fermentations on the pre-fermented pulp, and the biomass was removed by centrifugation. The fungal strain consumed all available sugars and acids and released arabinose to the media. Volatiles were detected using GC-MS, and a large increase in concentrations of hexanal, 1-octen-3-ol, and 2-octenal was measured. Concentration of 1-octen-3-ol was lower in the pre-fermented samples vs. the non-pre-fermented. LC-MS amino acid analysis showed the presence of all essential amino acids on day 0 and 7 of fermentation. The highest concentration of amino acids was for glutamic acid/glutamine and aspartic acid/asparagine. A decrease in all amino acids after 7 days of fungal fermentation was measured for all fermentations. The decrease was more significant for pre-fermented samples. This was also confirmed through a total protein determination, except for samples pre-fermented with Lactococcus lactis strain NFICC142 which increased in total protein content after fungal fermentation. The protein digestibility increased after fungal fermentation, and the highest increase was seen for non-pre-fermented samples. The springiness of the fermented product indicated similarities to meat alternatives, while the hardness was much lower than other meat alternatives. The results indicate that dried sugar beet pulp can be used for submerged cultivation of P. ostreatus, but that pre-fermentation does not improve the physical or nutritional properties of the end product significantly, except for an increased protein content for NFICC142 pre-fermented media. This is the first known attempt to use LAB and P. ostreatus in mixed fermentation to produce fungal mycelium, as well as the first attempt at using SBP in a liquid fermentation for mycelial production of P. ostreatus.
Collapse
Affiliation(s)
| | - Frantiska Tomasikova
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | - Mikkel Hansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Radhakrishna Shetty
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Celia L Jansen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Timothy John Hobley
- National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - René Lametsch
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark.
| | | |
Collapse
|
2
|
Kurbanova I, Lauciene L, Kondrotiene K, Zakariene G, Radenkovs V, Kiselioviene S, Salaseviciene A, Vasiliauskaite A, Malakauskas M, Musulmanova M, Serniene L. Physicochemical, Sensory, and Microbiological Analysis of Fermented Drinks Made from White Kidney Bean Extract and Cow's Milk Blends during Refrigerated Storage. Microorganisms 2024; 12:1832. [PMID: 39338506 PMCID: PMC11433744 DOI: 10.3390/microorganisms12091832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Due to its low dietary impact and bioactive compounds, such as polyphenols and flavonoids, white kidney bean extract is an attractive raw material for fermented drinks. It can be utilized either on its own or blended with cow's milk, offering a promising solution to help meet dairy product demand during mid-season shortages. Therefore, this study aimed to explore the physicochemical characteristics, sensory properties, and microbiological profile of fermented milk-like drinks made from white kidney bean extract, cow's milk and their blends during 28 days of storage at 4 °C. Three blends of fermented milk-like drinks (FMLDs) were prepared from different ratios of cow's milk (CM) and kidney bean extract (BE): FMLD1 (CM 30%:BE 70%); FMLD2 (CM 50%:BE 50%), FMLD3 (CM 70%:BE 30%), along with plain fermented kidney been extract (FBE; CM 0%:BE 100%), and plain fermented cow's milk (FCM; CM 100%:BE 0%). The mixtures were pasteurized at 92 °C for 25 min and fermented with a probiotic-type starter culture (S. thermophilus, B. bifidum, L. acidophilus) at 43 °C. FBE exhibited the lowest levels of carbohydrates (2.14%), fat (0.11%), and protein (1.45%) compared to fermented cow's milk and blends. The FBE and the fermented blends with a higher ratio of bean extract had lower viscosity and lactic acid contents, greener hue, more pronounced aftertaste and off-flavors, and received lower overall acceptability scores. Although the FCM had higher counts of S. thermophilus and L. acidophilus, the FBE displayed significantly higher counts of B. bifidum. This study demonstrated the potential of using white kidney bean extract and its blends with cow's milk to create unique fermented products with a lower dietary impact, highlighting the importance of further optimizing the formulations to enhance sensory qualities and reduce the beany off-flavors in the products with added kidney bean extract.
