1
|
Zhang Y, Ku YS, Cheung TY, Cheng SS, Xin D, Gombeau K, Cai Y, Lam HM, Chan TF. Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance. Microbiol Res 2024; 288:127886. [PMID: 39232483 DOI: 10.1016/j.micres.2024.127886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Rhizobia interact with leguminous plants in the soil to form nitrogen fixing nodules in which rhizobia and plant cells coexist. Although there are emerging studies on rhizobium-associated nitrogen fixation in cereals, the legume-rhizobium interaction is more well-studied and usually serves as the model to study rhizobium-mediated nitrogen fixation in plants. Rhizobia play a crucial role in the nitrogen cycle in many ecosystems. However, rhizobia are highly sensitive to variations in soil conditions and physicochemical properties (i.e. moisture, temperature, salinity, pH, and oxygen availability). Such variations directly caused by global climate change are challenging the adaptive capabilities of rhizobia in both natural and agricultural environments. Although a few studies have identified rhizobial genes that confer adaptation to different environmental conditions, the genetic basis of rhizobial stress tolerance remains poorly understood. In this review, we highlight the importance of improving the survival of rhizobia in soil to enhance their symbiosis with plants, which can increase crop yields and facilitate the establishment of sustainable agricultural systems. To achieve this goal, we summarize the key challenges imposed by global climate change on rhizobium-plant symbiosis and collate current knowledge of stress tolerance-related genes and pathways in rhizobia. And finally, we present the latest genetic engineering approaches, such as synthetic biology, implemented to improve the adaptability of rhizobia to changing environmental conditions.
Collapse
Affiliation(s)
- Yunjia Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yee-Shan Ku
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tsz-Yan Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sau-Shan Cheng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dawei Xin
- College of Agriculture, Northeast Agricultural University, Changjiang Road 600, Harbin 150030, China
| | - Kewin Gombeau
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
2
|
Tsyganova AV, Gorshkov AP, Vorobiev MG, Tikhonovich IA, Brewin NJ, Tsyganov VE. Dynamics of Hydrogen Peroxide Accumulation During Tip Growth of Infection Thread in Nodules and Cell Differentiation in Pea ( Pisum sativum L.) Symbiotic Nodules. PLANTS (BASEL, SWITZERLAND) 2024; 13:2923. [PMID: 39458872 PMCID: PMC11510766 DOI: 10.3390/plants13202923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Hydrogen peroxide (H2O2) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the Rhizobium-legume symbiosis, hydrogen peroxide plays an important signaling role throughout the development of this interaction. In the functioning nodule, H2O2 has been shown to be involved in bacterial differentiation into the symbiotic form and in nodule senescence. In this study, the pattern of H2O2 accumulation in pea (Pisum sativum L.) wild-type and mutant nodules blocked at different stages of the infection process was analyzed using a cytochemical reaction with cerium chloride. The observed dynamics of H2O2 deposition in the infection thread walls indicated that the distribution of H2O2 was apparently related to the stiffness of the infection thread wall. The dynamics of H2O2 accumulation was traced, and its patterns in different nodule zones were determined in order to investigate the relationship of H2O2 localization and distribution with the stages of symbiotic nodule development in P. sativum. The patterns of H2O2 localization in different zones of the indeterminate nodule have been partially confirmed by comparative analysis on mutant genotypes.
Collapse
Affiliation(s)
- Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| | - Artemii P. Gorshkov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| | - Maxim G. Vorobiev
- Research Park, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Igor A. Tikhonovich
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
- Research Park, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | | | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| |
Collapse
|
3
|
Chen YT, Zhang XY, Zhang D, Zhang ZX, Wang YX. Metabolism of Malus halliana Roots Provides Insights into Iron Deficiency Tolerance Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2500. [PMID: 39273984 PMCID: PMC11397119 DOI: 10.3390/plants13172500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Iron (Fe) deficiency is one of the most common micronutrient imbalances limiting plant growth globally, especially in arid and saline alkali regions due to the decreased availability of Fe in alkaline soils. Malus halliana grows well in arid regions and is tolerant of Fe deficiency. Here, a physiological and metabolomic approach was used to analyze the short-term molecular response of M. halliana roots to Fe deficiency. On the one hand, physiological data show that the root activity first increased and then decreased with the prolongation of the stress time, but the change trend of root pH was just the opposite. The total Fe content decreased gradually, while the effective Fe decreased at 12 h and increased at 3 d. The activity of iron reductase (FCR) increased with the prolongation of stress. On the other hand, a total of 61, 73, and 45 metabolites were identified by GC-MS in three pairs: R12h (Fe deficiency 12 h) vs. R0h (Fe deficiency 0 h), R3d (Fe deficiency 3 d) vs. R0h, and R3d vs. R12h, respectively. Sucrose, as a source of energy, produces monosaccharides such as glucose by hydrolysis, while glucose accumulates significantly at the first (R12h vs. R0h) and third time points (R3d vs. R0h). Carbohydrates (digalacturonate, L-xylitol, ribitol, D-xylulose, glucose, and glycerol) are degraded into pyruvate through glycolysis and pentose phosphate, which participate in the TCA. Glutathione metabolism and the TCA cycle coordinate with each other, actively respond to Fe deficiency stress, and synthesize secondary metabolites at the same time. This study thoroughly examines the metabolite response to plant iron deficiency, highlighting the crucial roles of sugar metabolism, tricarboxylic acid cycle regulation, and glutathione metabolism in the short-term iron deficiency response of apples. It also lays the groundwork for future research on analyzing iron deficiency tolerance.
