1
|
Ferreira AF, Braga RLL, Andrade MF, Rosa ACDP, Pereira-Manfro WF. SYNERGISTIC IMMUNOMODULATORY ACTIVITY OF PROBIOTICS BIFIDOBACTERIUM ANIMALIS AND LACTOBACILLUS CASEI IN ENTEROAGGREGATIVE ESCHERICHIA COLI (EAEC)-INFECTED CACO-2 CELLS. ARQUIVOS DE GASTROENTEROLOGIA 2021; 58:433-438. [PMID: 34909846 DOI: 10.1590/s0004-2803.202100000-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is an E. coli pathotype that presents aggregative adhesion patterns on in vitro cultivated cells, mainly related to persistent diarrhea cases in children. EAEC virulence factors are important for host colonization and pathogeni-city. Intestinal epithelial cells (IECs) recognize pathogen-associated molecular patterns (PAMPs) and initiate an immune response. Several studies using in vivo and in vitro models emphasize the probiotic activity and immunomodulatory capacity of Lactobacillus and Bifidobacterium species. OBJECTIVE To evaluate the modulation of cytokine production by probiotics Bifidobacterium animalis and Lactobacillus casei in human intestinal Caco-2 cells exposed to different strains of EAEC. METHODS Caco-2 cells were incubated with EAEC strains in the presence or absence of probiotics. The production of cytokines IL-8, TNF-α, IL-1β and IL-10 was evaluated in the supernatants by a sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS Cytokine production did not change when uninfected and EAEC-infected Caco-2 cells were exposed to probiotics separately. All EAEC induced a significant increase in IL-8 production by Caco-2 cells, but the probiotics, even together, could not reduce its production. On the other hand, the synergic activity of probiotic strains significantly increased TNF-α production but decreased the basal production of IL-1ß. Also, probiotics induced a significant increase in the production of the anti-inflammatory cytokine IL-10 during EAEC infection. CONCLUSION Our results reinforce the synergistic immunomodulatory activity of probiotics during EAEC infection.
Collapse
Affiliation(s)
- Andréa Fonseca Ferreira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ricardo Luís Lopes Braga
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Maysa Ferreira Andrade
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Claudia de Paula Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Wânia Ferraz Pereira-Manfro
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Rezatofighi SE, Najafifar A, Askari Badouei M, Peighambari SM, Soltani M. An Integrated Perspective on Virulence-Associated Genes (VAGs), Antimicrobial Resistance (AMR), and Phylogenetic Clusters of Pathogenic and Non-pathogenic Avian Escherichia coli. Front Vet Sci 2021; 8:758124. [PMID: 34901248 PMCID: PMC8651559 DOI: 10.3389/fvets.2021.758124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important bacterial pathogen that causes avian colibacillosis and leads to huge economic losses in the poultry industry. Different virulence traits contribute to pathogenesis of APEC infections, and antimicrobial resistance (AMR) has also been an overwhelming issue in poultry worldwide. In the present study, we aimed to investigate and compare the presence of virulence-associated genes (VAGs), AMR, and phylogenetic group's distribution among APEC and avian fecal E. coli (AFEC) strains. E. coli from birds with colisepticemia and yolk sac infection (YSI) (APEC) plus E. coli strains from the feces of healthy birds (AFEC) were compared by the aforementioned traits. In addition, the clonal relatedness was compared using Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Although all strains were susceptible to fosfomycin, ceftriaxone, and cefixime, almost all strains (98%) were multi-drug resistant (MDR). All strains (except two) harbored at least three or more VAGs, and the virulence scores tended to be higher in pathogenic strains especially in the colisepticemic group. All phylogenetic groups were found in isolates from YSI, colisepticemia, and the feces of healthy birds; however, the frequency of phylogroups varied according to the source of the isolate. B1 and C phylogroups were statistically more likely to be found among APEC from YSI and colisepticemic E. coli groups, respectively, while phylogroup A was the most frequently occurring phylogroup among AFEC strains. Our findings also revealed that AMR and VAGs are not essentially co-evolved traits as in some instances AMR strains were more prevalent among AFEC. This reflects the divergent evolutionary pathways of resistance acquisition in pathogenic or non-pathogenic avian E. coli strains. Importantly, strains related to phylogenetic group C showed higher virulence score and AMR that requires further attention. To some extent, ERIC-PCR was able to group strains by isolation source, phylogroup, or virulence genes. Further integrated studies along with assessment of more detailed genotypic and phenotypic features could potentially lead to better understanding of virulence, resistance, and evolution of ExPEC.
