1
|
Benyamin MS, Perisin MP, Hellman CA, Schwalm ND, Jahnke JP, Sund CJ. Modeling control and transduction of electrochemical gradients in acid-stressed bacteria. iScience 2023; 26:107140. [PMID: 37404371 PMCID: PMC10316662 DOI: 10.1016/j.isci.2023.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Transmembrane electrochemical gradients drive solute uptake and constitute a substantial fraction of the cellular energy pool in bacteria. These gradients act not only as "homeostatic contributors," but also play a dynamic and keystone role in several bacterial functions, including sensing, stress response, and metabolism. At the system level, multiple gradients interact with ion transporters and bacterial behavior in a complex, rapid, and emergent manner; consequently, experiments alone cannot untangle their interdependencies. Electrochemical gradient modeling provides a general framework to understand these interactions and their underlying mechanisms. We quantify the generation, maintenance, and interactions of electrical, proton, and potassium potential gradients under lactic acid-stress and lactic acid fermentation. Further, we elucidate a gradient-mediated mechanism for intracellular pH sensing and stress response. We demonstrate that this gradient model can yield insights on the energetic limitations of membrane transport, and can predict bacterial behavior across changing environments.
Collapse
Affiliation(s)
- Marcus S. Benyamin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Matthew P. Perisin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Caleb A. Hellman
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Nathan D. Schwalm
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Justin P. Jahnke
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Christian J. Sund
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| |
Collapse
|
2
|
Atasoy M, Cetecioglu Z. Bioaugmented Mixed Culture by Clostridium aceticum to Manipulate Volatile Fatty Acids Composition From the Fermentation of Cheese Production Wastewater. Front Microbiol 2021; 12:658494. [PMID: 34539589 PMCID: PMC8446653 DOI: 10.3389/fmicb.2021.658494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Production of targeted volatile fatty acid (VFA) composition by fermentation is a promising approach for upstream and post-stream VFA applications. In the current study, the bioaugmented mixed microbial culture by Clostridium aceticum was used to produce an acetic acid dominant VFA mixture. For this purpose, anaerobic sequencing batch reactors (bioaugmented and control) were operated under pH 10 and fed by cheese processing wastewater. The efficiency and stability of the bioaugmentation strategy were monitored using the production and composition of VFA, the quantity of C. aceticum (by qPCR), and bacterial community profile (16S rRNA Illumina Sequencing). The bioaugmented mixed culture significantly increased acetic acid concentration in the VFA mixture (from 1170 ± 18 to 122 ± 9 mgCOD/L) compared to the control reactor. Furthermore, the total VFA production (from 1254 ± 11 to 5493 ± 36 mgCOD/L) was also enhanced. Nevertheless, the bioaugmentation could not shift the propionic acid dominancy in the VFA mixture. The most significant effect of bioaugmentation on the bacterial community profile was seen in the relative abundance of the Thermoanaerobacterales Family III. Incertae sedis, its relative abundance increased simultaneously with the gene copy number of C. aceticum during bioaugmentation. These results suggest that there might be a syntropy between species of Thermoanaerobacterales Family III. Incertae sedis and C. aceticum. The cycle analysis showed that 6 h (instead of 24 h) was adequate retention time to achieve the same acetic acid and total VFA production efficiency. Biobased acetic acid production is widely applicable and economically competitive with petroleum-based production, and this study has the potential to enable a new approach as produced acetic acid dominant VFA can replace external carbon sources for different processes (such as denitrification) in WWTPs. In this way, the higher treatment efficiency for WWTPs can be obtained by recovered substrate from the waste streams that promote a circular economy approach.
Collapse
Affiliation(s)
- Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Process Engineering Aspects for the Microbial Conversion of C1 Gases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:33-56. [PMID: 34291298 DOI: 10.1007/10_2021_172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Industrially applied bioprocesses for the reduction of C1 gases (CO2 and/or CO) are based in particular on (syn)gas fermentation with acetogenic bacteria and on photobioprocesses with microalgae. In each case, process engineering characteristics of the autotrophic microorganisms are specified and process engineering aspects for improving gas and electron supply are summarized before suitable bioreactor configurations are discussed for the production of organic products under given economic constraints. Additionally, requirements for the purity of C1 gases are summarized briefly. Finally, similarities and differences in microbial CO2 valorization are depicted comparing gas fermentations with acetogenic bacteria and photobioprocesses with microalgae.