Collapse
Affiliation(s)
- You-Ting Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
- Affairs Center of Jingtai County Forestry and Grassland Bureau, Baiyin 730900, China
| | - Xia-Yi Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - De Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhong-Xing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan-Xiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Long S, Su M, Chen X, Hu A, Yu F, Zou Q, Cheng G. Proteomic and Mutant Analysis of Hydrogenase Maturation Protein Gene hypE in Symbiotic Nitrogen Fixation of Mesorhizobium huakuii. Int J Mol Sci 2023; 24:12534. [PMID: 37628715 PMCID: PMC10454058 DOI: 10.3390/ijms241612534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogenases catalyze the simple yet important redox reaction between protons and electrons and H2, thus mediating symbiotic interactions. The contribution of hydrogenase to this symbiosis and anti-oxidative damage was investigated using the M. huakuii hypE (encoding hydrogenase maturation protein) mutant. The hypE mutant grew a little faster than its parental 7653R and displayed decreased antioxidative capacity under H2O2-induced oxidative damage. Real-time quantitative PCR showed that hypE gene expression is significantly up-regulated in all the detected stages of nodule development. Although the hypE mutant can form nodules, the symbiotic ability was severely impaired, which led to an abnormal nodulation phenotype coupled to a 47% reduction in nitrogen fixation capacity. This phenotype was linked to the formation of smaller abnormal nodules containing disintegrating and prematurely senescent bacteroids. Proteomics analysis allowed a total of ninety differentially expressed proteins (fold change > 1.5 or <0.67, p < 0.05) to be identified. Of these proteins, 21 are related to stress response and virulence, 21 are involved in transporter activity, and 18 are involved in energy and nitrogen metabolism. Overall, the HypE protein is essential for symbiotic nitrogen fixation, playing independent roles in supplying energy and electrons, in bacterial detoxification, and in the control of bacteroid differentiation and senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
5
|
Peptidoglycan recycling mediated by an ABC transporter in the plant pathogen Agrobacterium tumefaciens. Nat Commun 2022; 13:7927. [PMID: 36566216 PMCID: PMC9790009 DOI: 10.1038/s41467-022-35607-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
During growth and division, the bacterial cell wall peptidoglycan (PG) is remodelled, resulting in the liberation of PG muropeptides which are typically reinternalized and recycled. Bacteria belonging to the Rhizobiales and Rhodobacterales orders of the Alphaproteobacteria lack the muropeptide transporter AmpG, despite having other key PG recycling enzymes. Here, we show that an alternative transporter, YejBEF-YepA, takes over this role in the Rhizobiales phytopathogen Agrobacterium tumefaciens. Muropeptide import by YejBEF-YepA governs expression of the β-lactamase AmpC in A. tumefaciens, contributing to β-lactam resistance. However, we show that the absence of YejBEF-YepA causes severe cell wall defects that go far beyond lowered AmpC activity. Thus, contrary to previously established Gram-negative models, PG recycling is vital for cell wall integrity in A. tumefaciens. YepA is widespread in the Rhizobiales and Rhodobacterales, suggesting that YejBEF-YepA-mediated PG recycling could represent an important but overlooked aspect of cell wall biology in these bacteria.
Collapse
|
6
|
Malviya D, Varma A, Singh UB, Singh S, Saxena AK. Unraveling the mechanism of sulfur nutrition in pigeonpea inoculated with sulfur-oxidizing bacteria. Front Microbiol 2022; 13:927702. [PMID: 36134141 PMCID: PMC9483215 DOI: 10.3389/fmicb.2022.927702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
An investigation was carried out to understand the mechanism(s) involved in the uptake of sulfur (S) as sulfate in pigeonpea following single inoculation of two sulfur-oxidizing bacteria (SOB), Stenotrophomonas maltophilia and Stenotrophomonas pavanii in the treatments amended with either elemental sulfur (S0) or sulfate (S6). Colonization potential and biofilm formation were analyzed through confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Furthermore, the effect of seed inoculation on root architecture, expression of genes involved in sulfur oxidation (sox) in bacterial inoculants, and genes involved in sulfate transport in pigeonpea (PpSULTR) were analyzed to correlate with the higher uptake of S in roots and shoots of pigeonpea. Both the SOB exhibited a good colonization potential and biofilm formation on the roots of pigeonpea. Among the 11 sox genes targeted in rhizosphere of pigeonpea, expression was achieved for seven genes, which showed 2-fold increase in treatments inoculated with S. maltophilia and amended with either S6 or S0. The inoculation of S. maltophilia and amendment of S0 led to increased expression of PpSULTR genes by several folds in roots. The inoculation of SOB had a significant influence on non-enzymatic (osmolytes like proline) and enzymatic (PAL, peroxidase, superoxide dismutase, and catalase) levels. The results revealed a significant increase in sulfur uptake in roots and shoots in treatment inoculated with S. maltophilia and amended with S6. The investigation showed that the SOB-mediated over-expression of PpSULTR genes in roots of pigeonpea and sox genes in the rhizosphere were acting synergistically in facilitating higher uptake and translocation of S in roots and shoots of pigeonpea plants.
