1
|
Endo R, Hotta S, Wakinaka T, Mogi Y, Watanabe J. Identification of an operon and its regulator required for autoaggregation in Tetragenococcus halophilus. Appl Environ Microbiol 2023; 89:e0145823. [PMID: 38014957 PMCID: PMC10734465 DOI: 10.1128/aem.01458-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Tetragenococcus halophilus is a halophilic lactic acid bacterium generally used as a starter culture in fermenting soy and fish sauces. Aggregating strains can be useful in fermenting and obtaining clear soy sauce because cell clumps are trapped by the filter cake when the soy sauce mash is pressed. However, the genetic mechanisms of aggregation in T. halophilus are unknown. In this study, we identified genes encoding aggregation factor and its regulator. These findings may provide a foundation for developing improved T. halophilus starter cultures for soy sauce fermentation, leading to more efficient and consistent clear soy sauce production.
Collapse
Affiliation(s)
- Ryuhei Endo
- Graduate School of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Shiori Hotta
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | | | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Jun Watanabe
- Graduate School of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
- Institute of Fermentation Sciences, Fukushima University, Fukushima, Japan
| |
Collapse
|
2
|
Liu X, Wang L, Choera T, Fang X, Wang G, Chen W, Lee YW, Mohamed SR, Dawood DH, Shi J, Xu J, Keller NP. Paralogous FgIDO genes with differential roles in tryptophan catabolism, fungal development and virulence in Fusarium graminearum. Microbiol Res 2023; 272:127382. [PMID: 37030080 DOI: 10.1016/j.micres.2023.127382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
Indoleamine 2,3-dioxygenase (Ido) is a tryptophan-degrading enzyme that is widely distributed across species. Ido catalyzes the first step of tryptophan (TRP) degradation and drives the de novo synthesis of nicotinamide adenine dinucleotide (NAD+) coenzymes via the kynurenine (KYN) pathway. The budding yeast Saccharomyces cerevisiae possesses a single IDO gene (BNA2) that is responsible for NAD+ synthesis, whereas a number of fungal species contain multiple IDO genes. However, the biological roles of IDO paralogs in plant pathogens remain unclear. In the current study, we identified three FgIDOs from the wheat head blight fungus Fusarium graminearum. FgIDOA/B/C expression was significantly induced upon TRP treatment. Targeted disruption of FgIDOA and/or FgIDOB caused different levels of NAD+ auxotrophy, thus resulting in pleotropic phenotypic defects. Loss of FgIDOA resulted in abnormal conidial morphology, reduced mycelial growth, decreased virulence in wheat heads and reduced deoxynivalenol accumulation. Exogenous addition of KYN or various intermediates involved in the KYN pathway rescued auxotrophy of the mutants. Metabolomics analysis revealed shifts toward alternative TRP degradation pathways to melatonin and indole derivatives in mutants lacking FgIDOB. Upregulation of partner genes in auxotrophic mutants and the capacity to rescue the auxotroph by overexpressing a partner gene indicated functional complementation among FgIDOA/B/C. Taken together, the results of this study provide insights into differential roles in paralogous FgIDOs and how fungal TRP catabolism modulates fungal development and virulence.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, WI, USA; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Liwen Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, WI, USA
| | - Xin Fang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wenhua Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yin-Won Lee
- School of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sherif Ramzy Mohamed
- Food Toxicology and Contaminants Department, National Research Centre, Giza 12622, Egypt
| | - Dawood H Dawood
- Department of Agriculture Chemistry, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, WI, USA.
| |
Collapse
|
3
|
Qi Q, Huang J, Zhou R, Jin Y, Wu C. Characterising the mechanism of abating biogenic amines accumulation by cocultures of Zygosaccharomyces rouxii and Tetragenococcus halophilus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Ling H, Shi H, Chen X, Cheng K. Detection of the microbial diversity and flavour components of northeastern Chinese soybean paste during storage. Food Chem 2022; 374:131686. [PMID: 34906801 DOI: 10.1016/j.foodchem.2021.131686] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
A combination of 16S rDNA and GC-IMS was used to study the changes in the composition of microorganisms and volatile organic compounds (VOCs) during the storage of northeastern Chinese soybean paste. Firmicutes and Actinobacteriota dominated the microbial communities of the soybean paste at the phylum level, bacterial profiles of different samples were different at genus level. Fifty-one VOCs were identified from soybean paste, most of which existed in the early storage stage. Most esters and alcohols decreased with the extension of the storage time, while acids and pyrazines accumulated in the later period of storage. Esters, alcohols, acids and aldehyde compounds are the key substances in the volatile components of soybean paste, which give the soybean paste the sour, sweet, rose, mushroom and smoky flavor characteristics. The biomarker Bacillus-velezensis in soybean paste is directly related to ester features; Kroppenstedtia, Sporolactobacillus-nakayamae, and Corynebacterium-stationis are positively associated with the biosynthesis of aldehydes.
