1
|
Benn G, Borrelli C, Prakaash D, Johnson ANT, Fideli VA, Starr T, Fitzmaurice D, Combs AN, Wühr M, Rojas ER, Khalid S, Hoogenboom BW, Silhavy TJ. OmpA controls order in the outer membrane and shares the mechanical load. Proc Natl Acad Sci U S A 2024; 121:e2416426121. [PMID: 39630873 DOI: 10.1073/pnas.2416426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
OmpA, a predominant outer membrane (OM) protein in Escherichia coli, affects virulence, adhesion, and bacterial OM integrity. However, despite more than 50 y of research, the molecular basis for the role of OmpA has remained elusive. In this study, we demonstrate that OmpA organizes the OM protein lattice and mechanically connects it to the cell wall (CW). Using gene fusions, atomic force microscopy, simulations, and microfluidics, we show that the β-barrel domain of OmpA is critical for maintaining the permeability barrier, but both the β-barrel and CW-binding domains are necessary to enhance the cell envelope's strength. OmpA integrates the compressive properties of the OM protein lattice with the tensile strength of the CW, forming a mechanically robust composite that increases overall integrity. This coupling likely underpins the ability of the entire envelope to function as a cohesive, resilient structure, critical for the survival of bacteria.
Collapse
Affiliation(s)
- Georgina Benn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Carolina Borrelli
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Alex N T Johnson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
| | - Vincent A Fideli
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Tahj Starr
- Department of Biology, New York University, New York, NY 10003
| | | | - Ashton N Combs
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
| | - Enrique R Rojas
- Department of Biology, New York University, New York, NY 10003
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| |
Collapse
|
2
|
Liang Y, Hugonnet JE, Rusconi F, Arthur M. Peptidoglycan-tethered and free forms of the Braun lipoprotein are in dynamic equilibrium in Escherichia coli. eLife 2024; 12:RP91598. [PMID: 39360705 PMCID: PMC11449479 DOI: 10.7554/elife.91598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Peptidoglycan (PG) is a giant macromolecule that completely surrounds bacterial cells and prevents lysis in hypo-osmotic environments. This net-like macromolecule is made of glycan strands linked to each other by two types of transpeptidases that form either 4→3 (PBPs) or 3→3 (LDTs) cross-links. Previously, we devised a heavy isotope-based PG full labeling method coupled to mass spectrometry to determine the mode of insertion of new subunits into the expanding PG network (Atze et al., 2022). We showed that PG polymerization operates according to different modes for the formation of the septum and of the lateral cell walls, as well as for bacterial growth in the presence or absence of β-lactams in engineered strains that can exclusively rely on LDTs for PG cross-linking when drugs are present. Here, we apply our method to the resolution of the kinetics of the reactions leading to the covalent tethering of the Braun lipoprotein (Lpp) to PG and the subsequent hydrolysis of that same covalent link. We find that Lpp and disaccharide-peptide subunits are independently incorporated into the expanding lateral cell walls. Newly synthesized septum PG appears to contain small amounts of tethered Lpp. LDTs did mediate intense shuffling of Lpp between PG stems leading to a dynamic equilibrium between the PG-tethered and free forms of Lpp.
Collapse
Affiliation(s)
- Yucheng Liang
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Jean-Emmanuel Hugonnet
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Filippo Rusconi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- GQE-Le Moulon/PA, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, IDEEV, Gif-sur-Yvette, France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
3
|
Pöhl S, Giacomelli G, Meyer FM, Kleeberg V, Cohen EJ, Biboy J, Rosum J, Glatter T, Vollmer W, van Teeseling MCF, Heider J, Bramkamp M, Thanbichler M. An outer membrane porin-lipoprotein complex modulates elongasome movement to establish cell curvature in Rhodospirillum rubrum. Nat Commun 2024; 15:7616. [PMID: 39223154 PMCID: PMC11369160 DOI: 10.1038/s41467-024-51790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Curved cell shapes are widespread among bacteria and important for cellular motility, virulence and fitness. However, the underlying morphogenetic mechanisms are still incompletely understood. Here, we identify an outer-membrane protein complex that promotes cell curvature in the photosynthetic species Rhodospirillum rubrum. We show that the R. rubrum porins Por39 and Por41 form a helical ribbon-like structure at the outer curve of the cell that recruits the peptidoglycan-binding lipoprotein PapS, with PapS inactivation, porin delocalization or disruption of the porin-PapS interface resulting in cell straightening. We further demonstrate that porin-PapS assemblies act as molecular cages that entrap the cell elongation machinery, thus biasing cell growth towards the outer curve. These findings reveal a mechanistically distinct morphogenetic module mediating bacterial cell shape. Moreover, they uncover an unprecedented role of outer-membrane protein patterning in the spatial control of intracellular processes, adding an important facet to the repertoire of regulatory mechanisms in bacterial cell biology.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, Germany
| | | | - Fabian M Meyer
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Volker Kleeberg
- Institut für Biologie II, University of Freiburg, Freiburg, Germany
- Pädagogische Forschungsstelle Kassel, Kassel, Germany
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Rosum
- Department of Biology, University of Marburg, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany
| | - Johann Heider
- Department of Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Marc Bramkamp
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
4
|
Zhu M, Kawamoto J, Imai T, Ogawa T, Kurihara T. Enhancing extracellular membrane vesicle productivity of Shewanella vesiculosa HM13, a prospective host for vesiculation-mediated protein secretion, by weakening outer membrane-peptidoglycan linkage. J Biosci Bioeng 2024; 138:137-143. [PMID: 38796341 DOI: 10.1016/j.jbiosc.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024]
Abstract
Shewanella vesiculosa HM13, a psychrotrophic gram-negative bacterium isolated from the intestinal contents of horse mackerel, produces abundant extracellular membrane vesicles (EMVs) by budding the outer membrane. The EMVs of this bacterium carry a single major cargo protein, P49, of unknown function, which may be useful as a carrier for the secretory production of heterologous proteins as cargoes of EMVs. In this study, to increase the utility of S. vesiculosa HM13 as a host for EMV-mediated protein production, we improved its EMV productivity by weakening the linkage between the outer membrane and underlying peptidoglycan layer. In gram-negative bacteria, the outer membrane is connected to peptidoglycans predominantly through Braun's lipoprotein (Lpp), and the formation of this linkage is catalyzed by an l,d-transpeptidase (Ldt). We constructed gene-disrupted mutants of Lpp and Ldt and assessed their EMV productivity. The EMVs of the lpp- and ldt-disrupted mutants grown at 18 °C were evaluated using nanoparticle tracking analysis, and their morphologies were observed using transmission electron microscopy. As a result, an approximately 2.5-fold increase in EMV production was achieved, whereas the morphology of the EMVs of these mutants remained almost identical to that of the parent strain. In accordance with the increase in EMV production, the mutants secreted approximately 2-fold higher amounts of P49 than the parent strain into the culture broth as the EMV cargo. These findings will contribute to the development of an EMV-based secretory production system for heterologous proteins using S. vesiculosa HM13 as a host.
Collapse
Affiliation(s)
- Mengshan Zhu
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
5
|
Hale VL, Hooker J, Russo CJ, Löwe J. Honeycomb gold specimen supports enabling orthogonal focussed ion beam-milling of elongated cells for cryo-ET. J Struct Biol 2024; 216:108097. [PMID: 38772448 PMCID: PMC7616276 DOI: 10.1016/j.jsb.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Cryo-focussed ion beam (FIB)-milling is a powerful technique that opens up thick, cellular specimens to high-resolution structural analysis by electron cryotomography (cryo-ET). FIB-milled lamellae can be produced from cells on grids, or cut from thicker, high-pressure frozen specimens. However, these approaches can put geometrical constraints on the specimen that may be unhelpful, particularly when imaging structures within the cell that have a very defined orientation. For example, plunge frozen rod-shaped bacteria orient parallel to the plane of the grid, yet the Z-ring, a filamentous structure of the tubulin-like protein FtsZ and the key organiser of bacterial division, runs around the circumference of the cell such that it is perpendicular to the imaging plane. It is therefore difficult or impractical to image many complete rings with current technologies. To circumvent this problem, we have fabricated monolithic gold specimen supports with a regular array of cylindrical wells in a honeycomb geometry, which trap bacteria in a vertical orientation. These supports, which we call "honeycomb gold discs", replace standard EM grids and when combined with FIB-milling enable the production of lamellae containing cross-sections through cells. The resulting lamellae are more stable and resistant to breakage and charging than conventional lamellae. The design of the honeycomb discs can be modified according to need and so will also enable cryo-ET and cryo-EM imaging of other specimens in otherwise difficult to obtain orientations.
Collapse
Affiliation(s)
| | - James Hooker
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
6
|
Lehman KM, May KL, Marotta J, Grabowicz M. Genetic analysis reveals a robust and hierarchical recruitment of the LolA chaperone to the LolCDE lipoprotein transporter. mBio 2024; 15:e0303923. [PMID: 38193657 PMCID: PMC10865981 DOI: 10.1128/mbio.03039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.IMPORTANCEResistance to current antibiotics is increasingly common. New antibiotics that target essential processes are needed to expand clinical options. For Gram-negative bacteria, their cell surface-the outer membrane (OM)-is an essential organelle and antibiotic barrier that is an attractive target for new antibacterials. Lipoproteins are key to building the OM. The LolCDE transporter is needed to supply the OM with lipoproteins and has been a focus of recent antibiotic discovery. In vitro evidence recently proposed a two-part interaction of LolC with LolA lipoprotein chaperone (which traffics lipoproteins to the OM) via "Hook" and "Pad" regions. We show that this model does not reflect lipoprotein trafficking in vivo. Only the Hook is essential for lipoprotein trafficking and is remarkably robust to mutational changes. The Pad is non-essential for lipoprotein trafficking but plays an ancillary role, contributing to trafficking efficiency. These insights inform ongoing efforts to drug LolCDE.