Collapse
Affiliation(s)
- Deepti Malviya
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Anil K. Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
- *Correspondence: Anil K. Saxena,
| |
Collapse
|
7
|
Zhang X, Yu T, Liu C, Fan X, Wu Y, Wang M, Zhao C, Chen Y. Cysteine reduced the inhibition of CO 2 on heterotrophic denitrification: Restoring redox balance, facilitating iron acquisition and carbon metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154173. [PMID: 35240182 DOI: 10.1016/j.scitotenv.2022.154173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The direct effect of CO2 on denitrification has attracted great attention currently. Our previous studies have confirmed that CO2 inhibited heterotrophic denitrification and caused high nitrite accumulation and nitrous oxide emission. Cysteine is a widely reported bio-accelerator; however, its effect on denitrification under CO2 exposure remains unknown. In this paper, the effect of cysteine on heterotrophic denitrification and its mechanisms under CO2 exposure were explored with the model denitrifier, Paracoccus denitrificans. We observed that total nitrogen removal increased from 17.9% to 90.4% as cysteine concentration increased from 0 to 50 μM, probably due to restoration of cell growth and viability. Further study showed that cysteine reduced the inhibition of CO2 on denitrification due to multiple positive influences: (1) regulating glutathione metabolism to eliminate intracellular reactive nitrogen species (RNS), while reducing extracellular polymeric substances (EPS) levels and altering its composition, ultimately restoring cell membrane integrity (2) facilitating the transport and metabolism of carbon sources to increase NADH production, and (3) increasing intracellular iron and up-regulating the expression of key iron transporters genes (AfuA, AfuB, ExbB and TonB) to restore the transport and consumption of electron. This study suggests that cysteine can be added to recover heterotrophic denitrification performance after inhibition by elevated CO2.
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tong Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xinyun Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunxia Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
8
|
Abstract
Biological nitrogen fixation in rhizobium-legume symbioses is of major importance for sustainable agricultural practices. To establish a mutualistic relationship with their plant host, rhizobia transition from free-living bacteria in soil to growth down infection threads inside plant roots and finally differentiate into nitrogen-fixing bacteroids. We reconstructed a genome-scale metabolic model for Rhizobium leguminosarum and integrated the model with transcriptome, proteome, metabolome, and gene essentiality data to investigate nutrient uptake and metabolic fluxes characteristic of these different lifestyles. Synthesis of leucine, polyphosphate, and AICAR is predicted to be important in the rhizosphere, while myo-inositol catabolism is active in undifferentiated nodule bacteria in agreement with experimental evidence. The model indicates that bacteroids utilize xylose and glycolate in addition to dicarboxylates, which could explain previously described gene expression patterns. Histidine is predicted to be actively synthesized in bacteroids, consistent with transcriptome and proteome data for several rhizobial species. These results provide the basis for targeted experimental investigation of metabolic processes specific to the different stages of the rhizobium-legume symbioses. IMPORTANCE Rhizobia are soil bacteria that induce nodule formation on plant roots and differentiate into nitrogen-fixing bacteroids. A detailed understanding of this complex symbiosis is essential for advancing ongoing efforts to engineer novel symbioses with cereal crops for sustainable agriculture. Here, we reconstruct and validate a genome-scale metabolic model for Rhizobium leguminosarum bv. viciae 3841. By integrating the model with various experimental data sets specific to different stages of symbiosis formation, we elucidate the metabolic characteristics of rhizosphere bacteria, undifferentiated bacteria inside root nodules, and nitrogen-fixing bacteroids. Our model predicts metabolic flux patterns for these three distinct lifestyles, thus providing a framework for the interpretation of genome-scale experimental data sets and identifying targets for future experimental studies.