Collapse
Affiliation(s)
- Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Huiling Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Xiaochun Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Institute of Technology Innovation, Dongguan 523000, China
| | - Keke Cheng
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
5
|
Rodríguez J, González-Guerra A, Vázquez L, Fernández-López R, Flórez AB, de la Cruz F, Mayo B. Isolation and phenotypic and genomic characterization of Tetragenococcus spp. from two Spanish traditional blue-veined cheeses made of raw milk. Int J Food Microbiol 2022; 371:109670. [DOI: 10.1016/j.ijfoodmicro.2022.109670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
|
6
|
Guindo CO, Morsli M, Bellali S, Drancourt M, Grine G. A Tetragenococcus halophilus human gut isolate. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100112. [PMID: 35243447 PMCID: PMC8866149 DOI: 10.1016/j.crmicr.2022.100112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 10/28/2022] Open
|
7
|
Link T, Vogel RF, Ehrmann MA. The diversity among the species Tetragenococcus halophilus including new isolates from a lupine seed fermentation. BMC Microbiol 2021; 21:320. [PMID: 34798831 PMCID: PMC8605565 DOI: 10.1186/s12866-021-02381-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tetragenococcus (T.) halophilus can be isolated from a variety of fermented foods, such as soy sauce, different soy pastes, salted fish sauce and from cheese brine or degraded sugar beet thick juice. This species contributes by the formation of short chain acids to the flavor of the product. Recently, T. halophilus has been identified as a dominant species in a seasoning sauce fermentation based on koji made with lupine seeds. RESULTS In this study we characterized six strains of T. halophilus isolated from lupine moromi fermentations in terms of their adaptation towards this fermentation environment, salt tolerance and production of biogenic amines. Phylogenic and genomic analysis revealed three distinctive lineages within the species T. halophilus with no relation to their isolation source, besides the lineage of T. halophilus subsp. flandriensis. All isolated strains from lupine moromi belong to one lineage in that any of the type strains are absent. The strains form lupine moromi could not convincingly be assigned to one of the current subspecies. Taken together with strain specific differences in the carbohydrate metabolism (arabinose, mannitol, melibiose, gluconate, galactonate) and amino acid degradation pathways such as arginine deiminase pathway (ADI) and the agmatine deiminase pathway (AgDI) the biodiversity in the species of T. halophilus is greater than expected. Among the new strains, some strains have a favorable combination of traits wanted in a starter culture. CONCLUSIONS Our study characterized T. halophilus strains that were isolated from lupine fermentation. The lupine moromi environment appears to select strains with specific traits as all of the strains are phylogenetically closely related, which potentially can be used as a starter culture for lupine moromi. We also found that the strains can be clearly distinguished phylogenetically and phenotypically from the type strains of both subspecies T. halophilus subsp. halophilus and T. halophilus subsp. flandriensis.
Collapse
Affiliation(s)
- Tobias Link
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354, Freising, Germany.