Collapse
Affiliation(s)
- Kelly M. Lehman
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kerrie L. May
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julianna Marotta
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcin Grabowicz
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Teteneva N, Sanches-Medeiros A, Sourjik V. Genome-wide screen of genetic determinants that govern Escherichia coli growth and persistence in lake water. THE ISME JOURNAL 2024; 18:wrae096. [PMID: 38874171 PMCID: PMC11188689 DOI: 10.1093/ismejo/wrae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Although enteric bacteria normally reside within the animal intestine, the ability to persist extraintestinally is an essential part of their overall lifestyle, and it might contribute to transmission between hosts. Despite this potential importance, few genetic determinants of extraintestinal growth and survival have been identified, even for the best-studied model, Escherichia coli. In this work, we thus used a genome-wide library of barcoded transposon insertions to systematically identify functional clusters of genes that are crucial for E. coli fitness in lake water. Our results revealed that inactivation of pathways involved in maintaining outer membrane integrity, nucleotide biosynthesis, and chemotaxis negatively affected E. coli growth or survival in this extraintestinal environment. In contrast, inactivation of another group of genes apparently benefited E. coli growth or persistence in filtered lake water, resulting in higher abundance of these mutants. This group included rpoS, which encodes the general stress response sigma factor, as well as genes encoding several other global transcriptional regulators and RNA chaperones, along with several poorly annotated genes. Based on this co-enrichment, we identified these gene products as novel positive regulators of RpoS activity. We further observed that, despite their enhanced growth, E. coli mutants with inactive RpoS had reduced viability in lake water, and they were not enriched in the presence of the autochthonous microbiota. This highlights the duality of the general stress response pathway for E. coli growth outside the host.
Collapse
Affiliation(s)
- Nataliya Teteneva
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Ananda Sanches-Medeiros
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), D-35043 Marburg, Germany
| |
Collapse
|
8
|
Aleksandrowicz A, Kolenda R, Baraniewicz K, Thurston TLM, Suchański J, Grzymajlo K. Membrane properties modulation by SanA: implications for xenobiotic resistance in Salmonella Typhimurium. Front Microbiol 2024; 14:1340143. [PMID: 38249450 PMCID: PMC10797042 DOI: 10.3389/fmicb.2023.1340143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Multidrug resistance in bacteria is a pressing concern, particularly among clinical isolates. Gram-negative bacteria like Salmonella employ various strategies, such as altering membrane properties, to resist treatment. Their two-membrane structure affects susceptibility to antibiotics, whereas specific proteins and the peptidoglycan layer maintain envelope integrity. Disruptions can compromise stability and resistance profile toward xenobiotics. In this study, we investigated the unexplored protein SanA's role in modifying bacterial membranes, impacting antibiotic resistance, and intracellular replication within host cells. Methods We generated a sanA deletion mutant and complemented it in trans to assess its biological function. High-throughput phenotypic profiling with Biolog Phenotype microarrays was conducted using 240 xenobiotics. Membrane properties and permeability were analyzed via cytochrome c binding, hexadecane adhesion, nile red, and ethidium bromide uptake assays, respectively. For intracellular replication analysis, primary bone marrow macrophages served as a host cells model. Results Our findings demonstrated that the absence of sanA increased membrane permeability, hydrophilicity, and positive charge, resulting in enhanced resistance to certain antibiotics that target peptidoglycan synthesis. Furthermore, the sanA deletion mutant demonstrated enhanced replication rates within primary macrophages, highlighting its ability to evade the bactericidal effects of the immune system. Taking together, we provide valuable insights into a poorly known SanA protein, highlighting the complex interplay among bacterial genetics, membrane physiology, and antibiotic resistance, underscoring its significance in understanding Salmonella pathogenicity.
Collapse
Affiliation(s)
- Adrianna Aleksandrowicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Karolina Baraniewicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Teresa L. M. Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Grzymajlo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
9
|
Lehman KM, May KL, Marotta J, Grabowicz M. Genetic analysis reveals a robust and hierarchical recruitment of the LolA chaperone to the LolCDE lipoprotein transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566237. [PMID: 37986794 PMCID: PMC10659402 DOI: 10.1101/2023.11.08.566237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.
Collapse
Affiliation(s)
- Kelly M. Lehman
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Kelly M. Lehman and Kerrie L. May contributed equally to this work. Author order was determined alphabetically
| | - Kerrie L. May
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Kelly M. Lehman and Kerrie L. May contributed equally to this work. Author order was determined alphabetically
| | - Julianna Marotta
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcin Grabowicz
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Wang HJ, Hernández-Rocamora VM, Kuo CI, Hsieh KY, Lee SH, Ho MR, Tu Z, Vollmer W, Chang CI. Structural basis for the hydrolytic activity of the transpeptidase-like protein DpaA to detach Braun's lipoprotein from peptidoglycan. mBio 2023; 14:e0137923. [PMID: 37830798 PMCID: PMC10653827 DOI: 10.1128/mbio.01379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Cross-linking reaction of Braun's lipoprotein (Lpp) to peptidoglycan (PG) is catalyzed by some members of the YkuD family of transpeptidases. However, the exact opposite reaction of cleaving the Lpp-PG cross-link is performed by DpaA, which is also a YkuD-like protein. In this work, we determined the crystal structure of DpaA to provide the molecular rationale for the ability of the transpeptidase-like protein to cleave, rather than form, the Lpp-PG linkage. Our findings also revealed the structural features that distinguish the different functional types of the YkuD family enzymes from one another.
Collapse
Affiliation(s)
- Hsiu-Jung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Víctor M. Hernández-Rocamora
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kan-Yen Hsieh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Hui Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Zhijay Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- College of Life Science, Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Alakavuklar MA, Fiebig A, Crosson S. The Brucella Cell Envelope. Annu Rev Microbiol 2023; 77:233-253. [PMID: 37104660 PMCID: PMC10787603 DOI: 10.1146/annurev-micro-032521-013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus Brucella exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the Brucella envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the Brucella envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.
Collapse
Affiliation(s)
- Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
12
|
Alberge F, Lakey BD, Schaub RE, Dohnalkova AC, Lemmer KC, Dillard JP, Noguera DR, Donohue TJ. A previously uncharacterized divisome-associated lipoprotein, DalA, is needed for normal cell division in Rhodobacterales. mBio 2023; 14:e0120323. [PMID: 37389444 PMCID: PMC10470522 DOI: 10.1128/mbio.01203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
The bacterial cell envelope is a key subcellular compartment with important roles in antibiotic resistance, nutrient acquisition, and cell morphology. We seek to gain a better understanding of proteins that contribute to the function of the cell envelope in Alphaproteobacteria. Using Rhodobacter sphaeroides, we show that a previously uncharacterized protein, RSP_1200, is an outer membrane (OM) lipoprotein that non-covalently binds peptidoglycan (PG). Using a fluorescently tagged version of this protein, we find that RSP_1200 undergoes a dynamic repositioning during the cell cycle and is enriched at the septum during cell division. We show that the position of RSP_1200 mirrors the location of FtsZ rings, leading us to propose that RSP_1200 is a newly identified component of the R. sphaeroides' divisome. Additional support for this hypothesis includes the co-precipitation of RSP_1200 with FtsZ, the Pal protein, and several predicted PG L,D-transpeptidases. We also find that a ∆RSP_1200 mutation leads to defects in cell division, sensitivity to PG-active antibiotics, and results in the formation of OM protrusions at the septum during cell division. Based on these results, we propose to name RSP_1200 DalA (for division-associated lipoprotein A) and postulate that DalA serves as a scaffold to position or modulate the activity of PG transpeptidases that are needed to form envelope invaginations during cell division. We find that DalA homologs are present in members of the Rhodobacterales order within Alphaproteobacteria. Therefore, we propose that further analysis of this and related proteins will increase our understanding of the macromolecular machinery and proteins that participate in cell division in Gram-negative bacteria. IMPORTANCE Multi-protein complexes of the bacterial cell envelope orchestrate key processes like growth, division, biofilm formation, antimicrobial resistance, and production of valuable compounds. The subunits of these protein complexes are well studied in some bacteria, and differences in their composition and function are linked to variations in cell envelope composition, shape, and proliferation. However, some envelope protein complex subunits have no known homologs across the bacterial phylogeny. We find that Rhodobacter sphaeroides RSP_1200 is a newly identified lipoprotein (DalA) and that loss of this protein causes defects in cell division and changes the sensitivity to compounds, affecting cell envelope synthesis and function. We find that DalA forms a complex with proteins needed for cell division, binds the cell envelope polymer peptidoglycan, and colocalizes with enzymes involved in the assembly of this macromolecule. The analysis of DalA provides new information on the cell division machinery in this and possibly other Alphaproteobacteria.
Collapse
Affiliation(s)
- François Alberge
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bryan D. Lakey
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alice C. Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Baquero F, Martínez JL, Sánchez A, Fernández-de-Bobadilla MD, San-Millán A, Rodríguez-Beltrán J. Bacterial Subcellular Architecture, Structural Epistasis, and Antibiotic Resistance. BIOLOGY 2023; 12:640. [PMID: 37237454 PMCID: PMC10215332 DOI: 10.3390/biology12050640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Epistasis refers to the way in which genetic interactions between some genetic loci affect phenotypes and fitness. In this study, we propose the concept of "structural epistasis" to emphasize the role of the variable physical interactions between molecules located in particular spaces inside the bacterial cell in the emergence of novel phenotypes. The architecture of the bacterial cell (typically Gram-negative), which consists of concentrical layers of membranes, particles, and molecules with differing configurations and densities (from the outer membrane to the nucleoid) determines and is in turn determined by the cell shape and size, depending on the growth phases, exposure to toxic conditions, stress responses, and the bacterial environment. Antibiotics change the bacterial cell's internal molecular topology, producing unexpected interactions among molecules. In contrast, changes in shape and size may alter antibiotic action. The mechanisms of antibiotic resistance (and their vectors, as mobile genetic elements) also influence molecular connectivity in the bacterial cell and can produce unexpected phenotypes, influencing the action of other antimicrobial agents.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain; (M.D.F.-d.-B.); (J.R.-B.)