Collapse
|
9
|
Yuan S, Zhou S, Feng Y, Zhang C, Huang Y, Shan Z, Chen S, Guo W, Yang H, Yang Z, Qiu D, Chen H, Zhou X. Identification of the Important Genes of Bradyrhizobium diazoefficiens 113-2 Involved in Soybean Nodule Development and Senescence. Front Microbiol 2021; 12:754837. [PMID: 34858367 PMCID: PMC8632152 DOI: 10.3389/fmicb.2021.754837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Legume nodule development and senescence directly affect nitrogen fixation efficiency and involve a programmed series of molecular events. These molecular events are carried out synchronously by legumes and rhizobia. The characteristics and molecular mechanisms of nitrogen fixation at soybean important developmental stages play critical roles in soybean cultivation and fertilizer application. Although the gene expression of soybean were analyzed in nodules at five important soybean developmental stages, information on the expression of rhizobial genes in these nodule samples is limited. In the present study, we investigated the expression of Bradyrhizobium diazoefficiens 113-2 genes in the nodule samples from five developmental stages of soybean (Branching stage, flowering stage, fruiting stage, pod stage and harvest stage). Similar gene expression patterns of B. diazoefficiens 113-2 were existed during optimal symbiotic functioning, while different expression patterns were found among early nodule development, nitrogen fixation progress and nodule senescence. Besides, we identified 164 important different expression genes (DEGs) associated with nodule development and senescence. These DEGs included those encoding nod, nif, fix proteins and T3SS secretion system-related proteins, as well as proteins involved in nitrogen metabolism, ABC transporters and two-component system pathways. Gene Ontology, KEGG pathway and homology analysis of the identified DEGs revealed that most of these DEGs are uncharacterized genes associated with nodule development and senescence, and they are not core genes among the rhizobia genomes. Our results provide new clues for the understanding of the genetic determinants of soil rhizobia in nodule development and senescence, and supply theoretical basis for the creation of high efficiency soybean cultivation technology.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Shunxin Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Yong Feng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
10
|
Chen X, Hu A, Zou Q, Luo S, Wu H, Yan C, Liu T, He D, Li X, Cheng G. The Mesorhizobium huakuii transcriptional regulator AbiEi plays a critical role in nodulation and is important for bacterial stress response. BMC Microbiol 2021; 21:245. [PMID: 34511061 PMCID: PMC8436566 DOI: 10.1186/s12866-021-02304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Bacterial abortive infection (Abi) systems are type IV toxin–antitoxin (TA) system, which could elicit programmed cell death and constitute a native survival strategy of pathogenic bacteria under various stress conditions. However, no rhizobial AbiE family TA system has been reported so far. Here, a M. huakuii AbiE TA system was identified and characterized. Results A mutation in M. huakuii abiEi gene, encoding an adjacent GntR-type transcriptional regulator, was generated by homologous recombination. The abiEi mutant strain grew less well in rich TY medium, and displayed increased antioxidative capacity and enhanced gentamicin resistance, indicating the abiEi operon was negatively regulated by the antitoxin AbiEi in response to the oxidative stress and a particular antibiotic. The mRNA expression of abiEi gene was significantly up-regulated during Astragalus sinicus nodule development. The abiEi mutant was severely impaired in its competitive ability in rhizosphere colonization, and was defective in nodulation with 97% reduction in nitrogen-fixing capacity. The mutant infected nodule cells contained vacuolation and a small number of abnormal bacteroids with senescence character. RNA-seq experiment revealed it had 5 up-regulated and 111 down-regulated genes relative to wild type. Of these down-regulated genes, 21 are related to symbiosis nitrogen fixation and nitrogen mechanism, 16 are involved in the electron transport chain and antioxidant responses, and 12 belong to type VI secretion system (T6SS). Conclusions M. huakuii AbiEi behaves as a key transcriptional regulator mediating root nodule symbiosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02304-0.
Collapse
Affiliation(s)
- Xiaohong Chen
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Aiqi Hu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Qian Zou
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Hetao Wu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Chunlan Yan
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Tao Liu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
11
|
Schulte CCM, Borah K, Wheatley RM, Terpolilli JJ, Saalbach G, Crang N, de Groot DH, Ratcliffe RG, Kruger NJ, Papachristodoulou A, Poole PS. Metabolic control of nitrogen fixation in rhizobium-legume symbioses. SCIENCE ADVANCES 2021; 7:7/31/eabh2433. [PMID: 34330708 PMCID: PMC8324050 DOI: 10.1126/sciadv.abh2433] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 05/16/2023]
Abstract
Rhizobia induce nodule formation on legume roots and differentiate into bacteroids, which catabolize plant-derived dicarboxylates to reduce atmospheric N2 into ammonia. Despite the agricultural importance of this symbiosis, the mechanisms that govern carbon and nitrogen allocation in bacteroids and promote ammonia secretion to the plant are largely unknown. Using a metabolic model derived from genome-scale datasets, we show that carbon polymer synthesis and alanine secretion by bacteroids facilitate redox balance in microaerobic nodules. Catabolism of dicarboxylates induces not only a higher oxygen demand but also a higher NADH/NAD+ ratio than sugars. Modeling and 13C metabolic flux analysis indicate that oxygen limitation restricts the decarboxylating arm of the tricarboxylic acid cycle, which limits ammonia assimilation into glutamate. By tightly controlling oxygen supply and providing dicarboxylates as the energy and electron source donors for N2 fixation, legumes promote ammonia secretion by bacteroids. This is a defining feature of rhizobium-legume symbioses.
