1
|
Wilson T, Green M, Dunn V, Cummins D, Neave M. Characterisation of a Mesophilic Aeromonas salmonicida and the Development of a PCR to Differentiate Atypical and Typical Strains. JOURNAL OF FISH DISEASES 2025; 48:e14028. [PMID: 39503323 DOI: 10.1111/jfd.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
This study describes the identification and characterisation of a new mesophilic Aeromonas salmonicida strain, named HMes1 isolated from Atlantic salmon (Salmo salar L.) in Tasmania. Isolates were identified as Aeromonas salmonicida through phenotypic, phylogenetic and genetic characterisation. After characterisation, the diagnostic phenotypic identification system MicroSys A24 was updated and a new multiplex conventional PCR was developed to enable rapid and inexpensive identification of atypical A. salmonicida, and exclusion of the exotic strain, A. salmonicida ssp. salmonicida.
Collapse
Affiliation(s)
- Teresa Wilson
- Department of Natural Resources and Environment Tasmania (NRE), Prospect, Australia
| | - Mark Green
- Department of Natural Resources and Environment Tasmania (NRE), Prospect, Australia
| | - Vivianne Dunn
- Department of Natural Resources and Environment Tasmania (NRE), Prospect, Australia
| | - David Cummins
- Australian Centre for Disease Preparedness (ACDP, CSIRO), East Geelong, Australia
| | - Matthew Neave
- Australian Centre for Disease Preparedness (ACDP, CSIRO), East Geelong, Australia
| |
Collapse
|
2
|
Hosseini N, Chehreghani M, Moineau S, Charette SJ. Centroid of the bacterial growth curves: a metric to assess phage efficiency. Commun Biol 2024; 7:673. [PMID: 38822127 PMCID: PMC11143336 DOI: 10.1038/s42003-024-06379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Phage replication can be studied using various approaches, including measuring the optical density (OD) of a bacterial culture in a liquid medium in the presence of phages. A few quantitative methods are available to measure and compare the efficiency of phages by using a single index based on the analysis of OD curves. However, these methods are not always applicable to non-canonical OD curves. Using the concept of center of area (centroid), we developed a metric called Centroid Index (CI), sensitive to the trend of the growth curves (OD distribution) including bacterial regrowth, which is not considered by the methods already available. We also provide a user-friendly software to facilitate the calculation of CI. This method offers an alternative and more precise way to determine phage efficiency by considering the OD variations over time, which may help in the selection of phages for biocontrol applications.
Collapse
Affiliation(s)
- Nava Hosseini
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| | - Mahdi Chehreghani
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A 0C3, Canada
| | - Sylvain Moineau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada.
| |
Collapse
|
3
|
Godoy M, Montes de Oca M, Suarez R, Martinez A, Pontigo JP, Caro D, Kusch K, Coca Y, Bohle H, Bayliss S, Kibenge M, Kibenge F. Genomics of Re-Emergent Aeromonas salmonicida in Atlantic Salmon Outbreaks. Microorganisms 2023; 12:64. [PMID: 38257891 PMCID: PMC10819690 DOI: 10.3390/microorganisms12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Furunculosis, caused by Aeromonas salmonicida, poses a significant threat to both salmonid and non-salmonid fish in diverse aquatic environments. This study explores the genomic intricacies of re-emergent A. salmonicida outbreaks in Atlantic salmon (Salmo salar). Previous clinical cases have exhibited pathological characteristics, such as periorbital hemorrhages and gastrointestinal abnormalities. Genomic sequencing of three Chilean isolates (ASA04, ASA05, and CIBA_5017) and 25 previously described genomes determined the pan-genome, phylogenomics, insertion sequences, and restriction-modification systems. Unique gene families have contributed to an improved understanding of the psychrophilic and mesophilic clades, while phylogenomic analysis has been used to identify mesophilic and psychrophilic strains, thereby further differentiating between typical and atypical psychrophilic isolates. Diverse insertion sequences and restriction-modification patterns have highlighted genomic structural differences, and virulence factor predictions can emphasize exotoxin disparities, especially between psychrophilic and mesophilic strains. Thus, a novel plasmid was characterized which emphasized the role of plasmids in virulence and antibiotic resistance. The analysis of antibiotic resistance factors revealed resistance against various drug classes in Chilean strains. Overall, this study elucidates the genomic dynamics of re-emergent A. salmonicida and provides novel insights into their virulence, antibiotic resistance, and population structure.
Collapse
Affiliation(s)
- Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5501842, Chile; (M.M.d.O.); (D.C.); (K.K.)
- Laboratorio de Biotecnología Aplicada, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede de la Patagonia, Puerto Montt 5480000, Chile
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5501842, Chile; (M.M.d.O.); (D.C.); (K.K.)
| | - Rudy Suarez
- Programa de Magíster en Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Chile;
| | - Alexis Martinez
- ATC Patagonia S/N, Carretera Austral, Puerto Montt 5480000, Chile;
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Medicina Veterinaria, Universidad San Sebastián, Lago Panguipulli 1390, Puerto Montt 5501842, Chile;
| | - Diego Caro
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5501842, Chile; (M.M.d.O.); (D.C.); (K.K.)
| | - Karina Kusch
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5501842, Chile; (M.M.d.O.); (D.C.); (K.K.)