- CIBER en Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - José-Luis Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (J.-L.M.); (A.S.); (A.S.-M.)
| | - Alvaro Sánchez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (J.-L.M.); (A.S.); (A.S.-M.)
| | - Miguel D. Fernández-de-Bobadilla
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain; (M.D.F.-d.-B.); (J.R.-B.)
- CIBER en Enfermedades Infecciosas (CIBERINFECT), 28034 Madrid, Spain
| | - Alvaro San-Millán
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (J.-L.M.); (A.S.); (A.S.-M.)
- CIBER en Enfermedades Infecciosas (CIBERINFECT), 28034 Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain; (M.D.F.-d.-B.); (J.R.-B.)
- CIBER en Enfermedades Infecciosas (CIBERINFECT), 28034 Madrid, Spain
| |
Collapse
|
14
|
Henriquez T, Falciani C. Extracellular Vesicles of Pseudomonas: Friends and Foes. Antibiotics (Basel) 2023; 12:antibiotics12040703. [PMID: 37107065 PMCID: PMC10135156 DOI: 10.3390/antibiotics12040703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Extracellular vesicles (Evs) are small spherical vesicles capable of transporting molecules (such as proteins, nucleic acids and lipids) from one cell to another. They have been implicated in processes such as cell-to-cell communication, pathogenicity, biofilm formation and metabolism. In parallel, Evs have been proposed as interesting biotechnological tools. In recent years, antibiotic resistance has become a major problem for human health worldwide. A pathogen singled out as among the most lethal antibiotic-resistant organisms is Pseudomonas aeruginosa, an important Gram-negative bacterium that has been extensively studied for the production and characterization of Evs. Here, we describe the advances made in the last decade regarding understanding of the role of Evs in the pathogenicity of Pseudomonas. We also examine the potential of Evs for the development of new treatment strategies.
Collapse
Affiliation(s)
- Tania Henriquez
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
15
|
Cho SH, Dekoninck K, Collet JF. Envelope-Stress Sensing Mechanism of Rcs and Cpx Signaling Pathways in Gram-Negative Bacteria. J Microbiol 2023; 61:317-329. [PMID: 36892778 DOI: 10.1007/s12275-023-00030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The global public health burden of bacterial antimicrobial resistance (AMR) is intensified by Gram-negative bacteria, which have an additional membrane, the outer membrane (OM), outside of the peptidoglycan (PG) cell wall. Bacterial two-component systems (TCSs) aid in maintaining envelope integrity through a phosphorylation cascade by controlling gene expression through sensor kinases and response regulators. In Escherichia coli, the major TCSs defending cells from envelope stress and adaptation are Rcs and Cpx, which are aided by OM lipoproteins RcsF and NlpE as sensors, respectively. In this review, we focus on these two OM sensors. β-Barrel assembly machinery (BAM) inserts transmembrane OM proteins (OMPs) into the OM. BAM co-assembles RcsF, the Rcs sensor, with OMPs, forming the RcsF-OMP complex. Researchers have presented two models for stress sensing in the Rcs pathway. The first model suggests that LPS perturbation stress disassembles the RcsF-OMP complex, freeing RcsF to activate Rcs. The second model proposes that BAM cannot assemble RcsF into OMPs when the OM or PG is under specific stresses, and thus, the unassembled RcsF activates Rcs. These two models may not be mutually exclusive. Here, we evaluate these two models critically in order to elucidate the stress sensing mechanism. NlpE, the Cpx sensor, has an N-terminal (NTD) and a C-terminal domain (CTD). A defect in lipoprotein trafficking results in NlpE retention in the inner membrane, provoking the Cpx response. Signaling requires the NlpE NTD, but not the NlpE CTD; however, OM-anchored NlpE senses adherence to a hydrophobic surface, with the NlpE CTD playing a key role in this function.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium. .,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| | - Kilian Dekoninck
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.,University of California, Berkeley, CA, 94720, USA
| | - Jean-Francois Collet
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology, 1200, Brussels, Belgium.,de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
16
|
Evaluation of the Defined Bacterial Consortium Efficacy in the Biodegradation of NSAIDs. Molecules 2023; 28:molecules28052185. [PMID: 36903430 PMCID: PMC10004385 DOI: 10.3390/molecules28052185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Due to the increasing pollution of wastewater with non-steroidal anti-inflammatory drugs, preparations need to be developed to decompose these drugs. This work aimed to develop a bacterial consortium with a defined composition and boundary conditions for the degradation of paracetamol and selected non-steroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, naproxen, and diclofenac. The defined bacterial consortium consisted of Bacillus thuringiensis B1(2015b) and Pseudomonas moorei KB4 strains in a ratio of 1:2. During the tests, it was shown that the bacterial consortium worked in the pH range from 5.5 to 9 and temperatures of 15-35 °C, and its great advantage was its resistance to toxic compounds present in sewage, such as organic solvents, phenols, and metal ions. The degradation tests showed that, in the presence of the defined bacterial consortium in the sequencing batch reactor (SBR), drug degradation occurred at rates of 4.88, 10, 0.1, and 0.05 mg/day for ibuprofen, paracetamol, naproxen, and diclofenac, respectively. In addition, the presence of the tested strains was demonstrated during the experiment as well as after its completion. Therefore, the advantage of the described bacterial consortium is its resistance to the antagonistic effects of the activated sludge microbiome, which will enable it to be tested in real activated sludge conditions.
Collapse
|
17
|
Type III Secretion System Repressor RhpR Induces GrlP, a Glycine-Rich Outer Membrane Lipoprotein with Functions in Regulating the Periplasmic Space and Pleiotropic Responses. Appl Environ Microbiol 2023; 89:e0158722. [PMID: 36602318 PMCID: PMC9888284 DOI: 10.1128/aem.01587-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The two-component system RhpRS was initially identified as a regulator of genes encoding the type III secretion system (T3SS) in Pseudomonas syringae. Phosphorylated RhpR (P-RhpR) negatively regulates the T3SS genes by repressing the hrpR promoter, but directly activates the expression of a small gene named here as grlp. Here, we show that grlp is expressed higher in rich medium than in minimal medium in P. s. pv. tomato DC3000 and encodes a glycine rich lipoprotein (GrlP) located in the outer membrane (OM). The grlp gene has a pleiotropic effect on bacterial behaviors such as reductions in pathogenicity, swimming motility, biofilm formation, tolerance to various stresses and antibiotics, and long-term survival when overexpressed, but induces these responses when it is deleted in P. s. pv. tomato DC3000. Overexpression of grlp increases the size of periplasm while deletion of grlp decreases the periplasmic space. Further, GrlP interacts with OprI, the ortholog of E. coli OM lipoprotein Lpp, a key player in determining the size of periplasm and mechanic stiffness of the OM by tethering the OM to peptidoglycan (PG) in periplasm. As periplasmic space and OM mechanics play central roles in regulating bacterial physiology, we speculate that GrlP probably imposes its functions on bacterial physiology by regulating the periplasmic space and OM mechanics. These findings suggest that the T3SS gene regulation is closely coordinated with bacterial cell envelope properties by RhpRS in P. syringe. IMPORTANCE The OM of Gram-negative bacteria is the most front line in contact with extracellular milieu. OM is not only a protective layer, but also a structure that determines the envelope stiffness. Recent evidence indicated that components determining the periplasmic space and cross-links of lipopolysaccharide on the OM play key roles in regulating the mechanical properties of the OM. However, whether the OM composition and mechanical properties are coordinated with the expression of the T3SS genes is unknown. Here, we found that the two-component system (TCS) regulator P-RhpR, a direct repressor of the T3SS regulator hrpRS operon, directly activates the expression of the OM lipoprotein gene grlp bearing a function in regulating the periplasmic space. This finding suggests a coordination between the OM properties and the T3SS gene regulation and reveals a new target for control of the T3SS gene expression and bacterial pathogenicity.
Collapse
|
18
|
Sheng Q, Zhang MY, Liu SM, Chen ZW, Yang PL, Zhang HS, Liu MY, Li K, Zhao LS, Liu NH, Liu LN, Chen XL, Hobbs JK, Foster SJ, Zhang YZ, Su HN. In situ visualization of Braun's lipoprotein on E. coli sacculi. SCIENCE ADVANCES 2023; 9:eadd8659. [PMID: 36662863 PMCID: PMC9858504 DOI: 10.1126/sciadv.add8659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Braun's lipoprotein (Lpp) plays a major role in stabilizing the integrity of the cell envelope in Escherichia coli, as it provides a covalent cross-link between the outer membrane and the peptidoglycan layer. An important challenge in elucidating the physiological role of Lpp lies in attaining a detailed understanding of its distribution on the peptidoglycan layer. Here, using atomic force microscopy, we visualized Lpp directly on peptidoglycan sacculi. Lpp is homogeneously distributed over the outer surface of the sacculus at a high density. However, it is absent at the constriction site during cell division, revealing its role in the cell division process with Pal, another cell envelope-associated protein. Collectively, we have established a framework to elucidate the distribution of Lpp and other peptidoglycan-bound proteins via a direct imaging modality.