Collapse
Affiliation(s)
- Carolin C M Schulte
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Khushboo Borah
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | | | | | - Nick Crang
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Daan H de Groot
- Systems Biology Lab, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, UK.
- John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
12
|
Mandon K, Nazaret F, Farajzadeh D, Alloing G, Frendo P. Redox Regulation in Diazotrophic Bacteria in Interaction with Plants. Antioxidants (Basel) 2021; 10:antiox10060880. [PMID: 34070926 PMCID: PMC8226930 DOI: 10.3390/antiox10060880] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Plants interact with a large number of microorganisms that greatly influence their growth and health. Among the beneficial microorganisms, rhizosphere bacteria known as Plant Growth Promoting Bacteria increase plant fitness by producing compounds such as phytohormones or by carrying out symbioses that enhance nutrient acquisition. Nitrogen-fixing bacteria, either as endophytes or as endosymbionts, specifically improve the growth and development of plants by supplying them with nitrogen, a key macro-element. Survival and proliferation of these bacteria require their adaptation to the rhizosphere and host plant, which are particular ecological environments. This adaptation highly depends on bacteria response to the Reactive Oxygen Species (ROS), associated to abiotic stresses or produced by host plants, which determine the outcome of the plant-bacteria interaction. This paper reviews the different antioxidant defense mechanisms identified in diazotrophic bacteria, focusing on their involvement in coping with the changing conditions encountered during interaction with plant partners.
Collapse
Affiliation(s)
- Karine Mandon
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Fanny Nazaret
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Davoud Farajzadeh
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran;
- Center for International Scientific Studies and Collaboration (CISSC), Ministry of Science, Research and Technology, Tehran 158757788, Iran
| | - Geneviève Alloing
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Pierre Frendo
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
- Correspondence:
| |
Collapse
|
13
|
Hu A, Chen X, Luo S, Zou Q, Xie J, He D, Li X, Cheng G. Rhizobium leguminosarum Glutathione Peroxidase Is Essential for Oxidative Stress Resistance and Efficient Nodulation. Front Microbiol 2021; 12:627562. [PMID: 33633710 PMCID: PMC7900000 DOI: 10.3389/fmicb.2021.627562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Glutathione (GSH) plays a key role in regulating the cellular Redox Homeostasis, and appears to be essential for initiation and development of root nodules. Glutathione peroxidase (Gpx) catalyzes the reduction of H2O2 and organic hydroperoxides by oxidation of GSH to oxidized GSH (GSSG), which in turn is reduced by glutathione reductase (GR). However, it has not been determined whether the Rhizobium leguminosarum Gpx or GR is required during symbiotic interactions with pea. To characterize the role of glutathione-dependent enzymes in the symbiotic process, single and double mutants were made in gpxA (encoding glutathione peroxidase) and gshR (encoding glutathione reductase) genes. All the mutations did not affect the rhizobial growth, but they increased the sensitivity of R. leguminosarum strains to H2O2. Mutant in GpxA had no effect on intracellular GSH levels, but can increase the expression of the catalase genes. The gshR mutant can induce the formation of normal nodules, while the gpxA single and double mutants exhibited a nodulation phenotype coupled to more than 50% reduction in the nitrogen fixation capacity, these defects in nodulation were characterized by the formation of ineffective nodules. In addition, the gpxA and gshR double mutant was severely impaired in rhizosphere colonization and competition. Quantitative proteomics using the TMT labeling method was applied to study the differential expression of proteins in bacteroids isolated from pea root nodules. A total of 27 differentially expressed proteins were identified in these root bacteroids including twenty down-regulated and seven up-regulated proteins. By sorting the down-regulated proteins, eight are transporter proteins, seven are dehydrogenase, deoxygenase, oxidase, and hydrolase. Moreover, three down-regulating proteins are directly involved in nodule process.
Collapse
Affiliation(s)
- Aiqi Hu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohong Chen
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Zou
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jing Xie
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
14
|
Abstract
Rhizobia are a phylogenetically diverse group of soil bacteria that engage in mutualistic interactions with legume plants. Although specifics of the symbioses differ between strains and plants, all symbioses ultimately result in the formation of specialized root nodule organs which host the nitrogen-fixing microsymbionts called bacteroids. Inside nodules, bacteroids encounter unique conditions that necessitate global reprogramming of physiological processes and rerouting of their metabolism. Decades of research have addressed these questions using genetics, omics approaches, and more recently computational modelling. Here we discuss the common adaptations of rhizobia to the nodule environment that define the core principles of bacteroid functioning. All bacteroids are growth-arrested and perform energy-intensive nitrogen fixation fueled by plant-provided C4-dicarboxylates at nanomolar oxygen levels. At the same time, bacteroids are subject to host control and sanctioning that ultimately determine their fitness and have fundamental importance for the evolution of a stable mutualistic relationship.