| | - Yoandy Coca
- Doctorado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile;
| | - Harry Bohle
- Laboratorio InnovoGen, Egaña 198 Piso 2, Puerto Montt 5502534, Chile;
| | - Sion Bayliss
- Bristol Veterinary School, University of Bristol, Bristol BS8 1QU, UK;
| | - Molly Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE C1A 4P3, Canada; (M.K.); (F.K.)
| | - Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE C1A 4P3, Canada; (M.K.); (F.K.)
| |
Collapse
|
4
|
Cantillo Villa Y, Triga A, Katharios P. Polyinfection in Fish Aeromoniasis: A Study of Co-Isolated Aeromonas Species in Aeromonas veronii Outbreaks. Pathogens 2023; 12:1337. [PMID: 38003801 PMCID: PMC10674900 DOI: 10.3390/pathogens12111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
We studied the phenotypic and genomic characteristics related to the virulence and antibiotic resistance of two Aeromonas strains, which were co-isolated before an outbreak of Aeromonas veronii among diseased seabass on Agathonisi Island, Greece, in April 2015. The first strain, AG2.13.2, is a potentially pathogenic mesophilic variant of Aeromonas salmonicida, and the second, AG2.13.5, corresponds to an Aeromonas rivipollensis related to A. rivipollensis KN-Mc-11N1 with an ANI value of 97.32%. AG2.13.2 lacks the type III secretion system just like other mesophilic strains of A. salmonicida. This characteristic has been associated with lower virulence. However, the genome of AG2.13.2 contains other important virulence factors such as type II and type VI secretion systems, and toxins such as rtxA, aerolysin aer/act, and different types of hemolysins. The strain also carries several genes associated with antibiotic resistance such as the tetE efflux pump, and exhibits resistance to tetracycline, ampicillin, and oxolinic acid. In an in vivo challenge test with gilthead seabream larvae, the A. veronii bv sobria strain AG5.28.6 exhibited the highest virulence among all tested strains. Conversely, both A. salmonicida and A. rivipollensis showed minimal virulence when administered alone. Interestingly, when A. veronii bv sobria AG5.28.6 was co-administered with A. rivipollensis, the larvae survival probability increased compared to those exposed to A. veronii bv sobria AG5.28.6 alone. This finding indicates an antagonistic interaction between A. veronii bv sobria AG5.28.6 and A. rivipollensis AG2.13.5. The co-administration of A. veronii bv sobria AG5.28.6 with Aeromonas salmonicida did not yield distinct survival probabilities. Our results validate that the primary pathogen responsible for European seabass aeromoniasis is Aeromonas veronii bv sobria.
Collapse
Affiliation(s)
- Yanelys Cantillo Villa
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Department of Biology, University of Crete, 71110 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), 71500 Gournes, Greece; (Y.C.V.); (A.T.)
- Aquatic Biologicals, Thalassocosmos, 71500 Gournes, Greece
| |
Collapse
|
5
|
Bakiyev S, Smekenov I, Zharkova I, Kobegenova S, Sergaliyev N, Absatirov G, Bissenbaev A. Characterization of atypical pathogenic Aeromonas salmonicida isolated from a diseased Siberian sturgeon ( Acipenser baerii). Heliyon 2023; 9:e17775. [PMID: 37483743 PMCID: PMC10359828 DOI: 10.1016/j.heliyon.2023.e17775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Acipenser baerii (Siberian sturgeon) is native to Kazakhstan and is currently endangered and is listed within the first class of protected animals. Sturgeon aquaculture is becoming an important tool for the recovery of this endangered species. Nonetheless, diseases involving typical symptoms of skin ulceration and systemic bacterial hemorrhagic septicemia have occurred in cultured A. baerii on a fish farm located in Western Kazakhstan. In this study, an infectious strain of bacteria isolated from an ulcer of diseased A. baerii was identified as Aeromonas salmonicida (strain AB001). This identification involved analyses of 16S rRNA, gyrB, rpoD, and flaA genes' sequences. Even though strain AB001 belongs to A. salmonicida, it exhibited noticeable mobility and growth at temperatures of ≥37 °C. Profiling of virulence genes uncovered the presence of seven such genes related to pathogenicity. Antibiotic sensitivity testing showed that the strain is sensitive to aminoglycosides, amphenicols, nitrofurans, quinolones, and tetracyclines. Half-lethal doses (LD50) of strain AB001 for Oreochromis mossambicus and A. baerii were determined: respectively 1.7 × 108 and 7.2 × 107 colony-forming units per mL. The experimentally induced infection revealed that strain AB001 causes considerable histological lesions in O. mossambicus, including tissue degeneration, necrosis, and hemorrhages of varied severity.