Collapse
Affiliation(s)
- Qi Sheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Meng-Yao Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Si-Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhuo-Wei Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Pei-Ling Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hong-Su Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Meng-Yun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Kang Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Long-Sheng Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ning-Hua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lu-Ning Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jamie K. Hobbs
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - Simon J. Foster
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Yu-Zhong Zhang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
19
|
Zhang XW, An MX, Huang ZK, Ma L, Zhao D, Yang Z, Shi JX, Liu DX, Li Q, Wu AH, Chen YH, Zhao WD. Lpp of Escherichia coli K1 inhibits host ROS production to counteract neutrophil-mediated elimination. Redox Biol 2022; 59:102588. [PMID: 36592568 PMCID: PMC9823224 DOI: 10.1016/j.redox.2022.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
Escherichia coli (E. coli) is the most common Gram-negative bacterial organism causing neonatal meningitis. The pathogenesis of E. coli meningitis, especially how E. coli escape the host immune defenses, remains to be clarified. Here we show that deletion of bacterial Lpp encoding lipoprotein significantly reduces the pathogenicity of E. coli K1 to induce high-degree of bacteremia necessary for meningitis. The Lpp-deleted E. coli K1 is found to be susceptible to the intracellular bactericidal activity of neutrophils, without affecting the release of neutrophil extracellular traps. The production of reactive oxygen species (ROS), representing the primary antimicrobial mechanism in neutrophils, is significantly increased in response to Lpp-deleted E. coli. We find this enhanced ROS response is associated with the membrane translocation of NADPH oxidase p47phox and p67phox in neutrophils. Then we constructed p47phox knockout mice and we found the incidence of bacteremia and meningitis in neonatal mice induced by Lpp-deleted E. coli is significantly recovered by p47phox knockout. Proteomic profile analysis show that Lpp deficiency induces upregulation of flagellar protein FliC in E. coli. We further demonstrate that FliC is required for the ROS induction in neutrophils by Lpp-deleted E. coli. Taken together, these data uncover the novel role of Lpp in facilitating intracellular survival of E. coli K1 within neutrophils. It can be inferred that Lpp of E. coli K1 is able to suppress FliC expression to restrain the activation of NADPH oxidase in neutrophils resulting in diminished bactericidal activity, thus protecting E. coli K1 from the elimination by neutrophils.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Ming-Xin An
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Zeng-Kang Huang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Lan Ma
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Dan Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China,Department of Neurosurgery, the First Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhao Yang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jun-Xiu Shi
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Dong-Xin Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, 16 Puhe Road, Shenbei New District, Shenyang, 110134, China
| | - An-Hua Wu
- Department of Neurosurgery, the First Hospital of China Medical University, 155 Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| |
Collapse
|
20
|
Abstract
This review focuses on nonlytic outer membrane vesicles (OMVs), a subtype of bacterial extracellular vesicles (BEVs) produced by Gram-negative organisms focusing on the mechanisms of their biogenesis, cargo, and function. Throughout, we highlight issues concerning the characterization of OMVs and distinguishing them from other types of BEVs. We also highlight the shortcomings of commonly used methodologies for the study of BEVs that impact the interpretation of their functionality and suggest solutions to standardize protocols for OMV studies.
Collapse
Affiliation(s)
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
21
|
Okada U, Murakami S. Structural and functional characteristics of the tripartite ABC transporter. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36409601 DOI: 10.1099/mic.0.001257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest protein superfamilies and are found in all living organisms. These transporters use the energy from ATP binding and hydrolysis to transport various substrates. In this review, we focus on the structural and functional aspects of ABC transporters, with special emphasis on type VII ABC transporters, a newly defined class possessing characteristic structures. A notable feature of type VII ABC transporters is that they assemble into tripartite complexes that span both the inner and outer membranes of Gram-negative bacteria. One of the original type VII ABC transporters, which possesses all characteristic features of this class, is the macrolide efflux transporter MacB. Recent structural analyses of MacB and homologue proteins revealed the unique mechanisms of substrate translocation by type VII ABC transporters.
Collapse
Affiliation(s)
- Ui Okada
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Mirori-ku, Yokohama 226-8501, Japan
| | - Satoshi Murakami
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Mirori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
22
|
Rodrigues IC, Rodrigues SC, Duarte FV, da Costa PM, da Costa PM. The Role of Outer Membrane Proteins in UPEC Antimicrobial Resistance: A Systematic Review. MEMBRANES 2022; 12:981. [PMID: 36295740 PMCID: PMC9609314 DOI: 10.3390/membranes12100981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are one of the most common agents of urinary tract infection. In the last decade, several UPEC strains have acquired antibiotic resistance mechanisms and some have become resistant to all classes of antibiotics. UPEC outer membrane proteins (OMPs) seem to have a decisive role not only in the processes of invasion and colonization of the bladder mucosa, but also in mechanisms of drug resistance, by which bacteria avoid killing by antimicrobial molecules. This systematic review was performed according to the PRISMA guidelines, aiming to characterize UPEC OMPs and identify their potential role in antimicrobial resistance. The search was limited to studies in English published during the last decade. Twenty-nine studies were included for revision and, among the 76 proteins identified, seven were associated with antibiotic resistance. Indeed, OmpC was associated with β-lactams resistance and OmpF with β-lactams and fluoroquinolone resistance. In turn, TolC, OmpX, YddB, TosA and murein lipoprotein (Lpp) were associated with fluoroquinolones, enrofloxacin, novobiocin, β-lactams and globomycin resistances, respectively. The clinical implications of UPEC resistance to antimicrobial agents in both veterinary and human medicine must propel the implementation of new strategies of administration of antimicrobial agents, while also promoting the development of improved antimicrobials, protective vaccines and specific inhibitors of virulence and resistance factors.
Collapse
Affiliation(s)
- Inês C. Rodrigues
- Laboratório de Microbiologia e Tecnologia Alimentar, Departamento de Produção Aquática, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sílvia C. Rodrigues
- Pharmaissues, Consultoria, Lda, Rua da Esperança n° 101, Ribeira de Frades, 3045-420 Coimbra, Portugal
| | - Filipe V. Duarte
- Centro de Neurociências e Biologia Celular (CNC), Faculdade de Medicina, Pólo 1, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Paula M. da Costa
- Microbiology Department, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Paulo M. da Costa
- Laboratório de Microbiologia e Tecnologia Alimentar, Departamento de Produção Aquática, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto, de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
23
|
Abstract
The outer membrane (OM) of Gram-negative bacteria is an essential organelle that acts as a formidable barrier to antibiotics. Increasingly prevalent resistance to existing drugs has exacerbated the need for antibiotic discovery efforts targeting the OM. Acylated proteins, known as lipoproteins, are essential in every pathway needed to build the OM. The central role of OM lipoproteins makes their biogenesis a uniquely attractive therapeutic target, but it also complicates in vivo identification of on-pathway inhibitors, as inhibition of OM lipoprotein biogenesis broadly disrupts OM assembly. Here, we use genetics to probe the eight essential proteins involved in OM lipoprotein maturation and trafficking. We define a biological signature consisting of three simple assays that can characteristically identify OM lipoprotein biogenesis defects in vivo. We find that several known chemical inhibitors of OM lipoprotein biogenesis conform to the biological signature. We also examine MAC13243, a proposed inhibitor of OM lipoprotein biogenesis, and find that it fails to conform to the biological signature. Indeed, we demonstrate that MAC13243 activity relies entirely on a target outside of the OM lipoprotein biogenesis pathway. Hence, our signature offers simple tools to easily assess whether antibiotic lead compounds target an essential pathway that is the hub of OM assembly.
Collapse
|
24
|
Scaffolding Protein GspB/OutB Facilitates Assembly of the Dickeya dadantii Type 2 Secretion System by Anchoring the Outer Membrane Secretin Pore to the Inner Membrane and to the Peptidoglycan Cell Wall. mBio 2022; 13:e0025322. [PMID: 35546537 PMCID: PMC9239104 DOI: 10.1128/mbio.00253-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phytopathogenic proteobacterium Dickeya dadantii secretes an array of plant cell wall-degrading enzymes and other virulence factors via the type 2 secretion system (T2SS). T2SSs are widespread among important plant, animal, and human bacterial pathogens. This multiprotein complex spans the double membrane cell envelope and secretes fully folded proteins through a large outer membrane pore formed by 15 subunits of the secretin GspD. Secretins are also found in the type 3 secretion system and the type 4 pili. Usually, specialized lipoproteins termed pilotins assist the targeting and assembly of secretins into the outer membrane. Here, we show that in D. dadantii, the pilotin acts in concert with the scaffolding protein GspB. Deletion of gspB profoundly impacts secretin assembly, pectinase secretion, and virulence. Structural studies reveal that GspB possesses a conserved periplasmic homology region domain that interacts directly with the N-terminal secretin domain. Site-specific photo-cross-linking unravels molecular details of the GspB-GspD complex in vivo. We show that GspB facilitates outer membrane targeting and assembly of the secretin pores and anchors them to the inner membrane while the C-terminal extension of GspB provides a scaffold for the secretin channel in the peptidoglycan cell wall. Phylogenetic analysis shows that in other bacteria, GspB homologs vary in length and domain composition and act in concert with either a cognate ATPase GspA or the pilotin GspS.
Collapse
|
25
|
Hayashi-Nishino M, Aoki K, Kishimoto A, Takeuchi Y, Fukushima A, Uchida K, Echigo T, Yagi Y, Hirose M, Iwasaki K, Shin'ya E, Washio T, Furusawa C, Nishino K. Identification of Bacterial Drug-Resistant Cells by the Convolutional Neural Network in Transmission Electron Microscope Images. Front Microbiol 2022; 13:839718. [PMID: 35369486 PMCID: PMC8965347 DOI: 10.3389/fmicb.2022.839718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of bacteria that are resistant to antibiotics is common in areas where antibiotics are used widely. The current standard procedure for detecting bacterial drug resistance is based on bacterial growth under antibiotic treatments. Here we describe the morphological changes in enoxacin-resistant Escherichia coli cells and the computational method used to identify these resistant cells in transmission electron microscopy (TEM) images without using antibiotics. Our approach was to create patches from TEM images of enoxacin-sensitive and enoxacin-resistant E. coli strains, use a convolutional neural network for patch classification, and identify the strains on the basis of the classification results. The proposed method was highly accurate in classifying cells, achieving an accuracy rate of 0.94. Using a gradient-weighted class activation mapping to visualize the region of interest, enoxacin-resistant and enoxacin-sensitive cells were characterized by comparing differences in the envelope. Moreover, Pearson's correlation coefficients suggested that four genes, including lpp, the gene encoding the major outer membrane lipoprotein, were strongly associated with the image features of enoxacin-resistant cells.