Collapse
Affiliation(s)
| | - Arash Najafifar
- Private Veterinary Practitioner, Independent Researcher, Tehran, Iran
| | - Mahdi Askari Badouei
- Faculty of Veterinary Medicine, Department of Pathobiology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Soltani
- Faculty of Veterinary Medicine, Department of Avian Diseases, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Modgil V, Chaudhary P, Bharti B, Mahindroo J, Yousuf M, Koundal M, Mohan B, Taneja N. Prevalence, Virulence Gene Profiling, and Characterization of Enteroaggregative Escherichia coli from Children with Acute Diarrhea, Asymptomatic Nourished, and Malnourished Children Younger Than 5 Years of Age in India. J Pediatr 2021; 234:106-114.e5. [PMID: 33713662 DOI: 10.1016/j.jpeds.2021.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To study the significance of enteroaggregative Escherichia coli (EAEC) as a pathogen causing acute diarrhea and a commensal in healthy nourished and malnourished children younger than five years of age in the Chandigarh region and to address possible traits of EAEC virulence genes, biofilm formation, phylogroups, and antibiotic resistance that would be correlated with diarrhea or carriage. STUDY DESIGN Stool samples were obtained from children with acute diarrhea (n = 548), as well as nourished (n = 550), and malnourished controls without diarrhea (n = 110). E coli isolates were confirmed as EAEC by pCVD432 polymerase chain reaction. Multiplex polymerase chain reactions were used to identify 22 virulence-related genes and phylogeny. Antibiotic susceptibility, adherence, and biofilm-forming potential also were studied. RESULTS Overall, 16.6% of children were malnourished. EAEC detection was greater among children with acute diarrhea (16%) than nourished (6%) and malnourished nondiarrheal controls (2.7%). We found an association of EAEC infections with age <2 years (P = .0001) in the diarrheal group. Adhesive variants adhesion fimbriae IV and adhesion fimbriae II were significantly associated with diarrhea. The aggR and aar genes showed a positive and negative association with the severity of disease (P = .0004 and P = .0003). A high degree of multidrug resistance was found (73.8%) in the diarrheal group. Most EAEC strains from the diarrheal group belonged to B2 and D phylogroups, whereas strains from non-diarrheal groups, which belonged to phylogroup B1. CONCLUSIONS EAEC is a significant contributor to childhood diarrhea, its presence as a commensal, and the significance of the association of various virulence factors among the EAEC isolated from diarrheal and non-diarrheal stools. These data reinforce the importance of aggR and aar as positive and negative regulators and the contribution of AAF/II and AAF/IV fimbria for the pathobiology of EAEC.