Collapse
Affiliation(s)
- Ibaratkan Kurbanova
- Department of Food Production Technology, Kyrgyz State Technical University Named after I. Razzakov, 66, Chyngyz Aitmatov Ave, Bishkek 720044, Kyrgyzstan
| | - Lina Lauciene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Kristina Kondrotiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Gintare Zakariene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Vitalijs Radenkovs
- Research Laboratory of Biotechnology, Division of Smart Technologies, Latvia University of Life Sciences and Technologies, Riga Str. 22B, LV-3004 Jelgava, Latvia
- Institute of Horticulture (LatHort), LV-3701 Dobele, Latvia
| | - Sandra Kiselioviene
- Food Institute, Kaunas University of Technology, Radvilenu Str. 19, LT-44239 Kaunas, Lithuania
| | - Alvija Salaseviciene
- Food Institute, Kaunas University of Technology, Radvilenu Str. 19, LT-44239 Kaunas, Lithuania
| | - Agne Vasiliauskaite
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Mukarama Musulmanova
- Department of Food Production Technology, Kyrgyz State Technical University Named after I. Razzakov, 66, Chyngyz Aitmatov Ave, Bishkek 720044, Kyrgyzstan
| | - Loreta Serniene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
3
|
Rana A, Taneja NK, Raposo A, Alarifi SN, Teixeira-Lemos E, Lima MJ, Gonçalves JC, Dhewa T. Exploring prebiotic properties and its probiotic potential of new formulations of soy milk-derived beverages. Front Microbiol 2024; 15:1404907. [PMID: 39050628 PMCID: PMC11266073 DOI: 10.3389/fmicb.2024.1404907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction The food and beverage industry has shown a growing interest in plant-based beverages as alternatives to traditional milk consumption. Soy milk is derived from soy beans and contains proteins, isoflavones, soy bean oligosaccharides, and saponins, among other ingredients. Because of its high nutritive value and versatility, soy milk has gained a lot of attention as a functional food. Methods The present work aims to explore the prebiotic properties and gastrointestinal tolerance potential of new formulations of soy milk-derived drinks to be fermented with riboflavin-producing probiotic Lactiplantibacillus plantarum MTCC (Microbial Type Culture Collection and Gene Bank) 25432, Lactiplantibacillus plantarum MTCC 25433, and Lactobacillus acidophilus NCIM (National Collection of Industrial Microorganisms) 2902 strains. Results and discussion The soy milk co-fermented beverage showed highest PAS (1.24 ± 0.02) followed by soy milk beverages fermented with L. plantarum MTCC 25433 (0.753 ± 0.0) when compared to the commercial prebiotic raffinose (1.29 ± 0.01). The findings of this study suggested that the soy milk beverages exhibited potent prebiotic activity, having the ability to support the growth of probiotics, and the potential to raise the content of several bioactive substances. The higher prebiotics activity score showed that the higher the growth rate of probiotics microorganism, the lower the growth of pathogen. For acidic tolerance, all fermented soy milk managed to meet the minimal requirement of 106 viable probiotic cells per milliliter at pH 2 (8.13, 8.26, 8.30, and 8.45 logs CFU/mL, respectively) and pH 3.5 (8.11, 8.07, 8.39, and 9.01 log CFU/mL, respectively). The survival rate of soy milk LAB isolates on bile for 3 h ranged from 84.64 to 89.60%. The study concluded that lactobacilli could thrive in gastrointestinal tract. The sensory evaluation scores for body and texture, color, flavor, and overall acceptability showed a significant difference (p < 0.05) between the fermented probiotic soy milk and control samples. Soy milk fermented with a combination of L. plantarum MTCC 25432 & MTCC 25433 demonstrated the highest acceptability with the least amount of beany flavor. The findings of the study suggest soy milk's potential in plant-based beverage market.