Collapse
Affiliation(s)
- Mitsuko Hayashi-Nishino
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Artificial Intelligence Research Center (AIRC-ISIR), Osaka University, Ibaraki, Japan
| | - Kota Aoki
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Akihiro Kishimoto
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Yuna Takeuchi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Aiko Fukushima
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Kazushi Uchida
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tomio Echigo
- Department of Engineering Informatics, Osaka Electro-Communication University, Neyagawa, Japan
| | - Yasushi Yagi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Eitaro Shin'ya
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Takashi Washio
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan
| | - Chikara Furusawa
- RIKEN, Center for Biosystems Dynamics Research, Suita, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Nishino
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
26
|
An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat Microbiol 2022; 7:411-422. [PMID: 35246664 DOI: 10.1038/s41564-022-01066-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Abstract
Recent data support the hypothesis that Gram-positive bacteria (monoderms) arose from Gram-negative ones (diderms) through loss of the outer membrane (OM), but how this happened remains unknown. As tethering of the OM is essential for cell envelope stability in diderm bacteria, its destabilization may have been involved in this transition. In the present study, we present an in-depth analysis of the four known main OM-tethering systems across the Tree of Bacteria (ToB). We show that the presence of such systems follows the ToB with a bimodal distribution matching the deepest phylogenetic divergence between Terrabacteria and Gracilicutes. Whereas the lipoprotein peptidoglycan-associated lipoprotein (Pal) is restricted to the Gracilicutes, along with a more sporadic occurrence of OmpA, and Braun's lipoprotein is present only in a subclade of Gammaproteobacteria, diderm Terrabacteria display, as the main system, the OmpM protein. We propose an evolutionary scenario whereby OmpM represents a simple, ancestral OM-tethering system that was later replaced by one based on Pal after the emergence of the Lol machinery to deliver lipoproteins to the OM, with OmpA as a possible transition state. We speculate that the existence of only one main OM-tethering system in the Terrabacteria would have allowed the multiple OM losses specifically inferred in this clade through OmpM perturbation, and we provide experimental support for this hypothesis by inactivating all four ompM gene copies in the genetically tractable diderm Firmicute Veillonella parvula. High-resolution imaging and tomogram reconstructions reveal a non-lethal phenotype in which vast portions of the OM detach from the cells, forming huge vesicles with an inflated periplasm shared by multiple dividing cells. Together, our results highlight an ancient shift of OM-tethering systems in bacterial evolution and suggest a mechanism for OM loss and the multiple emergences of the monoderm phenotype from diderm ancestors.
Collapse
|
27
|
de Jonge EF, van Boxtel R, Balhuizen MD, Haagsman HP, Tommassen J. Pal depletion results in hypervesiculation and affects cell morphology and outer-membrane lipid asymmetry in bordetellae. Res Microbiol 2022; 173:103937. [DOI: 10.1016/j.resmic.2022.103937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
|
28
|
Mandela E, Stubenrauch CJ, Ryoo D, Hwang H, Cohen EJ, Torres VVL, Deo P, Webb CT, Huang C, Schittenhelm RB, Beeby M, Gumbart JC, Lithgow T, Hay ID. Adaptation of the periplasm to maintain spatial constraints essential for cell envelope processes and cell viability. eLife 2022; 11:73516. [PMID: 35084330 PMCID: PMC8824477 DOI: 10.7554/elife.73516] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes surrounding a periplasm and peptidoglycan layer. Molecular machines spanning the cell envelope depend on spatial constraints and load-bearing forces across the cell envelope and surface. The mechanisms dictating spatial constraints across the cell envelope remain incompletely defined. In Escherichia coli, the coiled-coil lipoprotein Lpp contributes the only covalent linkage between the outer membrane and the underlying peptidoglycan layer. Using proteomics, molecular dynamics, and a synthetic lethal screen, we show that lengthening Lpp to the upper limit does not change the spatial constraint but is accommodated by other factors which thereby become essential for viability. Our findings demonstrate E. coli expressing elongated Lpp does not simply enlarge the periplasm in response, but the bacteria accommodate by a combination of tilting Lpp and reducing the amount of the covalent bridge. By genetic screening, we identified all of the genes in E. coli that become essential in order to enact this adaptation, and by quantitative proteomics discovered that very few proteins need to be up- or down-regulated in steady-state levels in order to accommodate the longer Lpp. We observed increased levels of factors determining cell stiffness, a decrease in membrane integrity, an increased membrane vesiculation and a dependance on otherwise non-essential tethers to maintain lipid transport and peptidoglycan biosynthesis. Further this has implications for understanding how spatial constraint across the envelope controls processes such as flagellum-driven motility, cellular signaling, and protein translocation
Collapse
Affiliation(s)
- Eric Mandela
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Pankaj Deo
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Chaille T Webb
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Morgan Beeby
- Department of Life Sciencesa, Imperial College London, London, United Kingdom
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, United States
| | - Trevor Lithgow
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Iain D Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Tan WB, Chng SS. Genetic interaction mapping highlights key roles of the Tol-Pal complex. Mol Microbiol 2022; 117:921-936. [PMID: 35066953 DOI: 10.1111/mmi.14882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
The conserved Tol-Pal trans-envelope complex is important for outer membrane (OM) stability and cell division in Gram-negative bacteria. It is proposed to mediate OM constriction during cell division via cell wall tethering. Yet, recent studies suggest the complex has additional roles in OM lipid homeostasis and septal wall separation. How Tol-Pal facilitates all these processes is unclear. To gain insights into its function(s), we applied transposon-insertion sequencing, and report here a detailed network of genetic interactions with the tol-pal locus in Escherichia coli. We found one positive and >20 negative strong interactions based on fitness. Disruption osmoregulated-periplasmic glucan biosynthesis restores fitness and OM barrier function, but not proper division, in tol-pal mutants. In contrast, deleting genes involved in OM homeostasis and cell wall remodeling cause synthetic growth defects in strains lacking Tol-Pal, especially exacerbating OM barrier and/or division phenotypes. Notably, the ΔtolA mutant having additional defects in OM protein assembly (ΔbamB) exhibited severe division phenotypes, even when single mutants divided normally; this highlights the possibility for OM phenotypes to indirectly impact cell division. Overall, our work underscores the intricate nature of Tol-Pal function, and reinforces its key roles in cell wall-OM tethering, cell wall remodeling, and in particular, OM homeostasis.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore
| |
Collapse
|
30
|
Amemiya K, Dankmeyer JL, Bernhards RC, Fetterer DP, Waag DM, Worsham PL, DeShazer D. Activation of Toll-Like Receptors by Live Gram-Negative Bacterial Pathogens Reveals Mitigation of TLR4 Responses and Activation of TLR5 by Flagella. Front Cell Infect Microbiol 2021; 11:745325. [PMID: 34888257 PMCID: PMC8650638 DOI: 10.3389/fcimb.2021.745325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Successful bacterial pathogens have evolved to avoid activating an innate immune system in the host that responds to the pathogen through distinct Toll-like receptors (TLRs). The general class of biochemical components that activate TLRs has been studied extensively, but less is known about how TLRs interact with the class of compounds that are still associated with the live pathogen. Accordingly, we examined the activation of surface assembled TLR 2, 4, and 5 with live Tier 1 Gram-negative pathogens that included Yersinia pestis (plague), Burkholderia mallei (glanders), Burkholderia pseudomallei (melioidosis), and Francisella tularensis (tularemia). We found that Y. pestis CO92 grown at 28°C activated TLR2 and TLR4, but at 37°C the pathogen activated primarily TLR2. Although B. mallei and B. pseudomallei are genetically related, the former microorganism activated predominately TLR4, while the latter activated predominately TLR2. The capsule of wild-type B. pseudomallei 1026b was found to mitigate the activation of TLR2 and TLR4 when compared to a capsule mutant. Live F. tularensis (Ft) Schu S4 did not activate TLR2 or 4, although the less virulent Ft LVS and F. novicida activated only TLR2. B. pseudomallei purified flagellin or flagella attached to the microorganism activated TLR5. Activation of TLR5 was abolished by an antibody to TLR5, or a mutation of fliC, or elimination of the pathogen by filtration. In conclusion, we have uncovered new properties of the Gram-negative pathogens, and their interaction with TLRs of the host. Further studies are needed to include other microorganism to extend our observations with their interaction with TLRs, and to the possibility of leading to new efforts in therapeutics against these pathogens.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Robert C Bernhards
- Edgewood Chemical Biological Centre, Aberdeen Proving Ground, Edgewood, MD, United States
| | - David P Fetterer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - David M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| |
Collapse
|
31
|
Smithers L, Olatunji S, Caffrey M. Bacterial Lipoprotein Posttranslational Modifications. New Insights and Opportunities for Antibiotic and Vaccine Development. Front Microbiol 2021; 12:788445. [PMID: 34950121 PMCID: PMC8689077 DOI: 10.3389/fmicb.2021.788445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoproteins are some of the most abundant proteins in bacteria. With a lipid anchor to the cell membrane, they function as enzymes, inhibitors, transporters, structural proteins, and as virulence factors. Lipoproteins activate the innate immune system and have biotechnological applications. The first lipoprotein was described by Braun and Rehn in 1969. Up until recently, however, work on lipoproteins has been sluggish, in part due to the challenges of handling proteins that are anchored to membranes by covalently linked lipids or are membrane integral. Activity in the area has quickened of late. In the past 5 years, high-resolution structures of the membrane enzymes of the canonical lipoprotein synthesis pathway have been determined, new lipoprotein types have been discovered and the enzymes responsible for their synthesis have been characterized biochemically. This has led to a flurry of activity aimed at developing novel antibiotics targeting these enzymes. In addition, surface exposed bacterial lipoproteins have been utilized as candidate vaccine antigens, and their potential to act as self-adjuvanting antigens is increasingly recognized. A summary of the latest developments in lipoproteins and their synthesis, as well as how this information is being exploited for therapeutic purposes is presented here.