Collapse
|
15
|
Antioxidant ability of glutaredoxins and their role in symbiotic nitrogen fixation in Rhizobium leguminosarum bv. viciae 3841. Appl Environ Microbiol 2021; 87:AEM.01956-20. [PMID: 33277272 PMCID: PMC7851698 DOI: 10.1128/aem.01956-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glutaredoxins (Grx) are redoxin family proteins that reduce disulfides and mixed disulfides between glutathione and proteins. Rhizobium leguminosarum bv. Viciae 3841 contains three genes coding for glutaredoxins: RL4289 (grxA) codes for a dithiolic glutaredoxin, RL2615 (grxB) codes for a monothiol glutaredoxin, while RL4261 (grxC) codes for a glutaredoxin-like NrdH protein. We generated mutants interrupted in one, two, or three glutaredoxin genes. These mutants had no obvious differences in growth phenotypes from the wild type RL3841. However, while a mutant of grxC did not affect the antioxidant or symbiotic capacities of R. leguminosarum, grxA-derived or grxB mutants decreased antioxidant and nitrogen fixation capacities. Furthermore, grxA mutants were severely impaired in rhizosphere colonization, and formed smaller nodules with defects of bacteroid differentiation, whereas nodules induced by grxB mutants contained abnormally thick cortices and prematurely senescent bacteroids. The grx triple mutant had the greatest defect in antioxidant and symbiotic capacities of R. leguminosarum and quantitative proteomics revealed it had 56 up-regulated and 81 down-regulated proteins relative to wildtype. Of these proteins, twenty-eight are involved in transporter activity, twenty are related to stress response and virulence, and sixteen are involved in amino acid metabolism. Overall, R. leguminosarum glutaredoxins behave as antioxidant proteins mediating root nodule symbiosis.IMPORTANCE Glutaredoxin catalyzes glutathionylation/deglutathionylation reactions, protects SH-groups from oxidation and restores functionally active thiols. Three glutaredoxins exist in R. leguminosarum and their properties were investigated in free-living bacteria and during nitrogen-fixing symbiosis. All the glutaredoxins were necessary for oxidative stress defense. Dithiol GrxA affects nodulation and nitrogen fixation of bacteroids by altering deglutathionylation reactions, monothiol GrxB is involved in symbiotic nitrogen fixation by regulating Fe-S cluster biogenesis, and GrxC may participate in symbiosis by an unknown mechanism. Proteome analysis provides clues to explain the differences between the grx triple mutant and wild-type nodules.
Collapse
|
16
|
Global control of bacterial nitrogen and carbon metabolism by a PTS Ntr-regulated switch. Proc Natl Acad Sci U S A 2020; 117:10234-10245. [PMID: 32341157 DOI: 10.1073/pnas.1917471117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nitrogen-related phosphotransferase system (PTSNtr) of Rhizobium leguminosarum bv. viciae 3841 transfers phosphate from PEP via PtsP and NPr to two output regulators, ManX and PtsN. ManX controls central carbon metabolism via the tricarboxylic acid (TCA) cycle, while PtsN controls nitrogen uptake, exopolysaccharide production, and potassium homeostasis, each of which is critical for cellular adaptation and survival. Cellular nitrogen status modulates phosphorylation when glutamine, an abundant amino acid when nitrogen is available, binds to the GAF sensory domain of PtsP, preventing PtsP phosphorylation and subsequent modification of ManX and PtsN. Under nitrogen-rich, carbon-limiting conditions, unphosphorylated ManX stimulates the TCA cycle and carbon oxidation, while unphosphorylated PtsN stimulates potassium uptake. The effects are reversed with the phosphorylation of ManX and PtsN, occurring under nitrogen-limiting, carbon-rich conditions; phosphorylated PtsN triggers uptake and nitrogen metabolism, the TCA cycle and carbon oxidation are decreased, while carbon-storage polymers such as surface polysaccharide are increased. Deleting the GAF domain from PtsP makes cells "blind" to the cellular nitrogen status. PTSNtr constitutes a switch through which carbon and nitrogen metabolism are rapidly, and reversibly, regulated by protein:protein interactions. PTSNtr is widely conserved in proteobacteria, highlighting its global importance.