Collapse
Affiliation(s)
- Serik Bakiyev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Izat Smekenov
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Irina Zharkova
- Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saidina Kobegenova
- Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Nurlan Sergaliyev
- Makhambet Utemisov West Kazakhstan University, Uralsk 090000, Kazakhstan
| | - Gaisa Absatirov
- West Kazakhstan Innovation and Technological University, Uralsk 090000, Kazakhstan
| | - Amangeldy Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
6
|
Long M, Fan H, Gan Z, Jiang Z, Tang S, Xia H, Lu Y. Comparative genomic analysis provides insights into taxonomy and temperature adaption of Aeromonas salmonicida. JOURNAL OF FISH DISEASES 2023; 46:545-561. [PMID: 36861816 DOI: 10.1111/jfd.13767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Aeromonas salmonicida has long been known as psychrophiles since it is mainly isolated from cold water fish, and recent reports have revealed the existence of mesophilic strains isolated from warm sources. However, the genetic differences between mesophilic and psychrophilic strains remain unclear due to few complete genomes of mesophilic strain are available. In this study, six A. salmonicida (2 mesophilic and 4 psychrophilic) were genome-sequenced, and comparative analyses of 25 A. salmonicida complete genomes were conducted. The ANI values and phylogenetic analysis revealed that 25 strains formed three independent clades, which were referred as typical psychrophilic, atypical psychrophilic and mesophilic groups. Comparative genomic analysis showed that two chromosomal gene clusters, related to lateral flagella and outer membrane proteins (A-layer and T2SS proteins), and insertion sequences (ISAs4, ISAs7 and ISAs29) were unique to the psychrophilic groups, while the complete MSH type IV pili were unique to the mesophilic group, all of which may be considered as lifestyle-related factors. The results of this study not only provide new insights into the classification, lifestyle adaption and pathogenic mechanism of different strains of A. salmonicida, but also contributes to the prevention and control of disease caused by psychrophilic and mesophilic A. salmonicida.
Collapse
Affiliation(s)
- Meng Long
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Huimin Fan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Shaoshuai Tang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Hongli Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
7
|
Attéré SA, Gagné-Thivierge C, Paquet VE, Leduc GR, Vincent AT, Charette SJ. Aeromonas salmonicida isolates from Canada demonstrate wide distribution and clustering among mesophilic strains. Genome 2023; 66:108-115. [PMID: 36780641 DOI: 10.1139/gen-2022-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
All the 36 known species to date of the genus Aeromonas are mesophilic except the species Aeromonas salmonicida, which includes both psychrophilic and mesophilic subspecies. For 20 years, more and more mesophilic A. salmonicida strains have been discovered. Only A. salmonicida subsp. pectinolytica has officially been classified as a mesophilic subspecies. Most mesophiles have been isolated in hot countries. We present, for the first time, the characterization of two new mesophilic isolates from Quebec (Canada). Phenotypic and genomic characterizations were carried out on these strains, isolated from dead fish from a fish farm. Isolates 19-K304 and 19-K308 are clearly mesophiles, virulent to the amoeba Dictyostelium discoideum, a surrogate host, and close to strain Y577, isolated in India. To our knowledge, this is the first time that mesophilic strains isolated from different countries are so similar. The major difference between the isolates is the presence of plasmid pY47-3, a cryptic plasmid that sometimes presents in mesophilic strains. More importantly, our extensive phylogenetic analysis reveals two well-defined clades of mesophilic strains with psychrophiles associated with one of these clades. This helps to have a better understanding of the evolution of this species and the apparition of psychrophilic subspecies.
Collapse
Affiliation(s)
- Sabrina A Attéré
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Cynthia Gagné-Thivierge
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Gabrielle R Leduc
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, 2425, rue de l'Agriculture, Quebec City, QC G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Dubey S, Ager-Wick E, Kumar J, Karunasagar I, Karunasagar I, Peng B, Evensen Ø, Sørum H, Munang’andu HM. Aeromonas species isolated from aquatic organisms, insects, chicken, and humans in India show similar antimicrobial resistance profiles. Front Microbiol 2022; 13:1008870. [PMID: 36532495 PMCID: PMC9752027 DOI: 10.3389/fmicb.2022.1008870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/14/2022] [Indexed: 01/07/2024] Open
Abstract
Aeromonas species are Gram-negative bacteria that infect various living organisms and are ubiquitously found in different aquatic environments. In this study, we used whole genome sequencing (WGS) to identify and compare the antimicrobial resistance (AMR) genes, integrons, transposases and plasmids found in Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii isolated from Indian major carp (Catla catla), Indian carp (Labeo rohita), catfish (Clarias batrachus) and Nile tilapia (Oreochromis niloticus) sampled in India. To gain a wider comparison, we included 11 whole genome sequences of Aeromonas spp. from different host species in India deposited in the National Center for Biotechnology Information (NCBI). Our findings show that all 15 Aeromonas sequences examined had multiple AMR genes of which the Ambler classes B, C and D β-lactamase genes were the most dominant. The high similarity of AMR genes in the Aeromonas sequences obtained from different host species point to interspecies transmission of AMR genes. Our findings also show that all Aeromonas sequences examined encoded several multidrug efflux-pump proteins. As for genes linked to mobile genetic elements (MBE), only the class I integrase was detected from two fish isolates, while all transposases detected belonged to the insertion sequence (IS) family. Only seven of the 15 Aeromonas sequences examined had plasmids and none of the plasmids encoded AMR genes. In summary, our findings show that Aeromonas spp. isolated from different host species in India carry multiple AMR genes. Thus, we advocate that the control of AMR caused by Aeromonas spp. in India should be based on a One Health approach.