Collapse
Affiliation(s)
- Luke Smithers
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Samir Olatunji
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Martin Caffrey
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Thoma J, Burmann BM. Architects of their own environment: How membrane proteins shape the Gram-negative cell envelope. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:1-34. [PMID: 35034716 DOI: 10.1016/bs.apcsb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gram-negative bacteria are surrounded by a complex multilayered cell envelope, consisting of an inner and an outer membrane, and separated by the aqueous periplasm, which contains a thin peptidoglycan cell wall. These bacteria employ an arsenal of highly specialized membrane protein machineries to ensure the correct assembly and maintenance of the membranes forming the cell envelope. Here, we review the diverse protein systems, which perform these functions in Escherichia coli, such as the folding and insertion of membrane proteins, the transport of lipoproteins and lipopolysaccharide within the cell envelope, the targeting of phospholipids, and the regulation of mistargeted envelope components. Some of these protein machineries have been known for a long time, yet still hold surprises. Others have only recently been described and some are still missing pieces or yet remain to be discovered.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
33
|
Abidi W, Torres-Sánchez L, Siroy A, Krasteva PV. Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiol Rev 2021; 46:6388354. [PMID: 34634120 PMCID: PMC8892547 DOI: 10.1093/femsre/fuab051] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cellulose is the most abundant biological compound on Earth and while it is the predominant building constituent of plants, it is also a key extracellular matrix component in many diverse bacterial species. While bacterial cellulose was first described in the 19th century, it was not until this last decade that a string of structural works provided insights into how the cellulose synthase BcsA, assisted by its inner-membrane partner BcsB, senses c-di-GMP to simultaneously polymerize its substrate and extrude the nascent polysaccharide across the inner bacterial membrane. It is now established that bacterial cellulose can be produced by several distinct types of cellulose secretion systems and that in addition to BcsAB, they can feature multiple accessory subunits, often indispensable for polysaccharide production. Importantly, the last years mark significant progress in our understanding not only of cellulose polymerization per se but also of the bigger picture of bacterial signaling, secretion system assembly, biofilm formation and host tissue colonization, as well as of structural and functional parallels of this dominant biosynthetic process between the bacterial and eukaryotic domains of life. Here, we review current mechanistic knowledge on bacterial cellulose secretion with focus on the structure, assembly and cooperativity of Bcs secretion system components.
Collapse
Affiliation(s)
- Wiem Abidi
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Lucía Torres-Sánchez
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.,École doctorale 'Innovation thérapeutique: du fundamental à l'appliqué' (ITFA), Université Paris-Saclay, 92296, Chatenay-Malabry, France
| | - Axel Siroy
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Petya Violinova Krasteva
- 'Structural Biology of Biofilms' group, European Institute of Chemistry and Biology (IECB), F-33600 Pessac, France.,Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| |
Collapse
|
34
|
Abstract
Most bacteria are protected from environmental offenses by a cell wall consisting of strong yet elastic peptidoglycan. The cell wall is essential for preserving bacterial morphology and viability, and thus the enzymes involved in the production and turnover of peptidoglycan have become preferred targets for many of our most successful antibiotics. In the past decades, Vibrio cholerae, the gram-negative pathogen causing the diarrheal disease cholera, has become a major model for understanding cell wall genetics, biochemistry, and physiology. More than 100 articles have shed light on novel cell wall genetic determinants, regulatory links, and adaptive mechanisms. Here we provide the first comprehensive review of V. cholerae's cell wall biology and genetics. Special emphasis is placed on the similarities and differences with Escherichia coli, the paradigm for understanding cell wall metabolism and chemical structure in gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Sara B Hernandez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| |
Collapse
|
35
|
Gumbart JC, Ferreira JL, Hwang H, Hazel AJ, Cooper CJ, Parks JM, Smith JC, Zgurskaya HI, Beeby M. Lpp positions peptidoglycan at the AcrA-TolC interface in the AcrAB-TolC multidrug efflux pump. Biophys J 2021; 120:3973-3982. [PMID: 34411576 DOI: 10.1016/j.bpj.2021.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
The multidrug efflux pumps of Gram-negative bacteria are a class of complexes that span the periplasm, coupling both the inner and outer membranes to expel toxic molecules. The best-characterized example of these tripartite pumps is the AcrAB-TolC complex of Escherichia coli. However, how the complex interacts with the peptidoglycan (PG) cell wall, which is anchored to the outer membrane (OM) by Braun's lipoprotein (Lpp), is still largely unknown. In this work, we present molecular dynamics simulations of a complete, atomistic model of the AcrAB-TolC complex with the inner membrane, OM, and PG layers all present. We find that the PG localizes to the junction of AcrA and TolC, in agreement with recent cryo-tomography data. Free-energy calculations reveal that the positioning of PG is determined by the length and conformation of multiple Lpp copies anchoring it to the OM. The distance between the PG and OM measured in cryo-electron microscopy images of wild-type E. coli also agrees with the simulation-derived spacing. Sequence analysis of AcrA suggests a conserved role for interactions with PG in the assembly and stabilization of efflux pumps, one that may extend to other trans-envelope complexes as well.
Collapse
Affiliation(s)
- James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia.
| | - Josie L Ferreira
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Anthony J Hazel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Connor J Cooper
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
37
|
Marzuoli I, Cruz CHB, Lorenz CD, Fraternali F. Nanocapsule designs for antimicrobial resistance. NANOSCALE 2021; 13:10342-10355. [PMID: 34137751 DOI: 10.1039/d0nr08146a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pressing need of new antimicrobial products is growing stronger, particularly because of widespread antimicrobial resistance, endangering our ability to treat common infections. The recent coronavirus pandemic has dramatically highlighted the necessity of effective antibacterial and antiviral protection. This work explores at the molecular level the mechanism of action of antibacterial nanocapsules assembled in virus-like particles, their stability and their interaction with mammal and antimicrobial model membranes. We use Molecular Dynamics with force-fields of different granularity and protein design strategies to study the stability, self-assembly and membrane poration properties of these nanocapsules.
Collapse
Affiliation(s)
- Irene Marzuoli
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | - Carlos H B Cruz
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| | | | - Franca Fraternali
- Randall Centre for Cell and Molecular Biology, King's College London, London, UK.
| |
Collapse
|
38
|
Aliashkevich A, Cava F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J 2021; 289:4718-4730. [PMID: 34109739 DOI: 10.1111/febs.16066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| |
Collapse
|
39
|
Abstract
By evolving strains of E. coli that hyper-resist sedimentation, we discovered an uncharacterized mechanism that bacteria can use to remain in suspension indefinitely without expending energy. This unusual phenotype was traced to the anchoring of long colanic acid polymers (CAP) that project from the cell surface. Although each characterized mutant activated this same mechanism, the genes responsible and the strengths of the phenotypes varied. Mutations in rcsC, lpp, igaA, or the yjbEFGH operon were sufficient to stimulate sedimentation resistance, while mutations altering the cps promoter, cdgI, or yjbF provided phenotypic enhancements. The sedimentation resistances changed in response to temperature, growth phase, and carbon source and each mutant exhibited significantly reduced biofilm formation. We discovered that the degree of colony mucoidy exhibited by these mutants was not related to the degree of Rcs pathways activation or to the amount of CAP that was produced; rather, it was related to the fraction of CAP that was shed as a true exopolysaccharide. Therefore, these and other mutations that activate this phenotype are likely to be absent from genetic screens that relied on centrifugation to harvest bacteria. We also found that this anchored CAP form is not linked to LPS cores and may not be attached to the outer membrane.IMPORTANCEBacteria can partition in aqueous environments between surface-dwelling, planktonic, sedimentary, and biofilm forms. Residence in each location provides an advantage depending on nutritional and environmental stresses and a community of a single species is often observed to be distributed throughout two or more of these niches. Another adaptive strategy is to produce an extracellular capsule, which provides an environmental shield for the microbe and can allow escape from predators and immune systems. We discovered that bacteria can either shed or stably anchor capsules to dramatically alter their propensity to sediment. The degree to which the bacteria anchor their capsule is controlled by a stress sensing system, suggesting that anchoring may be used as an adaptive response to severe environmental challenges.
Collapse
|
40
|
Abstract
Gram-negative bacteria have a unique cell envelope with a lipopolysaccharide-containing outer membrane that is tightly connected to a thin layer of peptidoglycan. The tight connection between the outer membrane and peptidoglycan is needed to maintain the outer membrane as an impermeable barrier for many toxic molecules and antibiotics. Enterobacteriaceae such as Escherichia coli covalently attach the abundant outer membrane-anchored lipoprotein Lpp (Braun’s lipoprotein) to tripeptides in peptidoglycan, mediated by the transpeptidases LdtA, LdtB, and LdtC. LdtD and LdtE are members of the same family of ld-transpeptidases but they catalyze a different reaction, the formation of 3-3 cross-links in the peptidoglycan. The function of the sixth homologue in E. coli, LdtF, remains unclear, although it has been shown to become essential in cells with inhibited lipopolysaccharide export to the outer membrane. We now show that LdtF hydrolyzes the Lpp-peptidoglycan linkage, detaching Lpp from peptidoglycan, and have renamed LdtF to peptidoglycan meso-diaminopimelic acid protein amidase A (DpaA). We show that the detachment of Lpp from peptidoglycan is beneficial for the cell under certain stress conditions and that the deletion of dpaA allows frequent transposon inactivation in the lapB (yciM) gene, whose product downregulates lipopolysaccharide biosynthesis. DpaA-like proteins have characteristic sequence motifs and are present in many Gram-negative bacteria, of which some have no Lpp, raising the possibility that DpaA has other substrates in these species. Overall, our data show that the Lpp-peptidoglycan linkage in E. coli is more dynamic than previously appreciated.