Collapse
Affiliation(s)
- Ananya Rana
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Neetu Kumra Taneja
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Sehad N. Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | | | - Maria João Lima
- CERNAS Research Centre, Polytechnic University of Viseu, Viseu, Portugal
| | | | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, Haryana, India
| |
Collapse
|
4
|
Sedó Molina GE, Shetty R, Jacobsen C, Duedahl-Olesen L, Hansen EB, Bang-Berthelsen CH. Synergistic effect of the coculture of Leuconostoc pseudomesenteroides and Lactococcus lactis, isolated from honeybees, on the generation of plant-based dairy alternatives based on soy, pea, oat, and potato drinks. Food Microbiol 2024; 118:104427. [PMID: 38049267 DOI: 10.1016/j.fm.2023.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
The production of plant-based dairy alternatives has been majorly focused on the improvement of sensorial, technological and nutritional properties, to be able to mimic and replace milk-based fermented products. The presence of off-flavours and antinutrients, the lack of production of dairy-like flavours or the metabolic inaccessibility of plant proteins are some of the challenges to overcome to generate plant-based dairy alternatives. However, in the present study, it is demonstrated how the synergistic effect of two LAB strains, when cocultured, can simultaneously solve those challenges when fermenting in four different plant-based raw materials: soy, pea, oat, and potato drinks (SPOP). The fermentation was performed through the mono- and co-culture of the two LAB strains isolated from Apis mellifera (honeybee): Leuconostoc pseudomesenteroides NFICC 2004 and Lactococcus lactis NFICC 2005. Firstly, the coculture of both strains demonstrated to increase the acidification rate of the four plant matrices. Moreover, L. pseudomesenteroides (LP) demonstrated to in situ produce high concentrations of mannitol when fructose was present as C-source. Furthermore, L. pseudomesenteroides, which encoded for PII-proteinase, demonstrated to break down SPOP proteins, releasing free amino acids that were used by L.lactis (LL) for growth and metabolism. Lastly, the analysis of their co-metabolic volatile performance showed the principal ability of removal of the main off-flavours found in SPOP, such as hexanal, 1-octen-3-ol, 2-pentylfuran, pentanal, octanal, heptanal, and nonanal, mainly led by L. pseudomesenteroides, as well as the production of dairy-like flavours, such as diacetyl and 3-methyl-1-butanol, triggered by L. lactis metabolism. Overall, these findings endorsed the use of honeybee isolated strains as starter cultures, demonstrated the potential of coupling genotypes and phenotypes of multiple strains to improve the organoleptic properties suggesting a potential of combining plant-based matrices for the generation of future high-quality plant-based dairy alternatives.
Collapse
Affiliation(s)
- Guillermo Eduardo Sedó Molina
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark
| | - Radhakrishna Shetty
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark
| | - Charlotte Jacobsen
- Research Group for Bioactives - Analysis and Application, National Food Institute, Technical University of Denmark, Denmark
| | - Lene Duedahl-Olesen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Denmark
| | - Egon Bech Hansen
- Research Group for Gut, Microbes and Health, National Food Institute, Technical University of Denmark, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Denmark.
| |
Collapse
|
5
|
Hakme E, Kallehauge Nielsen I, Fermina Madsen J, Storkehave LM, Skjold Elmelund Pedersen M, Schulz BL, Poulsen ME, Hobley TJ, Duedahl-Olesen L. Fate of pesticide residues in beer and its by-products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:45-59. [PMID: 38039344 DOI: 10.1080/19440049.2023.2282557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Sustainable beer production requires a comprehensive assessment of potential hazards such as pesticides in both the finished product and waste streams, as these streams can be used to create high-value by-products. This study presents the tracking of 13 fungicides (azoxystrobin, boscalid, epoxiconazole, fenpropidin, fenpropimorph, fluquiconazole, flutriafol, fluxapyroxad, kresoxym-methyl, spiroxamine, propiconazole, prothioconazole-desthio, and tebuconazole), two insecticides (chlorpyrifos-methyl and deltamethrin), one herbicide (glyphosate), and one growth regulator (mepiquat) through the beer brewing process. Field-treated rye, wheat, and barley samples containing pesticide residues were used as adjunct during brewing. Samples of the beer as well as the by-products (spent grain, spent hops, trub and spent yeast) were collected and extracted with a modified QuEChERS method for pesticide residues analysis using GC-MS/MS and LC-MS/MS. Results show that an average of 58% of pesticide residues are retrieved in the by-products with the highest fraction (53%) recovered in the spent grain, 4% in trub, 1% in spent hops, no residues detected in spent yeast and 9% in the beer. This is consistent with these nonpolar pesticides tending to remain adsorbed to the spent grain during brewing. Glyphosate and mepiquat, the most polar pesticides included in this study, showed a different behavior, with the largest fraction (>80%) being retrieved in sweet wort and transferred to the beer. Processing factors were generated for each pesticide from the adjunct to the beer and to the four by-products.