Collapse
|
4
|
Debabov VG. Acetogens: Biochemistry, Bioenergetics, Genetics, and Biotechnological Potential. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
5
|
Hermann M, Teleki A, Weitz S, Niess A, Freund A, Bengelsdorf FR, Takors R. Electron availability in CO 2 , CO and H 2 mixtures constrains flux distribution, energy management and product formation in Clostridium ljungdahlii. Microb Biotechnol 2020; 13:1831-1846. [PMID: 32691533 PMCID: PMC7533319 DOI: 10.1111/1751-7915.13625] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/14/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Acetogens such as Clostridium ljungdahlii can play a crucial role reducing the human CO2 footprint by converting industrial emissions containing CO2 , CO and H2 into valuable products such as organic acids or alcohols. The quantitative understanding of cellular metabolism is a prerequisite to exploit the bacterial endowments and to fine-tune the cells by applying metabolic engineering tools. Studying the three gas mixtures CO2 + H2 , CO and CO + CO2 + H2 (syngas) by continuously gassed batch cultivation experiments and applying flux balance analysis, we identified CO as the preferred carbon and electron source for growth and producing alcohols. However, the total yield of moles of carbon (mol-C) per electrons consumed was almost identical in all setups which underlines electron availability as the main factor influencing product formation. The Wood-Ljungdahl pathway (WLP) showed high flexibility by serving as the key NAD+ provider for CO2 + H2, whereas this function was strongly compensated by the transhydrogenase-like Nfn complex when CO was metabolized. Availability of reduced ferredoxin (Fdred ) can be considered as a key determinant of metabolic control. Oxidation of CO via carbon monoxide dehydrogenase (CODH) is the main route of Fdred formation when CO is used as substrate, whereas Fdred is mainly regenerated via the methyl branch of WLP and the Nfn complex utilizing CO2 + H2 . Consequently, doubled growth rates, highest ATP formation rates and highest amounts of reduced products (ethanol, 2,3-butanediol) were observed when CO was the sole carbon and electron source.
Collapse
Affiliation(s)
- Maria Hermann
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| | - Attila Teleki
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| | - Sandra Weitz
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 11Ulm89069Germany
| | - Alexander Niess
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| | - Andreas Freund
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| | - Frank R. Bengelsdorf
- Institute of Microbiology and BiotechnologyUlm UniversityAlbert‐Einstein‐Allee 11Ulm89069Germany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartAllmandring 31Stuttgart70569Germany
| |
Collapse
|
6
|
Arslan K, Bayar B, Nalakath Abubackar H, Veiga MC, Kennes C. Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas. BIORESOURCE TECHNOLOGY 2019; 292:121941. [PMID: 31401358 DOI: 10.1016/j.biortech.2019.121941] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The ethanol production capability of Clostridium aceticum was investigated and optimized, in order to evaluate the ability of that organism to produce high concentrations of fuel-ethanol. The results showed that C. aceticum can produce significant amounts of ethanol when a natural pH drop occurs in the fermentation broth as a consequence of acetic acid production in a first stage. Applying different pH-regulating strategies allowed to optimize ethanol production, which proved to be more efficient in case of natural acidification due to acetic acid, reaching up to 5.6 g/L ethanol, compared to artificial pH adjustment through the addition of hydrogen chloride. Playing with the pH value and the bioreactor operating conditions showed that, under specific conditions, C. aceticum is able to perform the reverse reaction as well and convert ethanol, produced at low pH, back to acetic acid, impeding, under those specific conditions, further accumulation of ethanol in the fermentation broth.
Collapse
Affiliation(s)
- Kübra Arslan
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - Büşra Bayar
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - Haris Nalakath Abubackar
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of La Coruña, Rúa da Fraga 10, 15008 - La Coruña, Spain.
| |
Collapse
|
7
|
Riegler P, Bieringer E, Chrusciel T, Stärz M, Löwe H, Weuster-Botz D. Continuous conversion of CO 2/H 2 with Clostridium aceticum in biofilm reactors. BIORESOURCE TECHNOLOGY 2019; 291:121760. [PMID: 31352165 DOI: 10.1016/j.biortech.2019.121760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
A lab-scale stirred-tank bioreactor was reversibly retrofitted to a packed-bed and a trickle-bed biofilm reactor to study and compare the conversion of CO2/H2 with immobilised Clostridiumaceticum. The biofilm reactors were characterised and their functionality confirmed. Up to 8.6 g of C. aceticum were immobilised onto 300 g sintered ceramic carrier material, proving biofilm formation to be a robust means for cell retention of C. aceticum. Continuous CO2/H2-fermentation studies were performed with both biofilm reactor configurations as function of dilution rates, partial gas pressures and gas flow rates. The experiments showed that in the packed-bed biofilm reactor, the acetate space-time yield was independent of the dilution rate, because of low H2 gas-liquid mass transfer rates (≤17 mmol H2 L-1 h-1). The continuous operation of the trickle-bed biofilm reactor increased the gas-liquid mass transfer rates to up to 56 mmol H2 L-1 h-1. Consequently, the acetate space-time yield of up to 14 mmol acetate L-1 h-1 was improved 3-fold at hydrogen conversions of up to 96%.