Collapse
Affiliation(s)
- Saurabh Dubey
- Section of Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Section of Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jitendra Kumar
- College of Fisheries, Acharya Narendra Deva University of Agriculture and Technology, Uttar Pradesh, India
| | - Indrani Karunasagar
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Iddya Karunasagar
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hetron M. Munang’andu
- Section of Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
9
|
Enhanced Hemolytic Activity of Mesophilic Aeromonas salmonicida SRW-OG1 Is Brought about by Elevated Temperatures. Microorganisms 2022; 10:microorganisms10102033. [PMID: 36296309 PMCID: PMC9609485 DOI: 10.3390/microorganisms10102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas salmonicida is a well-known cold-water pathogenic bacterium. Previously, we reported the first isolation of pathogenic A. salmonicida from diseased Epinephelus coioides, a kind of warm-water fish, and it was proved to be a putative mesophilic strain with potent pathogenicity to humans. In order to investigate the mechanisms underlying mesophilic growth ability and virulence, the transcriptome of A. salmonicida SRW-OG1 at 18, 28, and 37 °C was analyzed. The transcriptome of A. salmonicida SRW-OG1 at different temperatures showed a clear separation boundary, which might provide valuable information for the temperature adaptation and virulence regulation of A. salmonicida SRW-OG1. Interestingly, aerA and hlyA, the hemolytic genes encoding aerolysin and hemolysin, were found to be significantly up-regulated at 28 and 37 °C. Since aerolysin and hemolysin are the most well-known and -characterized virulence factors of pathogenic Aeromonas strains, the induction of aerA and hlyA was associated with the mesophilic virulence. Further study proved that the extracellular products (ECPs) purchased from A. salmonicida SRW-OG1 cultured at 28 and 37 °C showed elevated hemolytic activity and virulence than those at 18 °C. Moreover, the silence of aerA and hlyA led to significantly decreased hemolysis and virulence. Taken together, our results revealed that the mesophilic virulence of A. salmonicida SRW-OG1 might be due to the enhanced expression of aerA and hlyA induced by elevated temperatures.
Collapse
|
10
|
Paquet VE, Durocher AF, Charette SJ. Aeromonas salmonicida intra-species divergence revealed by the various strategies displayed when grazed by Tetrahymena pyriformis. FEMS Microbiol Lett 2022; 369:6650351. [PMID: 35883218 DOI: 10.1093/femsle/fnac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/31/2022] [Accepted: 07/23/2022] [Indexed: 11/13/2022] Open
Abstract
Worldwide, Aeromonas salmonicida is a major bacterial pathogen of fish in both marine and freshwater environments. Despite psychrophilic growth being common for this species, the number of characterized mesophilic strains is increasing. Thus, this species may serve as a model for the study of intraspecies lifestyle diversity. Although bacteria are preyed upon by protozoan predators, their interaction inside or outside the phagocytic pathway of the predator can provide several advantages to the bacteria. To correlate intraspecies diversity with predation outcome, we studied the fate of psychrophilic and mesophilic strains of A. salmonicida co-cultured with the ciliate Tetrahymena pyriformis. Three types of outcome were observed: digestion, resistance to phagocytosis and pathogenicity. The psychrophilic strains are fully digested by the ciliate. In contrast, the mesophilic A. salmonicida subsp. pectinolytica strain is pathogenic to the ciliate. All the other mesophilic strains display mechanisms to resist phagocytosis and/or digestion, which allow them to survive ciliate predation. In some cases, passage through the phagocytic pathway resulted in a few mesophilic A. salmonicida being packaged inside fecal pellets. This study sheds light on the great phenotypic diversity observed in the complex range of mechanisms used by A. salmonicida to confront a predator.
Collapse
Affiliation(s)
- Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada, G1V 0A6.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, Canada, G1V 0A6.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, Canada, G1V 4G5
| | - Alicia F Durocher
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada, G1V 0A6.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, Canada, G1V 0A6.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, Canada, G1V 4G5
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada, G1V 0A6.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, Canada, G1V 0A6.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, Canada, G1V 4G5
| |
Collapse
|
11
|
To Be or Not to Be Mesophilic, That Is the Question for Aeromonas salmonicida. Microorganisms 2022; 10:microorganisms10020240. [PMID: 35208695 PMCID: PMC8879556 DOI: 10.3390/microorganisms10020240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
The bacterium Aeromonas salmonicida has long been known to be one of the most feared pathogens in fish farming. However, the more we discover about this bacterial species, the more we question whether it is really exclusively an aquatic pathogen. In recent years, it has become obvious that this bacterial species includes a myriad of strains with various lifestyle and ecological niches, including the well-known strict psychrophiles, the first bacteria known of the species, and the newly described mesophilic strains. The mesophiles are able to grow at low temperatures, but even better at temperatures of approximately 37 °C, which strict psychrophiles cannot do. In this perspective article, we address some aspects surrounding this dual lifestyle in A. salmonicida, including the impact of mobile genetic elements, and how future research around this bacterial species may focus on the psychrophilic/mesophilic dichotomy, which makes A. salmonicida an increasingly interesting and relevant model for the study of speciation.