Collapse
Affiliation(s)
- Elena Hakme
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | - Benjamin Luke Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | | | | |
Collapse
|
6
|
Wätjen AP, Øzmerih S, Shetty R, Todorov SK, Huang W, Turner MS, Bang-Berthelsen CH. Utilization of plant derived lactic acid bacteria for efficient bioconversion of brewers' spent grain into acetoin. Int J Food Microbiol 2023; 406:110400. [PMID: 37742345 DOI: 10.1016/j.ijfoodmicro.2023.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/05/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Brewers' spent grain (BSG) is a major side-stream from the beer industry, with an annual estimated production of 39 million tons worldwide. Due to its high nutritional value, high abundance and low price, it has been proposed as an ingredient in human food. Here we investigated the ability of different lactic acid bacteria to produce the flavor molecule acetoin in liquid BSG extract, in order to broaden the possibilities of utilization of BSG in human food. All the investigated lactic acid bacteria (LAB) covering the Leuconostoc, Lactobacillus and Lactoccocus species were able to convert the fermentable sugars in liquid BSG into acetoin. Production levels varied significantly between the different LAB species, with Leuconostoc pseudomesenteroides species reaching the highest titers of acetoin with only acetate as the main byproduct, while also being the fastest consumer of the fermentable sugars present in liquid BSG. Surprisingly, the currently best investigated LAB for acetoin production, L. lactis, was unable to consume the maltose fraction of liquid BSG and was therefore deemed unfit for full conversion of the sugars in BSG into acetoin. The production of acetoin in Leu. pseudomesenteroides was pH dependent as previously observed in other LAB, and the conversion of BSG into acetoin was scalable from shake flasks to 1 L bioreactors. While all investigated LAB species produced acetoin under aerobic conditions, Leu. pseudomesenteroides was found to be an efficient and scalable organism for bioconversion of liquid BSG into a safe acetoin rich food additive.
Collapse
Affiliation(s)
- Anders Peter Wätjen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Süleyman Øzmerih
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Radhakrishna Shetty
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Wenkang Huang
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
7
|
Ziarno M, Zaręba D, Ścibisz I, Kozłowska M. Comprehensive studies on the stability of yogurt-type fermented soy beverages during refrigerated storage using dairy starter cultures. Front Microbiol 2023; 14:1230025. [PMID: 37692397 PMCID: PMC10485619 DOI: 10.3389/fmicb.2023.1230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction This study aimed to assess the feasibility of utilizing commercially available dairy starter cultures to produce yogurt-type fermented soy beverages and evaluate the fundamental properties of the resulting products. Methods Sixteen different starter cultures commonly used in the dairy industry for producing fermented milks, such as yogurt, were employed in the study. The study investigated the acidification curves, acidification kinetics, live cell population of starter microflora during refrigerated storage, pH changes, water-holding capacity, texture analysis, carbohydrates content, and fatty acid profile of the yogurt-type fermented soy beverage. Results and Discussion The results demonstrated that the starter cultures exhibited distinct pH changes during the fermentation process, and these changes were statistically significant among the cultures. The acidification kinetics of different cultures of lactic acid bacteria showed characteristic patterns, which can be used to select the most suitable cultures for specific product production. The study also revealed that the choice of starter culture significantly influenced the starter microorganisms population in the yogurt-type fermented soy beverage. Additionally, the pH values and water-holding capacity of the beverages were affected by both the starter cultures and the duration of refrigerated storage. Texture analysis indicated that storage time had a significant impact on hardness and adhesiveness, with stabilization of these parameters observed after 7-21 days of storage. Furthermore, the fermentation process resulted in changes in the carbohydrate content of the soy beverages, which varied depending on the starter culture used.
