1
|
Badger-Emeka L, Emeka P, Thirugnanasambantham K, Alatawi AS. The Role of Pseudomonas aeruginosa in the Pathogenesis of Corneal Ulcer, Its Associated Virulence Factors, and Suggested Novel Treatment Approaches. Pharmaceutics 2024; 16:1074. [PMID: 39204419 PMCID: PMC11360345 DOI: 10.3390/pharmaceutics16081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal infections attributed to P. aeruginosa frequently have poor clinical outcomes necessitating lengthy and costly therapies. Therefore, this review looks at the aetiology of P. aeruginosa bacterial keratitis as well as the bacterial drivers of its virulence and the potential therapeutics on the horizon. METHOD A literature review with the articles used for the review searched for and retrieved from PubMed, Scopus, and Google Scholar (date last accessed 1 April 2024). The keywords used for the search criteria were "Pseudomonas and keratitis, biofilm and cornea as well as P. aeruginosa". RESULTS P. aeruginosa is implicated in the pathogenesis of bacterial keratitis associated with contact lens usage. To reduce the potential seriousness of these infections, a variety of contact lens-cleaning options are available. However, continuous exposure to a range of antibiotics doses, from sub-inhibitory to inhibitory, has been shown to lead to the development of resistance to both antibiotics and disinfectant. Generally, there is a global public health concern regarding the rise of difficult-to-treat infections, particularly in the case of P. aeruginosa virulence in ocular infections. This study of the basic pathogenesis of a prevalent P. aeruginosa strain is therefore implicated in keratitis. To this effect, anti-virulence methods and phage therapy are being researched and developed in response to increasing antibiotic resistance. CONCLUSION This review has shown P. aeruginosa to be a significant cause of bacterial keratitis, particularly among users of contact lens. It also revealed treatment options, their advantages, and their drawbacks, including prospective candidates.
Collapse
Affiliation(s)
- Lorina Badger-Emeka
- Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Promise Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| | | | - Abdulaziz S. Alatawi
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| |
Collapse
|
2
|
Gil-Gil T, Cuesta T, Hernando-Amado S, Reales-Calderón JA, Corona F, Linares JF, Martínez JL. Virulence and Metabolism Crosstalk: Impaired Activity of the Type Three Secretion System (T3SS) in a Pseudomonas aeruginosa Crc-Defective Mutant. Int J Mol Sci 2023; 24:12304. [PMID: 37569678 PMCID: PMC10419072 DOI: 10.3390/ijms241512304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous nosocomial opportunistic pathogen that harbors many virulence determinants. Part of P. aeruginosa success colonizing a variety of habitats resides in its metabolic robustness and plasticity, which are the basis of its capability of adaptation to different nutrient sources and ecological conditions, including the infected host. Given this situation, it is conceivable that P. aeruginosa virulence might be, at least in part, under metabolic control, in such a way that virulence determinants are produced just when needed. Indeed, it has been shown that the catabolite repression control protein Crc, which together with the RNA chaperon Hfq regulates the P. aeruginosa utilization of carbon sources at the post-transcriptional level, also regulates, directly or indirectly, virulence-related processes in P. aeruginosa. Among them, Crc regulates P. aeruginosa cytotoxicity, likely by modulating the activity of the Type III Secretion System (T3SS), which directly injects toxins into eukaryotic host cells. The present work shows that the lack of Crc produces a Type III Secretion-defective phenotype in P. aeruginosa. The observed impairment is a consequence of a reduced expression of the genes encoding the T3SS, together with an impaired secretion of the proteins involved. Our results support that the impaired T3SS activity of the crc defective mutant is, at least partly, a consequence of a defective protein export, probably due to a reduced proton motive force. This work provides new information about the complex regulation of the expression and the activity of the T3SS in P. aeruginosa. Our results highlight the need of a robust bacterial metabolism, which is defective in the ∆crc mutant, to elicit complex and energetically costly virulence strategies, as that provided by the T3SS.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Trinidad Cuesta
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Jose Antonio Reales-Calderón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Juan F. Linares
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - José L. Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Winstanley C, Rumbaugh KP. Editorial: complexity and adaptability: an introduction to the special thematic issue on the genus Pseudomonas. FEMS Microbiol Lett 2019; 365:5089633. [PMID: 30184124 DOI: 10.1093/femsle/fny159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Ronald Ross Building, Liverpool L697BE, UK
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock 79430, USA
| |
Collapse
|
4
|