| |
Collapse
|
8
|
Liang T, Xie X, Ma J, Wu L, Xi Y, Zhao H, Li L, Li H, Feng Y, Xue L, Chen M, Chen X, Zhang J, Ding Y, Wu Q. Microbial Communities and Physicochemical Characteristics of Traditional Dajiang and Sufu in North China Revealed by High-Throughput Sequencing of 16S rRNA. Front Microbiol 2021; 12:665243. [PMID: 34526973 PMCID: PMC8435802 DOI: 10.3389/fmicb.2021.665243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
The process of soybean fermentation has been practiced for more than 3,000 years. Although Dajiang and Sufu are two popular fermented soybean products consumed in North China, limited information is available regarding their microbial composition. Hence, the current study sought to investigate, and compare, the physicochemical indicators and microbial communities of traditional Dajiang and Sufu. Results showed that the titratable acidity (TA), and salinity, as well as the lactic acid, and malic acid contents were significantly higher in Sufu samples compared to Dajiang. Furthermore, Sufu samples contain abundant sucrose and fructose, while the acetic acid content was lower in Sufu compared to Dajiang samples. Moreover, the predominant bacterial phyla in Dajiang and Sufu samples were Firmicutes and Proteobacteria, while the major genera comprise Bacillus, Lactobacillus, Tetragenococcus, and Weissella. Moreover, Dajiang samples also contained abundant Pseudomonas, and Brevundimonas spp., while Halomonas, Staphylococcus, Lysinibacillus, Enterobacter, Streptococcus, Acinetobacter, and Halanaerobium spp. were abundant in Sufu samples. At the species level, Bacillus velezensis, Tetragenococcus halophilus, Lactobacillus rennini, Weissella cibaria, Weissella viridescens, Pseudomonas brenneri, and Lactobacillus acidipiscis represented the major species in Dajiang, while Halomonas sp., Staphylococcus equorum, and Halanaerobium praevalens were the predominant species in Sufu. Acetic acid and sucrose were found to be the primary major physicochemical factor influencing the bacterial communities in Dajiang and Sufu, respectively. Furthermore, Bacillus subtilis is strongly correlated with lactic acid levels, L. acidipiscis is positively correlated with acetic acid levels, while Staphylococcus sciuri and S. equorum are strongly, and positively, correlated with malic acid. Following analysis of carbohydrate and amino acid metabolism in all samples, cysteine and methionine metabolism, as well as fatty acid biosynthesis-related genes are upregulated in Dajiang compared to Sufu samples. However, such as the Staphylococcus, W. viridescens, and P. brenneri, as potentially foodborne pathogens, existed in Dajang and Sufu samples. Cumulatively, these results suggested that Dajiang and Sufu have unique bacterial communities that influence their specific characteristics. Hence, the current study provides insights into the microbial community composition in Dajiang and Sufu samples, which may facilitate the isolation of functional bacterial species suitable for Dajiang and Sufu production, thus improving their production efficiency.
Collapse
Affiliation(s)
- Tingting Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Feng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Matsutani M, Wakinaka T, Watanabe J, Tokuoka M, Ohnishi A. Comparative Genomics of Closely Related Tetragenococcus halophilus Strains Elucidate the Diversity and Microevolution of CRISPR Elements. Front Microbiol 2021; 12:687985. [PMID: 34220781 PMCID: PMC8249745 DOI: 10.3389/fmicb.2021.687985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Tetragenococcus halophilus – a halophilic lactic acid bacterium – is frequently used as a starter culture for manufacturing fermented foods. Tetragenococcus is sometimes infected with bacteriophages during fermentation for soy sauce production; however, bacteriophage infection in starter bacteria is one of the major causes of fermentation failure. Here, we obtained whole-genome sequences of the four T. halophilus strains YA5, YA163, YG2, and WJ7 and compared them with 18 previously reported genomes. We elucidated five types of clustered regularly interspaced short palindromic repeat (CRISPR) loci in seven genomes using comparative genomics with a particular focus on CRISPR elements. CRISPR1 was conserved in the four closely related strains 11, YA5, YA163, and YG2, and the spacer sequences were partially retained in each strain, suggesting that partial deletions and accumulation of spacer sequences had occurred independently after divergence of each strain. The host range for typical bacteriophages is narrow and strain-specific thus these accumulation/deletion events may be responsible for differences in resistance to bacteriophages between bacterial strains. Three CRISPR elements, CRISPR1 in strains 11, YA5, YA163, and YG2, CRISPR2 in strain WJ7, and CRISPR2 in strain MJ4, were inserted in almost the same genomic regions, indicating that several independent insertions had occurred in this region. As these elements belong to class 1 type I-C CRISPR group, the results suggested that this site is a hotspot for class 1, type I-C CRISPR loci insertion. Thus, T. halophilus genomes may have acquired strain-specific bacteriophage-resistance through repeated insertion of CRISPR loci and accumulation/deletion events of their spacer sequences.