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences – SGGW (WULS-SGGW), Warsaw, Poland
| | - Dorota Zaręba
- Professor E. Pijanowski Catering School Complex in Warsaw, Warsaw, Poland
| | - Iwona Ścibisz
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences – SGGW (WULS-SGGW), Warsaw, Poland
| | - Mariola Kozłowska
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences – SGGW (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
8
|
Ścibisz I, Ziarno M. Effect of Fermented Matrix on the Color and Stability of Strawberry and Blueberry Anthocyanins during the Storage of Fruit Yogurts and Soy-Based and Bean-Based Fruit Yogurt Alternatives. Molecules 2023; 28:6222. [PMID: 37687051 PMCID: PMC10488363 DOI: 10.3390/molecules28176222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The effect of the fermented matrix on the color and the stability of anthocyanins contained in strawberry (Fragaria ananassa D.) and highbush blueberry (Vaccinium corymbosum L.) preparations for fruit yogurts, as well as soy-based (Glycine max L. Merr.) and bean-based (Phaseolus vulgaris L.) yogurt alternatives, stored for 8 weeks, was evaluated. To produce the fermented bean matrix, germinated seeds of white and black beans were used. The obtained fermented matrices had similar pH levels, while the soy-based and black bean-based yogurt alternatives were characterized by their high content of isoflavone aglycones and phenolic acids. The degradation of anthocyanins in strawberry and blueberry fermented products during storage followed first-order reaction kinetics. Significant differences were found depending on the fermented plant-based matrix. The fermented soy-based matrix demonstrated the highest T1/2 values for total anthocyanins (26.3 and 88.8 weeks for strawberry and blueberry products, respectively), whereas the yogurts exhibited the lowest values (13.3 and 49.3 weeks for strawberry and blueberry products, respectively). In the comparison of anthocyanin degradation during the storage of bean-based products, the pigments in the matrix obtained from fermented black beans showed better stability. During storage, the loss of anthocyanins was higher in strawberry products than in blueberry products, particularly with respect to malvidin and petunidin derivatives and acylated anthocyanins, which exhibited high stability. The total color difference (ΔE*) of blueberry plant-based products after an 8 week storage period ranged from 1.1 to 1.5. This data suggests that the addition of a coloring ingredient for industrial production may not be required.
Collapse
Affiliation(s)
- Iwona Ścibisz
- Division of Fruit, Vegetable and Cereal Technology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 161 Nowoursynowska Str., 02-787 Warsaw, Poland
| | - Małgorzata Ziarno
- Division of Milk Technology, Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, 161 Nowoursynowska Str., 02-787 Warsaw, Poland;
| |
Collapse
|
9
|
Huang W, Dong A, Pham HT, Zhou C, Huo Z, Wätjen AP, Prakash S, Bang-Berthelsen CH, Turner MS. Evaluation of the fermentation potential of lactic acid bacteria isolated from herbs, fruits and vegetables as starter cultures in nut-based milk alternatives. Food Microbiol 2023; 112:104243. [PMID: 36906309 DOI: 10.1016/j.fm.2023.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Fermentation of plant-based milk alternatives (PBMAs), including nut-based products, has the potential to generate new foods with improved sensorial properties. In this study, we screened 593 lactic acid bacteria (LAB) isolates from herbs, fruits and vegetables for their ability to acidify an almond-based milk alternative. The majority of the strongest acidifying plant-based isolates were identified as Lactococcus lactis, which were found to lower the pH of almond milk faster than dairy yoghurt cultures. Whole genome sequencing (WGS) of 18 plant-based Lc. lactis isolates revealed the presence of sucrose utilisation genes (sacR, sacA, sacB and sacK) in the strongly acidifying strains (n = 17), which were absent in one non-acidifying strain. To confirm the importance of Lc. lactis sucrose metabolism in efficient acidification of nut-based milk alternatives, we obtained spontaneous mutants defective in sucrose utilisation and confirmed their mutations by WGS. One mutant containing a sucrose-6-phosphate hydrolase gene (sacA) frameshift mutation was unable to efficiently acidify almond, cashew and macadamia nut milk alternatives. Plant-based Lc. lactis isolates were heterogeneous in their possession of the nisin gene operon near the sucrose gene cluster. The results of this work show that sucrose-utilising plant-based Lc. lactis have potential as starter cultures for nut-based milk alternatives.
Collapse
Affiliation(s)
- Wenkang Huang
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Anran Dong
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Huong Thi Pham
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Cailtin Zhou
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Zhaotong Huo
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | - Anders Peter Wätjen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| | | | - Mark S Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Baygut H, Cais-Sokolińska D, Bielska P, Teichert J. Fermentation Kinetics, Microbiological and Physical Properties of Fermented Soy Beverage with Acai Powder. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
In this study, the effects of the fermentation kinetics, determination of the number of lactic acid bacteria, texture, water holding capacity, and color of fermented soy beverages with acai powder (3 and 6% w/v) were investigated. The addition of acai powder significantly influenced the fermentation kinetics based on changes in pH, accelerating fermentation in the initial period. The results showed that the acai additive did not affect the enumeration of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis. The presence of acai inhibited the proliferation of Streptococcus thermophilus compared to the soy beverage without acai powder added. However, the higher the acai additive, the more Streptococcus thermophilus bacteria were detected: 4.39 CFU/g for 6% acai powder sample and 3.40 CFU/g for 3% acai powder sample. The addition of acai to the soy beverage reduced its firmness, consistency, cohesiveness, and viscosity index after fermentation. A slight difference was observed in the lightness and whiteness of fermented soy beverages with 3% and 6% acai powder.
