1
|
Iizaka Y, Yamada M, Koshino S, Takahashi S, Saito R, Sherman DH, Anzai Y. Production of hybrid macrolide antibiotics by exploiting the specific substrate recognition characteristics of multifunctional cytochrome P450 enzyme MycG. FEMS Microbiol Lett 2024; 371:fnae080. [PMID: 39341787 DOI: 10.1093/femsle/fnae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Macrolide antibiotics are biosynthesized via enzymatic modifications, including glycosylation, methylation, and oxidation, after the core macro-lactone ring is generated by a polyketide synthase system. This study explored the diversification of macrolides by combining biosynthetic enzymes and reports an approach to produce unnatural hybrid macrolide antibiotics. The cytochrome (CYP) P450 monooxygenase MycG exhibits bifunctional activity, catalyzing late-stage hydroxylation at C-14 followed by epoxidation at C-12/13 during mycinamicin biosynthesis. The mycinose sugar of mycinamicin serves as a key molecular recognition element for binding to MycG. Thus, we subjected the hybrid macrolide antibiotic 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (IZI) to MycG, and confirmed that MycG catalyzed hydroxylation at C-22 and epoxidation at C-12/13 in IZI. In addition, the introduction of mycinose biosynthesis-related genes and mycG into rosamicin-producing Micromonospora rosaria enabled the fermentative production of 22-hydroxylated and 12,13-epoxidized forms of IZI. Interestingly, MycG catalyzed the sequential oxidation of hydroxylation and epoxidation in mycinamicin biosynthesis, but only single reactions in IZI. These findings highlight the potential for expanding the application of the multifunctional P450 monooxygenase MycG for the production of unnatural compounds.
Collapse
Affiliation(s)
- Yohei Iizaka
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Mari Yamada
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Suirei Koshino
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sawa Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Ryota Saito
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yojiro Anzai
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
2
|
Guo W, Xiao Z, Huang T, Zhang K, Pan HX, Tang GL, Deng Z, Liang R, Lin S. Identification and characterization of a strong constitutive promoter stnYp for activating biosynthetic genes and producing natural products in streptomyces. Microb Cell Fact 2023; 22:127. [PMID: 37443029 DOI: 10.1186/s12934-023-02136-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Streptomyces are well known for their potential to produce various pharmaceutically active compounds, the commercial development of which is often limited by the low productivity and purity of the desired compounds expressed by natural producers. Well-characterized promoters are crucial for driving the expression of target genes and improving the production of metabolites of interest. RESULTS A strong constitutive promoter, stnYp, was identified in Streptomyces flocculus CGMCC4.1223 and was characterized by its effective activation of silent biosynthetic genes and high efficiency of heterologous gene expression. The promoter stnYp showed the highest activity in model strains of four Streptomyces species compared with the three frequently used constitutive promoters ermEp*, kasOp*, and SP44. The promoter stnYp could efficiently activate the indigoidine biosynthetic gene cluster in S. albus J1074, which is thought to be silent under routine laboratory conditions. Moreover, stnYp was found suitable for heterologous gene expression in different Streptomyces hosts. Compared with the promoters ermEp*, kasOp*, and SP44, stnYp conferred the highest production level of diverse metabolites in various heterologous hosts, including the agricultural-bactericide aureonuclemycin and the antitumor compound YM-216391, with an approximately 1.4 - 11.6-fold enhancement of the yields. Furthermore, the purity of tylosin A was greatly improved by overexpressing rate-limiting genes through stnYp in the industrial strain. Further, the yield of tylosin A was significantly elevated to 10.30 ± 0.12 g/L, approximately 1.7-fold higher than that of the original strain. CONCLUSIONS The promoter stnYp is a reliable, well-defined promoter with strong activity and broad suitability. The findings of this study can expand promoter diversity, facilitate genetic manipulation, and promote metabolic engineering in multiple Streptomyces species.
Collapse
Affiliation(s)
- Wenli Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Kai Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
3
|
Multifunctional Enzymes in Microbial Secondary Metabolic Processes. Catalysts 2023. [DOI: 10.3390/catal13030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Microorganisms possess a strong capacity for secondary metabolite synthesis, which is represented by tightly controlled networks. The absence of any enzymes leads to a change in the original metabolic pathway, with a decrease in or even elimination of a synthetic product, which is not permissible under conditions of normal life activities of microorganisms. In order to improve the efficiency of secondary metabolism, organisms have evolved multifunctional enzymes (MFEs) that can catalyze two or more kinds of reactions via multiple active sites. However, instead of interfering, the multifunctional catalytic properties of MFEs facilitate the biosynthetic process. Among the numerous MFEs considered of vital importance in the life activities of living organisms are the synthases involved in assembling the backbone of compounds using different substrates and modifying enzymes that confer the final activity of compounds. In this paper, we review MFEs in terms of both synthetic and post-modifying enzymes involved in secondary metabolic biosynthesis, focusing on polyketides, non-ribosomal peptides, terpenoids, and a wide range of cytochrome P450s(CYP450s), and provide an overview and describe the recent progress in the research on MFEs.