Collapse
|
12
|
Comparative Genomics of Typical and Atypical Aeromonas salmonicida Complete Genomes Revealed New Insights into Pathogenesis Evolution. Microorganisms 2022; 10:microorganisms10010189. [PMID: 35056638 PMCID: PMC8780938 DOI: 10.3390/microorganisms10010189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Aeromonas salmonicida is a global distributed Gram-negative teleost pathogen, affecting mainly salmonids in fresh and marine environments. A. salmonicida strains are classified as typical or atypical depending on their origin of isolation and phenotype. Five subspecies have been described, where A. salmonicida subsp. salmonicida is the only typical subspecies, and the subsp. achromogenes, masoucida, smithia, and pectinolytica are considered atypical. Genomic differences between A. salmonicida subsp. salmonicida isolates and their relationship with the current classification have not been explored. Here, we sequenced and compared the complete closed genomes of four virulent strains to elucidate their molecular diversity and pathogenic evolution using the more accurate genomic information so far. Phenotypes, biochemical, and enzymatic profiles were determined. PacBio and MiSeq sequencing platforms were utilized for genome sequencing. Comparative genomics showed that atypical strains belong to the subsp. salmonicida, with 99.55% ± 0.25% identity with each other, and are closely related to typical strains. The typical strain A. salmonicida J223 is closely related to typical strains, with 99.17% identity with the A. salmonicida A449. Genomic differences between atypical and typical strains are strictly related to insertion sequences (ISs) activity. The absence and presence of genes encoding for virulence factors, transcriptional regulators, and non-coding RNAs are the most significant differences between typical and atypical strains that affect their phenotypes. Plasmidome plays an important role in A. salmonicida virulence and genome plasticity. Here, we determined that typical strains harbor a larger number of plasmids and virulence-related genes that contribute to its acute virulence. In contrast, atypical strains harbor a single, large plasmid and a smaller number of virulence genes, reflected by their less acute virulence and chronic infection. The relationship between phenotype and A. salmonicida subspecies’ taxonomy is not evident. Comparative genomic analysis based on completed genomes revealed that the subspecies classification is more of a reflection of the ecological niche occupied by bacteria than their divergences at the genomic level except for their accessory genome.
Collapse
|
13
|
Characterization of bacteriophage T7-Ah reveals its lytic activity against a subset of both mesophilic and psychrophilic Aeromonas salmonicida strains. Arch Virol 2021; 166:521-533. [PMID: 33394168 DOI: 10.1007/s00705-020-04923-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Aeromonas salmonicida strains cause problematic bacterial infections in the aquaculture industry worldwide. The genus Aeromonas includes both mesophilic and psychrophilic species. Bacteriophages that infect Aeromonas spp. strains are usually specific for mesophilic or psychrophilic species; only a few bacteriophages can infect both types of strains. In this study, we characterized the podophage T7-Ah, which was initially found to infect the Aeromonas salmonicida HER1209 strain. The burst size of T7-Ah against its original host is 72 new virions per infected cell, and its burst time is 30 minutes. It has been found that this phage can lyse both mesophilic and psychrophilic A. salmonicida strains, as well as one strain of Escherichia coli. Its genome comprises 40,153 bp of DNA and does not contain any recognizable toxin or antibiotic resistance genes. The adsorption rate of the phage on highly sensitive bacterial strains was variable and could not be related to the presence or absence of a functional A-layer on the surface of the bacterial strains. The lipopolysaccharide migration patterns of both resistant and sensitive bacterial strains were also studied and compared to investigate the nature of the potential receptor of this phage on the bacterial surface. This study sheds light on the surprising diversity of lifestyles of the bacterial strains sensitive to phage T7-Ah and opens the door to the potential use of this phage against A. salmonicida infections in aquaculture.
Collapse
|
14
|
Vincent AT, Hosseini N, Charette SJ. The Aeromonas salmonicida plasmidome: a model of modular evolution and genetic diversity. Ann N Y Acad Sci 2020; 1488:16-32. [PMID: 33040386 DOI: 10.1111/nyas.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
High-throughput genomic sequencing has helped to reveal the plasmidome of Aeromonas salmonicida. This literature review provides an overview of A. salmonicida's rich plasmidome by presenting all the plasmids identified so far, addressing their biological importance and the functional links between them. The plasmids of A. salmonicida, especially those bearing antibiotic resistance genes, can provide clues about interactions of this species with other pathogens (animals and humans), as is the case for pRAS3-3432 and Chlamydia suis or pSN254b and Salmonella enterica. In addition to antibiotic resistance, plasmids play an important role in the virulence of A. salmonicida, particularly for the subspecies salmonicida and the plasmid pAsa5, which carries genes for the type-three secretion system, a virulence factor essential for the bacterium. The A. salmonicida plasmidome also has many cryptic plasmids with no known biological function, but which can be used for the acquisition of new genetic elements. Striking examples are pAsa7 and pAsaXII that provide, respectively, resistance to chloramphenicol and formaldehyde and are derivatives of cryptic pAsa2.
Collapse
Affiliation(s)
- Antony T Vincent
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
| | - Nava Hosseini
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
15
|
Gulla S, Bayliss S, Björnsdóttir B, Dalsgaard I, Haenen O, Jansson E, McCarthy U, Scholz F, Vercauteren M, Verner-Jeffreys D, Welch T, Wiklund T, Colquhoun DJ. Biogeography of the fish pathogen Aeromonas salmonicida inferred by vapA genotyping. FEMS Microbiol Lett 2020; 366:5449007. [PMID: 30977802 PMCID: PMC6502549 DOI: 10.1093/femsle/fnz074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/10/2019] [Indexed: 11/14/2022] Open
Abstract
A recently described typing system based on sequence variation in the virulence array protein (vapA) gene, encoding the A-layer surface protein array, allows unambiguous subtyping of Aeromonas salmonicida. In the present study, we compile A-layer typing results from a total of 675 A. salmonicida isolates, recovered over a 59-year period from 50 different fish species in 26 countries. Nine novel A-layer types (15–23) are identified, several of which display a strong predilection towards certain fish hosts, including e.g. Cyprinidae and Pleuronectidae species. Moreover, we find indications that anthropogenic transport of live fish may have aided the near global dissemination of two cyprinid-associated A-layer types. Comparison of whole genome phylogeny and A-layer typing for a subset of strains further resulted in compatible tree topologies, indicating the utility of vapA as a phylogenetic as well as an epizootiological marker in A. salmonicida. A Microreact project (microreact.org/project/r1pcOAx9m) has been created, allowing public access to the vapA analyses and relevant metadata. In sum, the results generated provide valuable insights into the global population structure of A. salmonicida, particularly in relation to its piscine host spectrum and the geographic distribution of these hosts.