Collapse
|
17
|
Zou Q, Luo S, Wu H, He D, Li X, Cheng G. A GMC Oxidoreductase GmcA Is Required for Symbiotic Nitrogen Fixation in Rhizobium leguminosarum bv. viciae. Front Microbiol 2020; 11:394. [PMID: 32265862 PMCID: PMC7105596 DOI: 10.3389/fmicb.2020.00394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
GmcA is a FAD-containing enzyme belonging to the GMC (glucose-methanol-choline oxidase) family of oxidoreductases. A mutation in the Rhizobium leguminosarum gmcA gene was generated by homologous recombination. The mutation in gmcA did not affect the growth of R. leguminosarum, but it displayed decreased antioxidative capacity at H2O2 conditions higher than 5 mM. The gmcA mutant strain displayed no difference of glutathione reductase activity, but significantly lower level of the glutathione peroxidase activity than the wild type. Although the gmcA mutant was able to induce the formation of nodules, the symbiotic ability was severely impaired, which led to an abnormal nodulation phenotype coupled to a 30% reduction in the nitrogen fixation capacity. The observation on ultrastructure of 4-week pea nodules showed that the mutant bacteroids tended to start senescence earlier and accumulate poly-β-hydroxybutyrate (PHB) granules. In addition, the gmcA mutant was severely impaired in rhizosphere colonization. Real-time quantitative PCR showed that the gmcA gene expression was significantly up-regulated in all the detected stages of nodule development, and statistically significant decreases in the expression of the redoxin genes katG, katE, and ohrB were found in gmcA mutant bacteroids. LC-MS/MS analysis quantitative proteomics techniques were employed to compare differential gmcA mutant root bacteroids in response to the wild type infection. Sixty differentially expressed proteins were identified including 33 up-regulated and 27 down-regulated proteins. By sorting the identified proteins according to metabolic function, 15 proteins were transporter protein, 12 proteins were related to stress response and virulence, and 9 proteins were related to transcription factor activity. Moreover, nine proteins related to amino acid metabolism were over-expressed.
Collapse
Affiliation(s)
- Qian Zou
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hetao Wu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
18
|
Yang L, El Msehli S, Benyamina S, Lambert A, Hopkins J, Cazareth J, Pierre O, Hérouart D, Achi-Smiti S, Boncompagni E, Frendo P. Glutathione Deficiency in Sinorhizobium meliloti Does Not Impair Bacteroid Differentiation But Induces Early Senescence in the Interaction With Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2020; 11:137. [PMID: 32194584 PMCID: PMC7063052 DOI: 10.3389/fpls.2020.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Under nitrogen-limiting conditions, legumes are able to interact symbiotically with bacteria of the Rhizobiaceae family. This interaction gives rise to a new organ, named a root nodule. Root nodules are characterized by an increased glutathione (GSH) and homoglutathione (hGSH) content compared to roots. These low molecular thiols are very important in the biological nitrogen fixation. In order to characterize the modification of nodule activity induced by the microsymbiont glutathione deficiency, physiological, biochemical, and gene expression modifications were analyzed in nodules after the inoculation of Medicago truncatula with the SmgshB mutant of Sinorhizobium meliloti which is deficient in GSH production. The decline in nitrogen fixation efficiency was correlated to the reduction in plant shoot biomass. Flow cytometry analysis showed that SmgshB bacteroids present a higher DNA content than free living bacteria. Live/dead microscopic analysis showed an early bacteroid degradation in SmgshB nodules compared to control nodules which is correlated to a lower bacteroid content at 20 dpi. Finally, the expression of two marker genes involved in nitrogen fixation metabolism, Leghemoglobin and Nodule Cysteine Rich Peptide 001, decreased significantly in mutant nodules at 20 dpi. In contrast, the expression of two marker genes involved in the nodule senescence, Cysteine Protease 6 and Purple Acid Protease, increased significantly in mutant nodules at 10 dpi strengthening the idea that an early senescence process occurs in SmgshB nodules. In conclusion, our results showed that bacterial GSH deficiency does not impair bacterial differentiation but induces an early nodule senescence.
Collapse
Affiliation(s)
- Li Yang
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Sarra El Msehli
- Laboratoire de Physiologie Végétale, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Tunis, Tunisia
| | | | - Annie Lambert
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Julie Hopkins
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Julie Cazareth
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Olivier Pierre
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Didier Hérouart
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Samira Achi-Smiti
- Laboratoire de Physiologie Végétale, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Tunis, Tunisia
| | - Eric Boncompagni
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Pierre Frendo
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| |
Collapse
|
19
|
Luo S, Yin J, Peng Y, Xie J, Wu H, He D, Li X, Cheng G. Glutathione is Involved in Detoxification of Peroxide and Root Nodule Symbiosis of Mesorhizobium huakuii. Curr Microbiol 2019; 77:1-10. [PMID: 31624868 DOI: 10.1007/s00284-019-01784-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Legumes interact with symbiotic rhizobia to produce nitrogen-fixation root nodules under nitrogen-limiting conditions. The contribution of glutathione (GSH) to this symbiosis and anti-oxidative damage was investigated using the M. huakuii gshB (encoding GSH synthetase) mutant. The gshB mutant grew poorly with different monosaccharides, including glucose, sucrose, fructose, maltose, or mannitol, as sole sources of carbon. The antioxidative capacity of gshB mutant was significantly decreased by these treatments with H2O2 under the lower concentrations and cumene hydroperoxide (CUOOH) under the higher concentrations, indicating that GSH plays different roles in response to organic peroxide and inorganic peroxide. The gshB mutant strain displayed no difference in catalase activity, but significantly lower levels of the peroxidase activity and the glutathione reductase activity than the wild type. The same level of catalase activity could be associated with upregulation of the transcriptional activity of the catalase genes under H2O2-induced conditions. The nodules infected by the gshB mutant were severely impaired in abnormal nodules, and showed a nodulation phenotype coupled to a 60% reduction in the nitrogen fixation capacity. A 20-fold decrease in the expression of two nitrogenase genes, nifH and nifD, is observed in the nodules induced by gshB mutant strain. The symbiotic deficiencies were linked to bacteroid early senescence.