Collapse
Affiliation(s)
| | | | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Masafumi Tokuoka
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Akihiro Ohnishi
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
10
|
Yao Y, Zhou X, Hadiatullah H, Zhang J, Zhao G. Determination of microbial diversities and aroma characteristics of Beitang shrimp paste. Food Chem 2020; 344:128695. [PMID: 33246688 DOI: 10.1016/j.foodchem.2020.128695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
Beitang shrimp paste (BSP) is fermented by different parts of shrimp, such as the head (H), meat (M), or the whole shrimp (S and W). Microbial communities of BSP were dominated by Firmicutes and Proteobacteria at the phyla level and Tetragenococcus at the genus level. However, the microbial diversity of M was the lowest than the others. Non-dominant bacterial communities were presented by a mutual symbiotic model in BSP fermentation. Tetragenococcus, Halanaerobium, Streptococcus, and Brevundimonas were positively correlated with the biosynthesis of amino acids, fatty acids, and metabolic cofactors; Marinilactibacillus and Pseudomonas might be the main contributors to inorganic sulfides, nitrogen oxides, and long-chain alkanes in BSP; Psychrobacter was closely related to the ester characteristics of methyl palmitoleate and methyl hexadecanoate in H. Halanaerobium and Streptococcus promoted the production of pyrazines in S. Tetragenococcus was positively correlated with acetic acid, decanoic acid, and palmitic acid that improved the sour aroma of M. The relationship between bacteria and aroma formation under different raw materials was expected to improve the quality of BSP.
Collapse
Affiliation(s)
- Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinyun Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hadiatullah Hadiatullah
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, Tianjin 300072, China
| | - Jian Zhang
- Tianjin Tianfeng Zetian Biotechnology Co., Ltd, Tianjin 300457, China
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
11
|
Chun BH, Han DM, Kim KH, Jeong SE, Park D, Jeon CO. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses. Food Microbiol 2019; 83:36-47. [PMID: 31202417 DOI: 10.1016/j.fm.2019.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/14/2019] [Accepted: 04/20/2019] [Indexed: 01/10/2023]
Abstract
The genomic and metabolic diversity and features of Tetragenococcus halophilus, a moderately halophilic lactic acid bacterium, were investigated by pan-genome, transcriptome, and metabolite analyses. Phylogenetic analyses based on the 16S rRNA gene and genome sequences of 15 T. halophilus strains revealed their phylogenetic distinctness from other Tetragenococcus species. Pan-genome analysis of the T. halophilus strains showed that their carbohydrate metabolic capabilities were diverse and strain dependent. Aside from one histidine decarboxylase gene in one strain, no decarboxylase gene associated with biogenic amine production was identified from the genomes. However, T. halophilus DSM 20339T produced tyramine without a biogenic amine-producing decarboxylase gene, suggesting the presence of an unidentified tyramine-producing gene. Our reconstruction of the metabolic pathways of these strains showed that T. halophilus harbors a facultative lactic acid fermentation pathway to produce l-lactate, ethanol, acetate, and CO2 from various carbohydrates. The transcriptomic analysis of strain DSM 20339T suggested that T. halophilus may produce more acetate via the heterolactic pathway (including d-ribose metabolism) at high salt conditions. Although genes associated with the metabolism of glycine betaine, proline, glutamate, glutamine, choline, and citrulline were identified from the T. halophilus genomes, the transcriptome and metabolite analyses suggested that glycine betaine was the main compatible solute responding to high salt concentration and that citrulline may play an important role in the coping mechanism against high salinity-induced osmotic stresses. Our results will provide a better understanding of the genome and metabolic features of T. halophilus, which has implications for the food fermentation industry.
Collapse
Affiliation(s)
- Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dongbin Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
12
|
Kim KH, Lee SH, Chun BH, Jeong SE, Jeon CO. Tetragenococcus halophilus MJ4 as a starter culture for repressing biogenic amine (cadaverine) formation during saeu-jeot (salted shrimp) fermentation. Food Microbiol 2019; 82:465-473. [PMID: 31027807 DOI: 10.1016/j.fm.2019.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/20/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
Abstract
Biogenic amines (BAs) are frequently present in traditionally fermented salted foods. In this study, a Tetragenococcus halophilus strain (MJ4) with no BA-producing ability was isolated from a fish (anchovy) sauce. Strain MJ4 did not produce BAs from supplied precursors and no BA-producing genes were identified in its genome. Bacterial community analysis showed that in non-inoculated saeu-jeot (shrimp sauce) fermentation, Tetragenococcus predominated after 82 days, while in strain MJ4-inoculated saeu-jeot, Tetragenococcus predominated during the entire fermentation. Strain MJ4 repressed the growth of T. muriaticus, a known BA producer, during fermentation, but metabolite analysis demonstrated that metabolite profiles, including amino acids, were similar regardless of MJ4 inoculation. The metabolite analysis also showed that strain MJ4 clearly repressed the formation of cadaverine during fermentation. This study suggests that the use of strain MJ4 as a starter culture in salted fish fermentation may be a good strategy for the reduction of BA formation.
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Se Hee Lee
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, South Korea
| | - Byung Hee Chun
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|