Collapse
Affiliation(s)
- Snorre Gulla
- Fish Health Research Group, Norwegian Veterinary Institute, Oslo, Norway
| | - Sion Bayliss
- The Milner Centre for Evolution, Department of Biology & Biotechnology, University of Bath, Bath, England
| | | | - Inger Dalsgaard
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Olga Haenen
- NRL for Fish Diseases, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Eva Jansson
- Department of Animal Health and Antimicrobial strategies, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Una McCarthy
- Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland
| | | | - Maaike Vercauteren
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Tim Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, US Department of Agriculture, Kearneysville, West Virginia, USA
| | - Tom Wiklund
- Laboratory of Aquatic Pathobiology, Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Duncan J Colquhoun
- Fish Health Research Group, Norwegian Veterinary Institute, Oslo, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Recombinant outer membrane protein C of Aeromonas salmonicida subsp. masoucida, a potential vaccine candidate for rainbow trout (Oncorhynchus mykiss). Microb Pathog 2020; 145:104211. [PMID: 32333955 DOI: 10.1016/j.micpath.2020.104211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Aeromonas salmonicida subsp. masoucida (ASM) is an important bacterial pathogen of salmonid fish, which can cause huge economic losses to the fish farming industry. In order to screen effective vaccine candidate proteins, four outer membrane proteins of ASM, including OmpA, OmpC, OmpK and OmpW, were selected and recombinantly expressed in Escherichia coli. The result of western blotting showed that these four recombinant proteins could be recognized by rainbow trout anti-ASM antibodies. The immune protective effects of the four rOMPs were also investigated, and the relative percentage survival (RPS) of rOmpA, rOmpC, rOmpK and rOmpW were 71.1%, 81.6%, 55.3% and 42.1%, respectively. The RPS of rOmpC was significantly higher than the other three rOMPs, so the immune responses of rainbow trout induced by rOmpC were further investigated. The results showed that vaccination with rOmpC could significantly induced the production of specific serum antibodies and proliferation of sIg + lymphocytes in peripheral blood. Meanwhile, RT-qPCR analysis showed that rOmpC could significantly enhance the expression of the MHC-II, TCR, CD4, CD8, IL-8 and IgM genes compared with the BSA immunized group. These results demonstrated that rOmpC could induce strong humoral immune response in rainbow trout and provided effective immune protection against ASM challenge, which indicated that OmpC is a promising vaccine candidate against Aeromonas salmonicida infection.
Collapse
|
17
|
A Mesophilic Aeromonas salmonicida Strain Isolated from an Unsuspected Host, the Migratory Bird Pied Avocet. Microorganisms 2019; 7:microorganisms7120592. [PMID: 31757113 PMCID: PMC6955901 DOI: 10.3390/microorganisms7120592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Aeromonas salmonicida is a Gram-negative bacterium, known as a fish pathogen since its discovery. Although the species was initially considered psychrophilic, a mesophilic subspecies (pectinolytica) and many other mesophilic strains still not attributed to subspecies have been described in the last two decades. These mesophilic strains were sampled from various sources, including humans, and some of them are known to be pathogenic. In this study, we describe a strain, JF2480, which was isolated from the spleen, and also found the kidney and liver of a dead pied avocet (Recurvirostra avosetta), a type of migratory bird inhabiting aquatic environments. A core genome phylogenomic analysis suggests that JF2480 is taxonomically distant from other known A. salmonicida subspecies. The genome sequence confirms that the strain possesses key virulence genes that are present in the typical A. salmonicida psychrophilic subspecies, with the exception of the genes encoding the type three secretion system (T3SS). Bacterial virulence assays conducted on the surrogate host Dictyostelium discoideum amoeba confirmed that the strain is virulent despite the lack of T3SS. Bacterial growth curves showed that strain JF2480 grow well at 40 °C, the body temperature of the pied avocet, and even faster at 41 °C, compared to other mesophilic strains. Discovery of this strain further demonstrates the extent of the phylogenomic tree of this species. This study also suggests that A. salmonicida can infect a wider array of hosts than previously suspected and that we need to rethink the way we perceive A. salmonicida's natural environment.
Collapse
|
18
|
Draft Genome Sequences of Four Aeromonas salmonicida subsp. achromogenes Strains, 23051, 23053, 23055, and 23056, Isolated from Senegalese Sole ( Solea senegalensis). Microbiol Resour Announc 2019; 8:8/33/e00631-19. [PMID: 31416869 PMCID: PMC6696644 DOI: 10.1128/mra.00631-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial species Aeromonas salmonicida officially has five subspecies. A large majority of the currently available sequences come from Aeromonas salmonicida subsp. salmonicida, which causes furunculosis in salmonids. We present the genomic sequences of four Aeromonas salmonicida subsp. achromogenes strains. This will help increase the robustness of genomic analyses for this subspecies. The bacterial species Aeromonas salmonicida officially has five subspecies. A large majority of the currently available sequences come from Aeromonas salmonicida subsp. salmonicida, which causes furunculosis in salmonids. We present the genomic sequences of four Aeromonas salmonicida subsp. achromogenes strains. This will help increase the robustness of genomic analyses for this subspecies.