Collapse
Affiliation(s)
- Peter Riegler
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Emmeran Bieringer
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Thomas Chrusciel
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Moritz Stärz
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Hannes Löwe
- Technical University of Munich, Associate Professorship of Systems Biotechnology, Garching, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany.
| |
Collapse
|
8
|
Branduardi P, Sauer M. Microbial carbon dioxide fixation: new tricks for an old game. FEMS Microbiol Lett 2019; 365:4705898. [PMID: 29228194 DOI: 10.1093/femsle/fnx269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
The exploitation of petroleum as energy and material source opened unprecedented possibilities for the development of our human societies, but only now we realize that the use of fossil resources comes at devastatingly high environmental costs. Consequently, our efforts to tap other carbon sources are steadily increasing. Industrial microbiology has the potential to use carbon dioxide directly as carbon source, thereby converting a foe into a friend. This thematic issue of FEMS Microbiology Letters sheds some light on recent developments for the understanding of microbial pathways for carbon dioxide fixation and on strategies for their industrial exploitation.
Collapse
Affiliation(s)
- Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Michael Sauer
- Department of Biotechnology, BOKU-VIBT University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
9
|
Riegler P, Chrusciel T, Mayer A, Doll K, Weuster-Botz D. Reversible retrofitting of a stirred-tank bioreactor for gas-lift operation to perform synthesis gas fermentation studies. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Mayer A, Schädler T, Trunz S, Stelzer T, Weuster‐Botz D. Carbon monoxide conversion withClostridium aceticum. Biotechnol Bioeng 2018; 115:2740-2750. [DOI: 10.1002/bit.26808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Alexander Mayer
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| | - Torben Schädler
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| | - Sascha Trunz
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| | - Thomas Stelzer
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| | - Dirk Weuster‐Botz
- Department of Mechanical EngineeringInstitute of Biochemical Engineering, Technical University of MunichGarching Germany
| |
Collapse
|
11
|
Takors R, Kopf M, Mampel J, Bluemke W, Blombach B, Eikmanns B, Bengelsdorf FR, Weuster-Botz D, Dürre P. Using gas mixtures of CO, CO 2 and H 2 as microbial substrates: the do's and don'ts of successful technology transfer from laboratory to production scale. Microb Biotechnol 2018; 11:606-625. [PMID: 29761637 PMCID: PMC6011938 DOI: 10.1111/1751-7915.13270] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/26/2023] Open
Abstract
The reduction of CO2 emissions is a global effort which is not only supported by the society and politicians but also by the industry. Chemical producers worldwide follow the strategic goal to reduce CO2 emissions by replacing existing fossil-based production routes with sustainable alternatives. The smart use of CO and CO2 /H2 mixtures even allows to produce important chemical building blocks consuming the said gases as substrates in carboxydotrophic fermentations with acetogenic bacteria. However, existing industrial infrastructure and market demands impose constraints on microbes, bioprocesses and products that require careful consideration to ensure technical and economic success. The mini review provides scientific and industrial facets finally to enable the successful implementation of gas fermentation technologies in the industrial scale.
Collapse
Affiliation(s)
- Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Kopf
- BASF SE, Bio-Process Development, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Joerg Mampel
- BRAIN AG, Darmstädter Straße 34-36, 64673, Zwingenberg, Germany
| | - Wilfried Bluemke
- Evonik Technology and Infrastructure GmbH, Process Technology & Engineering, Rodenbacher Chaussee 4, 63457, Hanau-Wolfgang, Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bernhard Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dirk Weuster-Botz
- Department of Mechanical Engineering, Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
12
|
Bengelsdorf FR, Beck MH, Erz C, Hoffmeister S, Karl MM, Riegler P, Wirth S, Poehlein A, Weuster-Botz D, Dürre P. Bacterial Anaerobic Synthesis Gas (Syngas) and CO 2+H 2 Fermentation. ADVANCES IN APPLIED MICROBIOLOGY 2018; 103:143-221. [PMID: 29914657 DOI: 10.1016/bs.aambs.2018.01.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anaerobic bacterial gas fermentation gains broad interest in various scientific, social, and industrial fields. This microbial process is carried out by a specific group of bacterial strains called acetogens. All these strains employ the Wood-Ljungdahl pathway but they belong to different taxonomic groups. Here we provide an overview of the metabolism of acetogens and naturally occurring products. Characteristics of 61 strains were summarized and selected acetogens described in detail. Acetobacterium woodii, Clostridium ljungdahlii, and Moorella thermoacetica serve as model organisms. Results of approaches such as genome-scale modeling, proteomics, and transcriptomics are discussed. Metabolic engineering of acetogens can be used to expand the product portfolio to platform chemicals and to study different aspects of cell physiology. Moreover, the fermentation of gases requires specific reactor configurations and the development of the respective technology, which can be used for an industrial application. Even though the overall process will have a positive effect on climate, since waste and greenhouse gases could be converted into commodity chemicals, some legislative barriers exist, which hamper successful exploitation of this technology.
Collapse
Affiliation(s)
- Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany.
| | - Matthias H Beck
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Catarina Erz
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Sabrina Hoffmeister
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Michael M Karl
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Peter Riegler
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Steffen Wirth
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University, Göttingen, Germany
| | - Dirk Weuster-Botz
- Technical University of Munich, Institute of Biochemical Engineering, Garching, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|