Collapse
|
11
|
Exploring the Inhibitory Activity of Selected Lactic Acid Bacteria against Bread Rope Spoilage Agents. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In this study, a wide pool of lactic acid bacteria strains deposited in two recognized culture collections was tested against ropy bread spoilage bacteria, specifically belonging to Bacillus spp., Paenibacillus spp., and Lysinibacillus spp. High-throughput and ex vivo screening assays were performed to select the best candidates. They were further investigated to detect the production of active antimicrobial metabolites and bacteriocins. Moreover, technological and safety features were assessed to value their suitability as biocontrol agents for the production of clean-label bakery products. The most prominent inhibitory activities were shown by four strains of Lactiplantibacillus plantarum (NFICC19, NFICC 72, NFICC163, and NFICC 293), two strains of Pediococcus pentosaceus (NFICC10 and NFICC341), and Leuconostoc citreum NFICC28. Moreover, the whole genome sequencing of the selected LAB strains and the in silico analysis showed that some of the strains contain operons for bacteriocins; however, no significant evidence was observed phenotypically.
Collapse
|
12
|
Christensen LF, García-Béjar B, Bang-Berthelsen CH, Hansen EB. Extracellular microbial proteases with specificity for plant proteins in food fermentation. Int J Food Microbiol 2022; 381:109889. [DOI: 10.1016/j.ijfoodmicro.2022.109889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
|
13
|
Milew K, Manke S, Grimm S, Haseneder R, Herdegen V, Braeuer AS. Application, characterisation and economic assessment of brewers’ spent grain and liquor. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kerstin Milew
- Institute of Thermal‐, Environmental‐ and Resources’ Process Engineering TU Bergakademie Freiberg Leipziger Straße 28 09599 Freiberg Germany
| | - Sophie Manke
- Institute of Bioscience TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Sandra Grimm
- Institute of Bioscience TU Bergakademie Freiberg Leipziger Straße 29 09599 Freiberg Germany
| | - Roland Haseneder
- Institute of Thermal‐, Environmental‐ and Resources’ Process Engineering TU Bergakademie Freiberg Leipziger Straße 28 09599 Freiberg Germany
| | - Volker Herdegen
- Institute of Thermal‐, Environmental‐ and Resources’ Process Engineering TU Bergakademie Freiberg Leipziger Straße 28 09599 Freiberg Germany
| | - Andreas S. Braeuer
- Institute of Thermal‐, Environmental‐ and Resources’ Process Engineering TU Bergakademie Freiberg Leipziger Straße 28 09599 Freiberg Germany
| |
Collapse
|
14
|
Madsen SK, Thulesen ET, Mohammadifar MA, Bang-Berthelsen CH. Chufa Drink: Potential in Developing a New Plant-Based Fermented Dessert. Foods 2021; 10:foods10123010. [PMID: 34945561 PMCID: PMC8702038 DOI: 10.3390/foods10123010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Plant-based foods with desirable texture and nutritional value have attracted considerable interest from consumers. In order to meet the growing demand for more sustainable and health-focused products, new sources for plant-based products are needed. In this study, we aimed to develop an innovative plant-based dessert based on the underutilized crop chufa tubers (Cyperus esculentus). The chufa extract was fermented with plant-adapted lactic acid bacteria and formulated with the purpose of imitating the Danish summer dessert “cold butter-milk soup”. The effect of various bacterial fermentations and formulations on steady and oscillatory rheology, stability, dry matter, pH, and sugar profile of the product were studied and compared to a commercial cold buttermilk soup sample. A strain of Leuconostoc mesenteroides was found to create the most similar taste to a commercial sample. By adding lemon juice, sucrose, xanthan gum, and vanilla to the fermented chufa drink, the drink was found to mimic the pH, texture, acid profile, and stability of a commercial dairy-based sample, while containing a lower concentration of carbohydrates.
Collapse
|
15
|
Hansen EB, Nielsen DS, LaPointe G. Editorial: microbial food and feed ingredients - functionality and health. FEMS Microbiol Lett 2021; 368:6374167. [PMID: 34551069 DOI: 10.1093/femsle/fnab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Egon Bech Hansen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Gisèle LaPointe
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, 43 McGilvray St, Guelph, ON N1G 2W1, Canada
| |
Collapse
|