Collapse
|
4
|
Espinoza RV, Haatveit KC, Grossman SW, Tan JY, McGlade CA, Khatri Y, Newmister SA, Schmidt JJ, Garcia-Borràs M, Montgomery J, Houk KN, Sherman DH. Engineering P450 TamI as an Iterative Biocatalyst for Selective Late-Stage C-H Functionalization and Epoxidation of Tirandamycin Antibiotics. ACS Catal 2021; 11:8304-8316. [PMID: 35003829 DOI: 10.1021/acscatal.1c01460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iterative P450 enzymes are powerful biocatalysts for selective late-stage C-H oxidation of complex natural product scaffolds. These enzymes represent useful tools for selectivity and cascade reactions, facilitating direct access to core structure diversification. Recently, we reported the structure of the multifunctional bacterial P450 TamI and elucidated the molecular basis of its substrate binding and strict reaction sequence at distinct carbon atoms of the substrate. Here, we report the design and characterization of a toolbox of TamI biocatalysts, generated by mutations at Leu101, Leu244, and/or Leu295, that alter the native selectivity, step sequence, and number of reactions catalyzed, including the engineering of a variant capable of catalyzing a four-step oxidative cascade without the assistance of the flavoprotein and oxidative partner TamL. The tuned enzymes override inherent substrate reactivity, enabling catalyst-controlled C-H functionalization and alkene epoxidation of the tetramic acid-containing natural product tirandamycin. Five bioactive tirandamycin derivatives (6-10) were generated through TamI-mediated enzymatic synthesis. Quantum mechanics calculations and MD simulations provide important insights into the basis of altered selectivity and underlying biocatalytic mechanisms for enhanced continuous oxidation of the iterative P450 TamI.
Collapse
Affiliation(s)
- Rosa V Espinoza
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kersti Caddell Haatveit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - S Wald Grossman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jin Yi Tan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caylie A McGlade
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yogan Khatri
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sean A Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer J Schmidt
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Department of Medicinal Chemistry, Department of Chemistry, and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Iizaka Y, Sherman DH, Anzai Y. An overview of the cytochrome P450 enzymes that catalyze the same-site multistep oxidation reactions in biotechnologically relevant selected actinomycete strains. Appl Microbiol Biotechnol 2021; 105:2647-2661. [PMID: 33710358 DOI: 10.1007/s00253-021-11216-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 enzymes (P450s) are one of the major factors responsible for the diversity of metabolites produced through many biosynthetic and biodegradative processes in actinomycetes. P450s typically catalyze a single oxidative modification; however, several P450s have been identified with the unique ability to iteratively oxidize the same-site of the substrate. These P450s are capable of forming diverse compounds that affect biological processes, including alcohols, ketones, aldehydes, and carboxylic acids. Although further structural and functional studies are needed to elucidate the mechanisms that allow multistep oxidative modification, recent studies have revealed the enzymatic properties and reaction mechanisms of these P450s. This mini-review covers the current knowledge of P450s that catalyze the multistep oxidation reactions and contribute to the production of a wide variety of metabolites by selected actinomycete strains, along with insights into their application and utility. Understanding the characteristics of these remarkable enzymes will facilitate their utilization in biotechnological applications to create biologically active and other high-value compounds. KEY POINTS: • The multistep oxidation by P450s plays a key role in the diversity of metabolites. • The mechanisms that enable P450s to catalyze iterative oxidation remains unknown. • The effective use of P450s that iteratively oxidize the same-site is discussed.
Collapse
Affiliation(s)
- Yohei Iizaka
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Yojiro Anzai
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| |
Collapse
|
6
|
Artificial control of the multistep oxidation reactions catalyzed by the cytochrome P450 enzyme RosC. Appl Microbiol Biotechnol 2020; 104:3403-3415. [PMID: 32103316 DOI: 10.1007/s00253-020-10481-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 01/26/2023]
Abstract
The cytochrome P450 monooxygenase RosC catalyzes the three-step oxidation reactions, which leads to the formation of a hydroxy, formyl, and carboxy group at C-20 during rosamicin biosynthesis in Micromonospora rosaria IFO13697. To determine if amino acid substitutions in RosC could allow for the control of the multistep oxidation reactions, we screened RosC random mutants. The RosC mutant RM30, with five amino acid substitutions (P107S, L176Q, S254N, V277A, and I319N), catalyzed only the first step of the oxidation reaction. Whole-cell assays using Escherichia coli cells expressing RosC mutants with single and double amino acid substitutions derived from RM30 indicated that P107S/L176Q, P107S/V277A, P107S/I319N, L176Q/V277A, L176Q/I319N, and S254N/V277A significantly reduced the catalytic activity of the second reaction, which is alcohol oxidation. Of the previously mentioned mutants, double mutants containing L176Q, which was presumed to occur in the FG loop region, lost the total catalytic activity of the third reaction (aldehyde oxidation). Additionally, an engineered M. rosaria strain with rosC disruption, which introduced the gene encoding the RosC mutants P107S/L176Q and P107S/V277A preferentially produced 20-dihydrorosamicin, which is formed after the first oxidation reaction of RosC.
Collapse
|
7
|
He F, Mori T, Morita I, Nakamura H, Alblova M, Hoshino S, Awakawa T, Abe I. Molecular basis for the P450-catalyzed C–N bond formation in indolactam biosynthesis. Nat Chem Biol 2019; 15:1206-1213. [DOI: 10.1038/s41589-019-0380-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
|