Collapse
|
19
|
Investigation of the virulence and genomics of Aeromonas salmonicida strains isolated from human patients. INFECTION GENETICS AND EVOLUTION 2019; 68:1-9. [DOI: 10.1016/j.meegid.2018.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 11/23/2022]
|
20
|
4-Hydroxyphenylpyruvate Dioxygenase Thermolability Is Responsible for Temperature-Dependent Melanogenesis in Aeromonas salmonicida subsp. salmonicida. Appl Environ Microbiol 2019; 85:AEM.01926-18. [PMID: 30341077 DOI: 10.1128/aem.01926-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is a major pathogen affecting fisheries worldwide and is a well-known pigmented member of the Aeromonas genus. This subspecies produces melanin at ≤22°C. However, melanogenesis decreases as the culture temperature increases and is completely suppressed at 30°C to 35°C, while bacterial growth is unaffected. The mechanism and biological significance of this temperature-dependent melanogenesis remain unclear. Heterologous expression of an A. salmonicida subsp. salmonicida 4-hydroxyphenylpyruvate dioxygenase (HppD), the most critical enzyme in the homogentisic acid (HGA)-melanin synthesis pathway, results in thermosensitive pigmentation in Escherichia coli, suggesting that HppD plays a key role in this process. In this study, we demonstrated that the thermolability of HppD is responsible for the temperature-dependent melanization of A. salmonicida subsp. salmonicida Substitutions of three residues, S18T, P103Q, and L119P, in A. salmonicida subsp. salmonicida HppD increased the thermostability of this enzyme and resulted in temperature-independent melanogenesis. Moreover, the replacement of the corresponding residues in HppD from Aeromonas media strain WS, which forms pigment independent of temperature, with those of A. salmonicida subsp. salmonicida HppD resulted in thermosensitive melanogenesis. A structural analysis suggested that mutations at these sites, especially at position P103, strengthen the secondary structure of HppD and greatly improve its thermal stability. Additionally, we found that the HppD sequences of all A. salmonicida subsp. salmonicida isolates were identical and that two of the three residues were clearly distinct from those of other Aeromonas strains.IMPORTANCE Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a bacterial septicemia of cold-water fish of the Salmonidae family. Although other Aeromonas species can produce melanin, A. salmonicida subsp. salmonicida is the only member of this genus that has been reported to exhibit temperature-dependent melanization. Here, we demonstrated that thermosensitive melanogenesis in A. salmonicida subsp. salmonicida strains is due to the thermolability of 4-hydroxyphenylpyruvate dioxygenase (HppD). Additionally, we confirmed that this thermolabile HppD exhibited higher activity at low temperatures than its mesophilic homologues, suggesting this as an adaptive strategy of this enzyme to the psychrophilic lifestyle of A. salmonicida subsp. salmonicida The strictly conserved hppD sequences among A. salmonicida subsp. salmonicida isolates and the specific possession of P103 and L119 residues could be used as a reference for the identification of A. salmonicida subsp. salmonicida isolates.
Collapse
|
21
|
Pavan ME, Venero ES, Egoburo DE, Pavan EE, López NI, Julia Pettinari M. Glycerol inhibition of melanin biosynthesis in the environmental Aeromonas salmonicida 34mel T. Appl Microbiol Biotechnol 2018; 103:1865-1876. [PMID: 30539256 DOI: 10.1007/s00253-018-9545-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
The environmental strain Aeromonas salmonicida subsp. pectinolytica 34melT produces abundant melanin through the homogentisate pathway in several culture media, but unexpectedly not when grown in a medium containing glycerol. Using this observation as a starting point, this study investigated the underlying causes of the inhibition of melanin synthesis by glycerol, to shed light on factors that affect melanin production in this microorganism. The effect of different carbon sources on melanin formation was related to the degree of oxidation of their C atoms, as the more reduced substrates delayed melanization more than the more oxidized ones, although only glycerol completely abolished melanin production. Glyphosate, an inhibitor of aromatic amino acid synthesis, did not affect melanization, while bicyclopyrone, an inhibitor of 4-hydroxyphenylpyruvate dioxygenase (Hpd), the enzyme responsible for the synthesis of homogentisate, prevented melanin synthesis. These results showed that melanin production in 34melT depends on the degradation of aromatic amino acids from the growth medium and not on de novo aromatic amino acid synthesis. The presence of glycerol changed the secreted protein profile, but none of the proteins affected could be directly connected with melanin synthesis or transport. Transcription analysis of hpd, encoding the key enzyme for melanin synthesis, showed a clear inhibition caused by glycerol. The results obtained in this work indicate that a significant decrease in the transcription of hpd, together with a more reduced intracellular state, would lead to the abolishment of melanin synthesis observed. The effect of glycerol on melanization can thus be attributed to a combination of metabolic and regulatory effects.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esmeralda Solar Venero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego E Egoburo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban E Pavan
