1
|
Yan X, Chen G, Chen Y, Sun B, Gu X, Ruan W, Han R. Virulence of Steinernema ceratophorum against different pest insects and their potential for in vivo and in vitro culture. J Nematol 2021. [DOI: 10.21307/jofnem-2021-046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
2
|
Hoinville ME, Wollenberg AC. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:165-176. [PMID: 29203330 DOI: 10.1016/j.dci.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Photorhabdus bacteria enter into a mutualistic symbiosis with Heterorhabditis nematodes to infect insect larvae. However, they rapidly kill the model nematode Caenorhabditis elegans. One hypothesis for these divergent outcomes is that the nematode defense responses differ. To begin testing this hypothesis, we have systematically analyzed available data on the transcriptional response of C. elegans to P. luminescens strain Hb. From a starting pool of over 7000 differentially expressed genes, we carefully chose 21 Heterorhabditis-conserved genes to develop as comparative markers. Using newly designed and validated qRT-PCR primers, we measured expression of these genes in C. elegans exposed to the sequenced TT01 strain of P. luminescens, on two different media types. Almost all (18/21) of the genes showed a significant response to P. luminescens strain TT01. One response is dependent on media type, and a subset of genes may respond differentially to distinct strains. Overall, we have established useful resources and generated new hypotheses regarding how C. elegans responds to P. luminescens infection.
Collapse
Affiliation(s)
- Megan E Hoinville
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA
| | - Amanda C Wollenberg
- Biology Department, Kalamazoo College, 1200 Academy St., Kalamazoo, MI 49006, USA.
| |
Collapse
|
3
|
Yan X, Lin Y, Huang Z, Han R. Characterisation of biological and biocontrol traits of entomopathogenic nematodes promising for control of striped flea beetle (Phyllotreta striolata). NEMATOLOGY 2018. [DOI: 10.1163/15685411-00003155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
The biological and biocontrol traits of two entomopathogenic nematode isolates, Steinernema pakistanense 94-1 (Sp94-1) and Heterorhabditis indica 212-2 (Hi212-2), were evaluated. The highest yield of infective juveniles (IJ) in monoxenic sponge culture system for Sp94-1 and Hi212-2 was 3.52 (± 0.45) × 105 and 7.08 (± 0.11) × 105 IJ g−1, respectively. The optimum storage temperature was 25°C for Sp94-1 and 14°C for Hi212-2. Sp94-1 showed greater tolerance to heat exposure and UV radiation, while S. carpocapsae All, a commercial strain, was more resistant to osmotic pressure, desiccation, cold treatment and hypoxia than the other tested isolates. Hi212-2 suppressed the Phyllotreta striolata larvae when applied at 1.5 × 109 IJ ha−1 or higher concentrations, while Sp94-1 suppressed the P. striolata larvae only when applied at 4.5 × 109 IJ ha−1. Our study indicates the possibility of commercialisation of the EPN isolates, and further confirms their efficacy against the P. striolata larvae in the field.
Collapse
Affiliation(s)
- Xun Yan
- 1Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, No. 105 Xingang Road West, Guangzhou, P.R. China
| | - Yinying Lin
- 1Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, No. 105 Xingang Road West, Guangzhou, P.R. China
| | - Zhenmao Huang
- 2Foshan Xiaonong Eco-Technology Co., Ltd, Nanfeng Road, Leping county, Sanshui District, Foshan, P.R. China
| | - Richou Han
- 1Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, No. 105 Xingang Road West, Guangzhou, P.R. China
| |
Collapse
|
4
|
Muangpat P, Yooyangket T, Fukruksa C, Suwannaroj M, Yimthin T, Sitthisak S, Chantratita N, Vitta A, Tobias NJ, Bode HB, Thanwisai A. Screening of the Antimicrobial Activity against Drug Resistant Bacteria of Photorhabdus and Xenorhabdus Associated with Entomopathogenic Nematodes from Mae Wong National Park, Thailand. Front Microbiol 2017; 8:1142. [PMID: 28702004 PMCID: PMC5487437 DOI: 10.3389/fmicb.2017.01142] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2017] [Indexed: 11/30/2022] Open
Abstract
Photorhabdus and Xenorhabdus are symbiotic with entomopathogenic nematodes (EPNs) of the genera Heterorhabditis and Steinernema, respectively. These bacteria produce several secondary metabolites including antimicrobial compounds. The objectives of this study were to isolate and identify EPNs and their symbiotic bacteria from Mae Wong National Park, Thailand and to evaluate the antibacterial activities of symbiont extracts against drug resistant bacteria. A total of 550 soil samples from 110 sites were collected between August 2014 and July 2015. A total of EPN isolates were obtained through baiting and White trap methods, which yielded 21 Heterorhabditis and 3 Steinernema isolates. Based on molecular identification and phylogenetic analysis, the most common species found in the present study was P. luminescens subsp. akhurstii associated with H. indica. Notably, two species of EPNs, H. zealandica and S. kushidai, and two species of symbiotic bacteria, X. japonica and P. temperata subsp. temperata represented new recorded organisms in Thailand. Furthermore, the association between P. temperata subsp. temperata and H. zealandica has not previously been reported worldwide. Disk diffusion, minimal inhibitory concentration, and minimal bactericidal concentration analyses demonstrated that the crude compound extracted by ethyl acetate from P. temperata subsp. temperata could inhibit the growth of up to 10 strains of drug resistant bacteria. Based on HPLC-MS analysis, compound classes in bacterial extracts were identified as GameXPeptide, xenoamicin, xenocoumacin, mevalagmapeptide phurealipids derivatives, and isopropylstilbene. Together, the results of this study provide evidence for the diversity of EPNs and their symbiotic bacteria in Mae Wong National Park, Thailand and demonstrate their novel associations. These findings also provide an important foundation for further research regarding the antimicrobial activity of Photorhabdus bacteria.
Collapse
Affiliation(s)
- Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand
| | - Temsiri Yooyangket
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand
| | - Chamaiporn Fukruksa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand
| | - Manawat Suwannaroj
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand
| | - Thatcha Yimthin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol UniversityBangkok, Thailand
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol UniversityBangkok, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand.,Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan UniversityPhitsanulok, Thailand
| | - Nicholas J Tobias
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität FrankfurtFrankfurt am Main, Germany
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität FrankfurtFrankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University FrankfurtFrankfurt am Main, Germany
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan UniversityPhitsanulok, Thailand.,Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan UniversityPhitsanulok, Thailand
| |
Collapse
|