Collapse
Affiliation(s)
- Vinay Modgil
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Chaudhary
- Department of Pediatrics Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhavneet Bharti
- Department of Pediatrics Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaspreet Mahindroo
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Md Yousuf
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Meenakshi Koundal
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Ellis SJ, Crossman LC, McGrath CJ, Chattaway MA, Hölken JM, Brett B, Bundy L, Kay GL, Wain J, Schüller S. Identification and characterisation of enteroaggregative Escherichia coli subtypes associated with human disease. Sci Rep 2020; 10:7475. [PMID: 32366874 PMCID: PMC7198487 DOI: 10.1038/s41598-020-64424-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
Enteroaggregative E. coli (EAEC) are a major cause of diarrhoea worldwide. Due to their heterogeneity and carriage in healthy individuals, identification of diagnostic virulence markers for pathogenic strains has been difficult. In this study, we have determined phenotypic and genotypic differences between EAEC strains of sequence types (STs) epidemiologically associated with asymptomatic carriage (ST31) and diarrhoeal disease (ST40). ST40 strains demonstrated significantly enhanced intestinal adherence, biofilm formation, and pro-inflammatory interleukin-8 secretion compared with ST31 isolates. This was independent of whether strains were derived from diarrhoea patients or healthy controls. Whole genome sequencing revealed differences in putative virulence genes encoding aggregative adherence fimbriae, E. coli common pilus, flagellin and EAEC heat-stable enterotoxin 1. Our results indicate that ST40 strains have a higher intrinsic potential of human pathogenesis due to a specific combination of virulence-related factors which promote host cell colonization and inflammation. These findings may contribute to the development of genotypic and/or phenotypic markers for EAEC strains of high virulence.
Collapse
Affiliation(s)
- Samuel J Ellis
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Lisa C Crossman
- School of Biological Sciences, University of East Anglia, Norwich, UK.,SequenceAnalysis.co.uk, Norwich Research Park, Norwich, UK
| | - Conor J McGrath
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Marie A Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, UK
| | - Johanna M Hölken
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Bernard Brett
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Leah Bundy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Gemma L Kay
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, UK.,Quadram Institute Bioscience, Norwich, UK
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, UK. .,Quadram Institute Bioscience, Norwich, UK.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The current review is to update the results on epidemiology, pathobiology, and genes related to virulence, clinical presentation, molecular diagnosis, antimicrobial resistance, and extraintestinal infection of enteroaggregative Escherichia coli (EAEC). RECENT FINDINGS EAEC subclinical infection was significantly associated with reduced length at 2 years of age and EAEC and coinfections were associated with reduced delta weight-for-length and weight-for-age z-scores in the first 6 months of age in the MAL-ED birth cohort study. EAEC was associated with malnutrition in children 6-24 months of age in prospective case-control studies in Bangladesh and Brazil. Virulence gene-based studies have suggested aggregative fimbriae II may be a major contributor to disease, whereas AggR-activated regulator a marker of less severe disease. The high ability of EAEC colonization likely exacerbates effects of other microbial virulence strategies. Molecular diagnosis has been useful for understanding EAEC burden, although different criteria may relate to different pathogenic outcomes. SUMMARY EAEC gained special interest in the past few years, especially due to association with growth decrements in children with subclinical infections and its important role as a copathogen. Understanding of EAEC pathogenesis advanced but further research is needed for elucidating both microbial and host factors influencing infection outcomes.
Collapse
|
6
|
Alanyl-glutamine Protects Against Damage Induced by Enteroaggregative Escherichia coli Strains in Intestinal Cells. J Pediatr Gastroenterol Nutr 2019; 68:190-198. [PMID: 30247422 DOI: 10.1097/mpg.0000000000002152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is an important pathogen causing enteric infections worldwide. This pathotype is linked to malnutrition in children from developing countries. Alanyl-glutamine (Ala-Gln) is an immune modulator nutrient that acts during intestinal damage and/or inflammation. This study investigated the effect of EAEC infection and Ala-Gln on cell viability, cell death, and inflammation of intestinal epithelium cells (IEC-6). METHODS Cells were infected with an EAEC prototype 042 strain, an EAEC wild-type strain isolated from a Brazilian malnourished child, and a commensal E coli HS. Gene transcription and protein levels of caspases-3, -8, and -9 and cytokine-induced neutrophil chemoattractant 1 (CINC-1/CXCL1) were evaluated using RT-qPCR, western blot analysis, and ELISA. RESULTS Infections with both EAEC strains decreased cell viability and induced apoptosis and necrosis after 24 hours. Ala-Gln supplementation increased cell proliferation and reduced cell death in infected cells. Likewise, EAEC strain 042 significantly increased the transcript levels of caspases-3, -8, and -9 when compared to the control group, and Ala-Gln treatment reversed this effect. Furthermore, EAEC induced CXCL1 protein levels, which were also reduced by Ala-Gln supplementation. CONCLUSION These findings suggest that EAEC infection promotes apoptosis, necrosis, and intestinal inflammation with involvement of caspases. Supplementation of Ala-Gln inhibits cell death, increases cell proliferation, attenuates mediators associated with cell death, and inflammatory pathways in infected cells.