Collapse
Affiliation(s)
- Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Jie Yin
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Yang Peng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Jing Xie
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Hetao Wu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
20
|
Alloing G, Mandon K, Boncompagni E, Montrichard F, Frendo P. Involvement of Glutaredoxin and Thioredoxin Systems in the Nitrogen-Fixing Symbiosis between Legumes and Rhizobia. Antioxidants (Basel) 2018; 7:E182. [PMID: 30563061 PMCID: PMC6315971 DOI: 10.3390/antiox7120182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/08/2023] Open
Abstract
Leguminous plants can form a symbiotic relationship with Rhizobium bacteria, during which plants provide bacteria with carbohydrates and an environment appropriate to their metabolism, in return for fixed atmospheric nitrogen. The symbiotic interaction leads to the formation of a new organ, the root nodule, where a coordinated differentiation of plant cells and bacteria occurs. The establishment and functioning of nitrogen-fixing symbiosis involves a redox control important for both the plant-bacteria crosstalk and the regulation of nodule metabolism. In this review, we discuss the involvement of thioredoxin and glutaredoxin systems in the two symbiotic partners during symbiosis. The crucial role of glutathione in redox balance and S-metabolism is presented. We also highlight the specific role of some thioredoxin and glutaredoxin systems in bacterial differentiation. Transcriptomics data concerning genes encoding components and targets of thioredoxin and glutaredoxin systems in connection with the developmental step of the nodule are also considered in the model system Medicago truncatula⁻Sinorhizobium meliloti.
Collapse
Affiliation(s)
| | | | | | - Françoise Montrichard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé CEDEX, France.
| | | |
Collapse
|
21
|
Sinorhizobium meliloti Glutathione Reductase Is Required for both Redox Homeostasis and Symbiosis. Appl Environ Microbiol 2018; 84:AEM.01937-17. [PMID: 29150514 DOI: 10.1128/aem.01937-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/31/2017] [Indexed: 01/05/2023] Open
Abstract
Glutathione (l-γ-glutamyl-l-cysteinylglycine) (GSH), one of the key antioxidants in Sinorhizobium meliloti, is required for the development of alfalfa (Medicago sativa) nitrogen-fixing nodules. Glutathione exists as either reduced glutathione (GSH) or oxidized glutathione (GSSG), and its content is regulated by two pathways in S. meliloti The first pathway is the de novo synthesis of glutathione from its constituent amino acids, namely, Glu, Cys, and Gly, catalyzed by γ-glutamylcysteine synthetase (GshA) and glutathione synthetase (GshB). The second pathway is the recycling of GSSG via glutathione reductase (GR). However, whether the S. meliloti GR functions similarly to GshA and GshB1 during symbiotic interactions with alfalfa remains unknown. In this study, a plasmid insertion mutation of the S. melilotigor gene, which encodes GR, was constructed, and the mutant exhibited delayed alfalfa nodulation, with 75% reduction in nitrogen-fixing capacity. The gor mutant demonstrated increased accumulation of GSSG and a decreased GSH/GSSG ratio in cells. The mutant also showed defective growth in rich broth and minimal broth and was more sensitive to the oxidants H2O2 and sodium nitroprusside. Interestingly, the expression of gshA, gshB1, katA, and katB was induced in the mutant. These findings reveal that the recycling of glutathione is important for S. meliloti to maintain redox homeostasis and to interact symbiotically with alfalfa.IMPORTANCE The antioxidant glutathione is regulated by its synthetase and reductase in cells. In the symbiotic bacterium S. meliloti, the de novo synthesis of glutathione is essential for alfalfa nodulation and nitrogen fixation. In this study, we observed that the recycling of glutathione from GSSG not only was required for redox homeostasis and oxidative stress protection in S. meliloti cells but also contributed to alfalfa nodule development and competition capacity. Our findings demonstrate that the recycling of glutathione plays a key role in nitrogen fixation symbiosis.
Collapse
|