Nieto V, Kroken AR, Grosser MR, Smith BE, Metruccio MME, Hagan P, Hallsten ME, Evans DJ, Fleiszig SMJ. Type IV Pili Can Mediate Bacterial Motility within Epithelial Cells. mBio 2019; 10:e02880-18. [PMID: 31431558 PMCID: PMC6703432 DOI: 10.1128/mbio.02880-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is among bacterial pathogens capable of twitching motility, a form of surface-associated movement dependent on type IV pili (T4P). Previously, we showed that T4P and twitching were required for P. aeruginosa to cause disease in a murine model of corneal infection, to traverse human corneal epithelial multilayers, and to efficiently exit invaded epithelial cells. Here, we used live wide-field fluorescent imaging combined with quantitative image analysis to explore how twitching contributes to epithelial cell egress. Results using time-lapse imaging of cells infected with wild-type PAO1 showed that cytoplasmic bacteria slowly disseminated throughout the cytosol at a median speed of >0.05 μm s-1 while dividing intracellularly. Similar results were obtained with flagellin (fliC) and flagellum assembly (flhA) mutants, thereby excluding swimming, swarming, and sliding as mechanisms. In contrast, pilA mutants (lacking T4P) and pilT mutants (twitching motility defective) appeared stationary and accumulated in expanding aggregates during intracellular division. Transmission electron microscopy confirmed that these mutants were not trapped within membrane-bound cytosolic compartments. For the wild type, dissemination in the cytosol was not prevented by the depolymerization of actin filaments using latrunculin A and/or the disruption of microtubules using nocodazole. Together, these findings illustrate a novel form of intracellular bacterial motility differing from previously described mechanisms in being directly driven by bacterial motility appendages (T4P) and not depending on polymerized host actin or microtubules.IMPORTANCE Host cell invasion can contribute to disease pathogenesis by the opportunistic pathogen Pseudomonas aeruginosa Previously, we showed that the type III secretion system (T3SS) of invasive P. aeruginosa strains modulates cell entry and subsequent escape from vacuolar trafficking to host lysosomes. However, we also showed that mutants lacking either type IV pili (T4P) or T4P-dependent twitching motility (i) were defective in traversing cell multilayers, (ii) caused less pathology in vivo, and (iii) had a reduced capacity to exit invaded cells. Here, we report that after vacuolar escape, intracellular P. aeruginosa can use T4P-dependent twitching motility to disseminate throughout the host cell cytoplasm. We further show that this strategy for intracellular dissemination does not depend on flagellin and resists both host actin and host microtubule disruption. This differs from mechanisms used by previously studied pathogens that utilize either host actin or microtubules for intracellular dissemination independently of microbe motility appendages.
Collapse
Affiliation(s)
- Vincent Nieto
- School of Optometry, University of California, Berkeley, California, USA
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, California, USA
| | - Melinda R Grosser
- School of Optometry, University of California, Berkeley, California, USA
| | - Benjamin E Smith
- Vision Science Program, University of California, Berkeley, California, USA
| | | | - Patrick Hagan
- Undergraduate Research Apprentice Program, University of California, Berkeley, California, USA
| | - Mary E Hallsten
- Undergraduate Research Apprentice Program, University of California, Berkeley, California, USA
| | - David J Evans
- School of Optometry, University of California, Berkeley, California, USA
- College of Pharmacy, Touro University California, Vallejo, California, USA
| | - Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, California, USA
- Vision Science Program, University of California, Berkeley, California, USA
- Graduate Group in Microbiology, University of California, Berkeley, California, USA
- Graduate Group in Infectious Diseases and Immunity, University of California, Berkeley, California, USA
| |
Collapse
|
5
|
The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression. mBio 2018; 9:mBio.00668-18. [PMID: 29717012 PMCID: PMC5930308 DOI: 10.1128/mbio.00668-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103ΔexoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. P. aeruginosa is often referred to as an extracellular pathogen, despite its demonstrated capacity to invade and survive within host cells. Fueling the confusion, P. aeruginosa encodes T3SS effectors with anti-internalization activity that, paradoxically, play critical roles in intracellular survival. Here, we sought to address why ExoS does not prevent internalization of the P. aeruginosa strains that natively encode it. Results showed that ExoS exerted unusually strong anti-internalization activity under conditions of expression in the effector-null background of strain PA103, often used to study T3SS effector activity. Inhibition of internalization was associated with T3SS hyperinducibility and ExoS delivery. PA103 fleQ mutation, preventing flagellar assembly, further reduced internalization but did so independently of ExoS. The results revealed intracellular T3SS expression by all strains and suggested that T3SS bistability influences P. aeruginosa internalization. These findings reconcile controversies in the literature surrounding P. aeruginosa internalization and support the principle that P. aeruginosa is not exclusively an extracellular pathogen.
Collapse
|