Collapse
|
7
|
Braga RLL, Pereira ACM, Ferreira AF, Rosa ACDP, Pereira-Manfro WF. INTRACELLULAR PERSISTENCE OF ENTEROAGGREGATIVE ESCHERICHIA COLI INDUCES A PROINFLAMMATORY CYTOKINES SECRETION IN INTESTINAL EPITHELIAL T84 CELLS. ARQUIVOS DE GASTROENTEROLOGIA 2018; 55:133-137. [PMID: 30043861 DOI: 10.1590/s0004-2803.201800000-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The competence of enteroaggregative Escherichia coli (EAEC) to adhere to the intestinal epithelium of the host is a key role to the colonization and disease development. The virulence genes are crucial for EAEC pathogenicity during adherence, internalization and persistence in the host. The overwhelming majority of antigen encounters in a host occurs on the intestine surface, which is considered a part of innate mucosal immunity. Intestinal epithelial cells (IECs) can be activated by microorganisms and induce an immune response. OBJECTIVE The present study investigated the interaction of invasive EAEC strains with T84 intestinal epithelial cell line in respect to bacterial invasiveness, persistence and cytokines production. METHODS We evaluated intracellular persistence of invasive EAEC strains (H92/3, I49/3 and the prototype 042) and production of cytokines by sandwich ELISA in T84 cells upon 24 hours of infection. RESULTS The survival rates of the prototype 042 was 0.5x103 CFU/mL while survival of I49/3 and H92/3 reached 3.2x103 CFU/mL and 1.4x103 CFU/mL, respectively. Infection with all EAEC strains tested induced significant amounts of IL-8, IL-6 and TNF-α compared to uninfected T84 cells. CONCLUSION These data showed that infection by invasive EAEC induce a proinflammatory immune response in intestinal epithelial T84 cells.
Collapse
Affiliation(s)
- Ricardo Luís Lopes Braga
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Claudia Machado Pereira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Andréa Fonseca Ferreira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Cláudia de Paula Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Wânia Ferraz Pereira-Manfro
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
8
|
Jønsson R, Liu B, Struve C, Yang Y, Jørgensen R, Xu Y, Jenssen H, Krogfelt KA, Matthews S. Structural and functional studies of Escherichia coli aggregative adherence fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:304-311. [PMID: 27939608 PMCID: PMC5289312 DOI: 10.1016/j.bbapap.2016.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/14/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging cause of acute and persistent diarrhea worldwide. The pathogenesis of different EAEC stains is complicated, however, the early essential step begins with attachment of EAEC to intestinal mucosa via aggregative adherence fimbriae (AAFs). Currently, five different variants have been identified, which all share a degree of similarity in the gene organization of their operons and sequences. Here, we report the solution structure of Agg5A from the AAF/V variant. While preserving the major structural features shared by all AAF members, only Agg5A possesses an inserted helix at the beginning of the donor strand, which together with altered surface electrostatics, renders the protein unable to interact with fibronectin. Hence, here we characterize the first AAF variant with a binding mode that varies from previously described AAFs.
Collapse
Affiliation(s)
- Rie Jønsson
- Institute for Science and Environment, Roskilde University, Roskilde, Denmark; Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Bing Liu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Yi Yang
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - René Jørgensen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Håvard Jenssen
- Institute for Science and Environment, Roskilde University, Roskilde, Denmark
| | - Karen A Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Steve Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom.
| |
Collapse
|