- Biomedical Technologies Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Syrova E, Kohoutova L, Dolejska M, Papezikova I, Kutilova I, Cizek A, Navratil S, Minarova H, Palikova M. Antibiotic resistance and virulence factors in mesophilic Aeromonas spp. from Czech carp fisheries. J Appl Microbiol 2018; 125:1702-1713. [PMID: 30129989 DOI: 10.1111/jam.14075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/01/2018] [Accepted: 08/14/2018] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to determine phenotypic and genotypic resistance, virulence and clonal relationship of aeromonads and related species isolated from Czech carp fisheries. METHODS AND RESULTS Forty-nine isolates obtained from a total of 154 fish from three breeding facilities were species identified using matrix-assisted laser desorption/ionization time of flight and the sequencing of the rpoB housekeeping gene. Most Aeromonas isolates were identified as Aeromonas veronii (94%, n = 34). Susceptibility to six antibiotics (oxytetracycline, flumequine, florfenicol, sulphamethoxazole/trimethoprim, enrofloxacin and oxolinic acid) was tested using the disc diffusion method. The presence of resistance genes and virulence factors was verified by PCR and sequencing, and the clonal relationship was analysed using pulsed-field gel electrophoresis (PFGE). Phenotypic resistance to one or more antimicrobials was found in 32 isolates (65%, n = 49). Resistance to oxytetracycline was the most common (41%) and associated mainly with the presence of tet(E) gene, while the percentage of isolates resistant to florfenicol was low (2%). Isolates carried one to five of the tested virulence factors and showed high diversity of PFGE profiles. CONCLUSIONS Since the highest percentage of antimicrobial resistance in aeromonads was found for oxytetracycline and the lowest percentage for florfenicol, it is suggested that florfenicol could be an adequate treatment alternative in carp fisheries. SIGNIFICANCE AND IMPACT OF THE STUDY Increasing resistance of aeromonads to commonly used antimicrobials has become an emerging problem in fisheries. This study was conducted in relation to the practical needs to identify a suitable antibiotic as an alternative to oxytetracycline.
Collapse
Affiliation(s)
- E Syrova
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - L Kohoutova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - M Dolejska
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - I Papezikova
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - I Kutilova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - A Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - S Navratil
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - H Minarova
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - M Palikova
- Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
23
|
Puah SM, Khor WC, Kee BP, Tan JAMA, Puthucheary SD, Chua KH. Development of a species-specific PCR-RFLP targeting rpoD gene fragment for discrimination of Aeromonas species. J Med Microbiol 2018; 67:1271-1278. [PMID: 30024365 DOI: 10.1099/jmm.0.000796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE The taxonomy of Aeromonas keeps expanding and their identification remains problematic due to their phenotypic and genotypic heterogeneity. In this study, we aimed to develop a rapid and reliable polymerase chain reaction-restriction fragment length polymorphism assay targeting the rpoD gene to enable the differentiation of aeromonads into 27 distinct species using microfluidic capillary electrophoresis. METHODOLOGY A pair of degenerate primers (Aero F: 5'-YGARATCGAYATCGCCAARCGB-3' and Aero R: 5'-GRCCDATGCTCATRCGRCGGTT-3') was designed that amplified the rpoD gene of 27 Aeromonas species. Subsequently, in silico analysis enabled the differentiation of 25 species using the single restriction endonuclease AluI, while 2 species, A. sanarelli and A. taiwanensis, required an additional restriction endonuclease, HpyCH4IV. Twelve type strains (A. hydrophila ATCC7966T, A. caviae ATCC15468T, A. veronii ATCC9071T, A. media DSM4881T, A. allosaccharophila DSM11576T, A. dhakensis DSM17689T, A. enteropelogens DSM7312T, A. jandaei DSM7311T, A. rivuli DSM22539T, A. salmonicida ATCC33658T, A. taiwanensis DSM24096T and A. sanarelli DSM24094T) were randomly selected from the 27 Aeromonas species for experimental validation.Results/key findings. The twelve type strains demonstrated distinctive RFLP patterns and supported the in silico digestion. Subsequently, 60 clinical and environmental strains from our collection, comprising nine Aeromonas species, were used for screening examinations, and the results were in agreement. CONCLUSION This method provides an alternative method for laboratory identification, surveillance and epidemiological investigations of clinical and environmental specimens.
Collapse
Affiliation(s)
- Suat Moi Puah
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wei Ching Khor
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Boon Pin Kee
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | - Kek Heng Chua
- 1Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Vincent AT, Charette SJ. Completion of genome of Aeromonas salmonicida subsp. salmonicida 01-B526 reveals how sequencing technologies can influence sequence quality and result interpretations. New Microbes New Infect 2018; 25:24-26. [PMID: 29983988 PMCID: PMC6031243 DOI: 10.1016/j.nmni.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is a pathogen that primarily infects salmonids. A strain of this bacterium, 01-B526, has been used in several studies as a reference. The genomic sequence of this strain is available, but comes from pyrosequencing and is the second most fragmented assembly for this bacterium. We generated its closed genome sequence and found a pitfall in result interpretations associated with low-quality genomic sequences.
Collapse
Affiliation(s)
- A T Vincent
- INRS-Institut Armand-Frappier, Bacterial Symbionts Evolution, Laval City, QC, H7V 1B7, Canada
| | - S J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, G1V 0A6, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| |
Collapse
|