Collapse
|
41
|
Cleavage of Braun's lipoprotein Lpp from the bacterial peptidoglycan by a paralog of l,d-transpeptidases, LdtF. Proc Natl Acad Sci U S A 2021; 118:2101989118. [PMID: 33941679 DOI: 10.1073/pnas.2101989118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gram-negative bacterial cell envelope is made up of an outer membrane (OM), an inner membrane (IM) that surrounds the cytoplasm, and a periplasmic space between the two membranes containing peptidoglycan (PG or murein). PG is an elastic polymer that forms a mesh-like sacculus around the IM, protecting cells from turgor and environmental stress conditions. In several bacteria, including Escherichia coli, the OM is tethered to PG by an abundant OM lipoprotein, Lpp (or Braun's lipoprotein), that functions to maintain the structural and functional integrity of the cell envelope. Since its discovery, Lpp has been studied extensively, and although l,d-transpeptidases, the enzymes that catalyze the formation of PG-Lpp linkages, have been earlier identified, it is not known how these linkages are modulated. Here, using genetic and biochemical approaches, we show that LdtF (formerly yafK), a newly identified paralog of l,d-transpeptidases in E. coli, is a murein hydrolytic enzyme that catalyzes cleavage of Lpp from the PG sacculus. LdtF also exhibits glycine-specific carboxypeptidase activity on muropeptides containing a terminal glycine residue. LdtF was earlier presumed to be an l,d-transpeptidase; however, our results show that it is indeed an l,d-endopeptidase that hydrolyzes the products generated by the l,d-transpeptidases. To summarize, this study describes the discovery of a murein endopeptidase with a hitherto unknown catalytic specificity that removes the PG-Lpp cross-links, suggesting a role for LdtF in the regulation of PG-OM linkages to maintain the structural integrity of the bacterial cell envelope.
Collapse
|
42
|
Ranava D, Yang Y, Orenday-Tapia L, Rousset F, Turlan C, Morales V, Cui L, Moulin C, Froment C, Munoz G, Rech J, Marcoux J, Caumont-Sarcos A, Albenne C, Bikard D, Ieva R. Lipoprotein DolP supports proper folding of BamA in the bacterial outer membrane promoting fitness upon envelope stress. eLife 2021; 10:67817. [PMID: 33847565 PMCID: PMC8081527 DOI: 10.7554/elife.67817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/04/2021] [Indexed: 01/03/2023] Open
Abstract
In Proteobacteria, integral outer membrane proteins (OMPs) are crucial for the maintenance of the envelope permeability barrier to some antibiotics and detergents. In Enterobacteria, envelope stress caused by unfolded OMPs activates the sigmaE (σE) transcriptional response. σE upregulates OMP biogenesis factors, including the β-barrel assembly machinery (BAM) that catalyses OMP folding. Here we report that DolP (formerly YraP), a σE-upregulated and poorly understood outer membrane lipoprotein, is crucial for fitness in cells that undergo envelope stress. We demonstrate that DolP interacts with the BAM complex by associating with outer membrane-assembled BamA. We provide evidence that DolP is important for proper folding of BamA that overaccumulates in the outer membrane, thus supporting OMP biogenesis and envelope integrity. Notably, mid-cell recruitment of DolP had been linked to regulation of septal peptidoglycan remodelling by an unknown mechanism. We now reveal that, during envelope stress, DolP loses its association with the mid-cell, thereby suggesting a mechanistic link between envelope stress caused by impaired OMP biogenesis and the regulation of a late step of cell division.
Collapse
Affiliation(s)
- David Ranava
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yiying Yang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luis Orenday-Tapia
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - François Rousset
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Catherine Turlan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Violette Morales
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lun Cui
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Cyril Moulin
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gladys Munoz
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - David Bikard
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
43
|
Mychack A, Janakiraman A. Defects in The First Step of Lipoprotein Maturation Underlie The Synthetic Lethality of Escherichia coli Lacking The Inner Membrane Proteins YciB And DcrB. J Bacteriol 2021; 203:JB.00640-20. [PMID: 33431434 PMCID: PMC8095458 DOI: 10.1128/jb.00640-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
Nearly a quarter of the Escherichia coli genome encodes for inner membrane proteins of which approximately a third have unassigned or poorly understood function. We had previously demonstrated that the synergy between the functional roles of the inner membrane-spanning YciB and the inner membrane lipoprotein DcrB, is essential in maintaining cell envelope integrity. In yciB dcrB cells, the abundant outer membrane lipoprotein, Lpp, mislocalizes to the inner membrane where it forms toxic linkages to peptidoglycan. Here, we report that the aberrant localization of Lpp in this double mutant is due to inefficient lipid modification at the first step in lipoprotein maturation. Both Cpx and Rcs signaling systems are upregulated in response to the envelope stress. The phosphatidylglycerol-pre-prolipoprotein diacylglyceryl transferase, Lgt, catalyzes the initial step in lipoprotein maturation. Our results suggest that the attenuation in Lgt-mediated transacylation in the double mutant is not a consequence of lowered phosphatidylglycerol levels. Instead, we posit that altered membrane fluidity, perhaps due to changes in lipid homeostasis, may lead to the impairment in Lgt function. Consistent with this idea, a dcrB null is not viable when grown at low temperatures, conditions which impact membrane fluidity. Like the yciB dcrB double mutant, dcrB null-mediated toxicity can be overcome in distinct ways - by increased expression of Lgt, deletion of lpp, or removal of Lpp-peptidoglycan linkages. The last of these events leads to elevated membrane vesiculation and lipid loss, which may, in turn, impact membrane homeostasis in the double mutant.Importance A distinguishing feature of Gram-negative bacteria is their double-membraned cell envelope which presents a formidable barrier against environmental stress. In E. coli, more than a quarter of the cellular proteins reside at the inner membrane but about a third of these proteins are functionally unassigned or their function is incompletely understood. Here, we show that the synthetic lethality underlying the inactivation of two inner membrane proteins, a small integral membrane protein YciB, and a lipoprotein, DcrB, results from the attenuation of the first step of lipoprotein maturation at the inner membrane. We propose that these two inner membrane proteins YciB and DcrB play a role in membrane homeostasis in E. coli and related bacteria.
Collapse
Affiliation(s)
- Aaron Mychack
- Department of Biology, 160 Convent Ave. MR 526, The City College of CUNY, New York, NY, 100031, USA
- Program in Biology, The Graduate Center, CUNY, Fifth Avenue, New York, NY, 10016, USA
| | - Anuradha Janakiraman
- Department of Biology, 160 Convent Ave. MR 526, The City College of CUNY, New York, NY, 100031, USA
- Program in Biology, The Graduate Center, CUNY, Fifth Avenue, New York, NY, 10016, USA
| |
Collapse
|
44
|
Szczepaniak J, Press C, Kleanthous C. The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiol Rev 2021; 44:490-506. [PMID: 32472934 PMCID: PMC7391070 DOI: 10.1093/femsre/fuaa018] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the 1960s several groups reported the isolation and preliminary genetic mapping of
Escherichia coli strains tolerant towards the
action of colicins. These pioneering studies kick-started two new fields in bacteriology;
one centred on how bacteriocins like colicins exploit the Tol (or more commonly Tol-Pal)
system to kill bacteria, the other on the physiological role of this cell
envelope-spanning assembly. The following half century has seen significant advances in
the first of these fields whereas the second has remained elusive, until recently. Here,
we review work that begins to shed light on Tol-Pal function in Gram-negative bacteria.
What emerges from these studies is that Tol-Pal is an energised system with fundamental,
interlinked roles in cell division – coordinating the re-structuring of peptidoglycan at
division sites and stabilising the connection between the outer membrane and underlying
cell wall. This latter role is achieved by Tol-Pal exploiting the proton motive force to
catalyse the accumulation of the outer membrane peptidoglycan associated lipoprotein Pal
at division sites while simultaneously mobilising Pal molecules from around the cell.
These studies begin to explain the diverse phenotypic outcomes of tol-pal
mutations, point to other cell envelope roles Tol-Pal may have and raise many new
questions.
Collapse
Affiliation(s)
- Joanna Szczepaniak
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Cara Press
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
45
|
Bruchmann S, Feltwell T, Parkhill J, Short FL. Identifying virulence determinants of multidrug-resistant Klebsiella pneumoniae in Galleria mellonella. Pathog Dis 2021; 79:6123718. [PMID: 33512418 PMCID: PMC7981267 DOI: 10.1093/femspd/ftab009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Infections caused by Klebsiella pneumoniae are a major public health threat. Extensively drug-resistant and even pan-resistant strains have been reported. Understanding K. pneumoniae pathogenesis is hampered by the fact that murine models of infection offer limited resolution for non-hypervirulent strains which cause the majority of infections. The insect Galleria mellonella larva is a widely used alternative model organism for bacterial pathogens. We have performed genome-scale fitness profiling of a multidrug-resistant K. pneumoniae ST258 strain during infection of G. mellonella, to determine if this model is suitable for large-scale virulence factor discovery in this pathogen. Our results demonstrated a dominant role for surface polysaccharides in infection, with contributions from siderophores, cell envelope proteins, purine biosynthesis genes and additional genes of unknown function. Comparison with a hypervirulent strain, ATCC 43816, revealed substantial overlap in important infection-related genes, as well as additional putative virulence factors specific to ST258, reflecting strain-dependent fitness effects. Our analysis also identified a role for the metalloregulatory protein NfeR (YqjI) in virulence. Overall, this study offers new insight into the infection fitness landscape of K. pneumoniae, and provides a framework for using the highly flexible and easily scalable G. mellonella infection model to dissect molecular virulence mechanisms of bacterial pathogens.
