1
|
Klaus S, Binder P, Kim J, Machado M, Funaya C, Schaaf V, Klaschka D, Kudulyte A, Cyrklaff M, Laketa V, Höfer T, Guizetti J, Becker NB, Frischknecht F, Schwarz US, Ganter M. Asynchronous nuclear cycles in multinucleated Plasmodium falciparum facilitate rapid proliferation. SCIENCE ADVANCES 2022; 8:eabj5362. [PMID: 35353560 PMCID: PMC8967237 DOI: 10.1126/sciadv.abj5362] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/10/2022] [Indexed: 05/20/2023]
Abstract
Malaria-causing parasites proliferate within erythrocytes through schizogony, forming multinucleated stages before cellularization. Nuclear multiplication does not follow a strict geometric 2n progression, and each proliferative cycle produces a variable number of progeny. Here, by tracking nuclei and DNA replication, we show that individual nuclei replicate their DNA at different times, despite residing in a shared cytoplasm. Extrapolating from experimental data using mathematical modeling, we provide strong indication that a limiting factor exists, which slows down the nuclear multiplication rate. Consistent with this prediction, our data show that temporally overlapping DNA replication events were significantly slower than partially overlapping or nonoverlapping events. Our findings suggest the existence of evolutionary pressure that selects for asynchronous DNA replication, balancing available resources with rapid pathogen proliferation.
Collapse
Affiliation(s)
- Severina Klaus
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Binder
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
- Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juyeop Kim
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marta Machado
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Violetta Schaaf
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Darius Klaschka
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Aiste Kudulyte
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marek Cyrklaff
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Vibor Laketa
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Höfer
- Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julien Guizetti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Nils B. Becker
- Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Markus Ganter
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Tehlan A, Bhowmick K, Kumar A, Subbarao N, Dhar SK. The tetrameric structure of Plasmodium falciparum phosphoglycerate mutase is critical for optimal enzymatic activity. J Biol Chem 2022; 298:101713. [PMID: 35150741 PMCID: PMC8913309 DOI: 10.1016/j.jbc.2022.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
The glycolytic enzyme phosphoglycerate mutase (PGM) is of utmost importance for overall cellular metabolism and has emerged as a novel therapeutic target in cancer cells. This enzyme is also conserved in the rapidly proliferating malarial parasite Plasmodium falciparum, which have a similar metabolic framework as cancer cells and rely on glycolysis as the sole energy-yielding process during intraerythrocytic development. There is no redundancy among the annotated PGM enzymes in Plasmodium, and PfPGM1 is absolutely required for the parasite survival as evidenced by conditional knockdown in our study. A detailed comparison of PfPGM1 with its counterparts followed by in-depth structure-function analysis revealed unique attributes of this parasitic protein. Here, we report for the first time the importance of oligomerization for the optimal functioning of the enzyme in vivo, as earlier studies in eukaryotes only focused on the effects in vitro. We show that single point mutation of the amino acid residue W68 led to complete loss of tetramerization and diminished catalytic activity in vitro. Additionally, ectopic expression of the WT PfPGM1 protein enhanced parasite growth, whereas the monomeric form of PfPGM1 failed to provide growth advantage. Furthermore, mutation of the evolutionarily conserved residue K100 led to a drastic reduction in enzymatic activity. The indispensable nature of this parasite enzyme highlights the potential of PfPGM1 as a therapeutic target against malaria, and targeting the interfacial residues critical for oligomerization can serve as a focal point for promising drug development strategies that may not be restricted to malaria only.
Collapse
Affiliation(s)
- Ankita Tehlan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067
| | - Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067
| | - Amarjeet Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067.
| |
Collapse
|