Collapse
Affiliation(s)
- Sebastian Bruchmann
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.,Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Theresa Feltwell
- Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Department of Medicine, University of Cambridge, The Old Schools, Cambridge, CB2 3PU, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Francesca L Short
- Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Department of Medicine, University of Cambridge, The Old Schools, Cambridge, CB2 3PU, UK.,Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| |
Collapse
|
46
|
Garde S, Chodisetti PK, Reddy M. Peptidoglycan: Structure, Synthesis, and Regulation. EcoSal Plus 2021; 9:eESP-0010-2020. [PMID: 33470191 PMCID: PMC11168573 DOI: 10.1128/ecosalplus.esp-0010-2020] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Peptidoglycan is a defining feature of the bacterial cell wall. Initially identified as a target of the revolutionary beta-lactam antibiotics, peptidoglycan has become a subject of much interest for its biology, its potential for the discovery of novel antibiotic targets, and its role in infection. Peptidoglycan is a large polymer that forms a mesh-like scaffold around the bacterial cytoplasmic membrane. Peptidoglycan synthesis is vital at several stages of the bacterial cell cycle: for expansion of the scaffold during cell elongation and for formation of a septum during cell division. It is a complex multifactorial process that includes formation of monomeric precursors in the cytoplasm, their transport to the periplasm, and polymerization to form a functional peptidoglycan sacculus. These processes require spatio-temporal regulation for successful assembly of a robust sacculus to protect the cell from turgor and determine cell shape. A century of research has uncovered the fundamentals of peptidoglycan biology, and recent studies employing advanced technologies have shed new light on the molecular interactions that govern peptidoglycan synthesis. Here, we describe the peptidoglycan structure, synthesis, and regulation in rod-shaped bacteria, particularly Escherichia coli, with a few examples from Salmonella and other diverse organisms. We focus on the pathway of peptidoglycan sacculus elongation, with special emphasis on discoveries of the past decade that have shaped our understanding of peptidoglycan biology.
Collapse
Affiliation(s)
- Shambhavi Garde
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Pavan Kumar Chodisetti
- These authors contributed equally
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| | - Manjula Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India 500007
| |
Collapse
|
47
|
Zhong Q, Deng Y, Qin H, Ou H, Qu Y, Ye J. Metabolic network and recovery mechanism of Escherichia coli associated with triclocarban stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111140. [PMID: 32858325 DOI: 10.1016/j.ecoenv.2020.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity of triclocarban at molecular level has been investigated, the metabolic networks involved in regulating the stress processes are not clear. Whether the cells would maintain specific phenotypic characteristics after triclocarban stress is also needed to be clarified. In this study, Escherichia coli was selected as a model to elucidate the cellular metabolism response associated with triclocarban stress and the recovery metabolic network of the triclocarban-treated cells using the proteomics and metabolomics approaches. Results showed that triclocarban caused systematic metabolic remodeling. The adaptive pathways, glyoxylate shunt and acetate-switch were activated. These arrangements allowed cells to use more acetyl-CoA and to reduce carbon atom loss. The upregulation of NH3-dependent NAD+ synthetase complemented the NAD+ consumption by catabolism, maintaining the redox balance. The synthesis of 1-deoxy-D-xylulose-5-phosphate was suppressed, which would affect the accumulation of end products of its downstream pathway of isoprenoid synthesis. After recovery culture for 12 h, the state of cells returned to stability and the main impacts on metabolic network triggered by triclocarban have disappeared. However, drug resistance caused by long-term exposure to environmentally relevant concentration of triclocarban is still worthy of attention. The present study revealed the molecular events under triclocarban stress and clarified how triclocarban influence the metabolic networks.
Collapse
Affiliation(s)
- Qiao Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Huaming Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yanfen Qu
- Zhongji Ecological Science & Technology Co., Ltd. Guangzhou, 511443, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
48
|
β-Barrel proteins tether the outer membrane in many Gram-negative bacteria. Nat Microbiol 2020; 6:19-26. [PMID: 33139883 PMCID: PMC7755725 DOI: 10.1038/s41564-020-00798-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/16/2020] [Indexed: 12/20/2022]
Abstract
Gram-negative bacteria have a cell envelope that comprises an outer membrane (OM), a peptidoglycan (PG) layer and an inner membrane (IM)1. The OM and PG are load-bearing, selectively permeable structures that are stabilized by cooperative interactions between IM and OM proteins2,3. In E. coli, Braun’s lipoprotein (Lpp) forms the only covalent tether between the OM and PG and is crucial for cell envelope stability4 but most other Gram-negative bacteria lack Lpp so it has been assumed that alternative mechanisms of OM stabilization are present5. We use a glycoproteomic analysis of PG to show that β-barrel OM proteins are covalently attached to PG in several Gram-negative species, including Coxiella burnetii, Agrobacterium tumefaciens and Legionella pneumophila. In C. burnetii, we found that four different types of covalent attachments occur between OM proteins and PG, with tethering of the β-barrel OM protein BbpA becoming most abundant in stationary phase and tethering of the lipoprotein LimB similar throughout the cell-cycle. Using a genetic approach, we demonstrate that the cell-cycle dependent tethering of BbpA is partly dependent on a developmentally regulated L,D transpeptidase (Ldt). We use our findings to propose a model of Gram-negative cell envelope stabilization that includes cell-cycle control and an expanded role for Ldts in covalently attaching surface proteins to PG.
Collapse
|
49
|
β-Barrels covalently link peptidoglycan and the outer membrane in the α-proteobacterium Brucella abortus. Nat Microbiol 2020; 6:27-33. [PMID: 33139884 DOI: 10.1038/s41564-020-00799-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/16/2020] [Indexed: 01/22/2023]
Abstract
Gram-negative bacteria are surrounded by a cell envelope that comprises an outer membrane (OM) and an inner membrane that, together, delimit the periplasmic space, which contains the peptidoglycan (PG) sacculus. Covalent anchoring of the OM to the PG is crucial for envelope integrity in Escherichia coli. When the OM is not attached to the PG, the OM forms blebs and detaches from the cell. The Braun lipoprotein Lpp1 covalently attaches OM to the PG but is present in only a small number of γ-proteobacteria; the mechanism of OM-PG attachment in other species is unclear. Here, we report that the OM is attached to PG by covalent cross-links between the N termini of integral OM β-barrel-shaped proteins (OMPs) and the peptide stems of PG in the α-proteobacteria Brucella abortus and Agrobacterium tumefaciens. Cross-linking is catalysed by L,D-transpeptidases and attached OMPs have a conserved alanyl-aspartyl motif at their N terminus. Mutation of the aspartate in this motif prevents OMP cross-linking and results in OM membrane instability. The alanyl-aspartyl motif is conserved in OMPs from Rhizobiales; it is therefore feasible that OMP-PG cross-links are widespread in α-proteobacteria.
Collapse
|
50
|
Liu J, Gumbart JC. Membrane thinning and lateral gating are consistent features of BamA across multiple species. PLoS Comput Biol 2020; 16:e1008355. [PMID: 33112853 PMCID: PMC7652284 DOI: 10.1371/journal.pcbi.1008355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
In Gram-negative bacteria, the folding and insertion of β-barrel outer membrane proteins (OMPs) to the outer membrane are mediated by the β-barrel assembly machinery (BAM) complex. Two leading models of this process have been put forth: the hybrid barrel model, which claims that a lateral gate in BamA’s β-barrel can serve as a template for incoming OMPs, and the passive model, which claims that a thinned membrane near the lateral gate of BamA accelerates spontaneous OMP insertion. To examine the key elements of these two models, we have carried out 45.5 μs of equilibrium molecular dynamics simulations of BamA with and without POTRA domains from Escherichia coli, Salmonella enterica, Haemophilus ducreyi and Neisseria gonorrhoeae, together with BamA’s homolog, TamA from E. coli, in their native, species-specific outer membranes. In these equilibrium simulations, we consistently observe membrane thinning near the lateral gate for all proteins. We also see occasional spontaneous lateral gate opening and sliding of the β-strands at the gate interface for N. gonorrhoeae, indicating that the gate is dynamic. An additional 14 μs of free-energy calculations shows that the energy necessary to open the lateral gate in BamA/TamA varies by species, but is always lower than the Omp85 homolog, FhaC. Our combined results suggest OMP insertion utilizes aspects of both the hybrid barrel and passive models. Gram-negative bacteria such as Escherichia coli have a second, outer membrane surrounding them. This outer membrane provides an additional layer of protection, but also presents an additional challenge in its construction, exacerbated by the lack of chemical energy in this region of the bacterial cell. For example, proteins in the outer membrane are inserted via BamA, itself an integral membrane protein. The precise mechanisms by which BamA assists in the insertion process are still unclear. Here, we use extensive simulations in atomistic detail of BamA from multiple species in its native outer membrane environment to shed light on this process. We find that the lateral gate of BamA, a proposed pathway into the membrane, is dynamic, although to a degree varying by species. On the other hand, thinning of the outer membrane near BamA’s lateral gate is observed consistently across all simulations. We conclude that multiple features of BamA contribute to protein insertion into the outer membrane.
Collapse
Affiliation(s)
- Jinchan Liu
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Tang Aoqing Honors Program in Science, College of Chemistry, Jilin University, Changchun, Jilin Province, China
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|