1
|
O’Bier NS, Camire AC, Patel DT, Billingsley JS, Hodges KR, Marconi RT. Development of novel multi-protein chimeric immunogens that protect against infection with the Lyme disease agent, Borreliella burgdorferi. mBio 2024; 15:e0215924. [PMID: 39287439 PMCID: PMC11481559 DOI: 10.1128/mbio.02159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Lyme disease is the most common tick-borne disease in North America. A vaccine for use in humans is not available. Here, we detail the development of two chimeric vaccine antigens, BAF and Chv2M. BAF elicits Abs that target proteins and protein variants produced by Borreliella species in ticks (OspB and OspA) and mammals (FtlA/B). OspB serves as the backbone structure for the BAF chimeric. Two OspA221-240 epitope-containing domain (ECD) variants (#A1 and #A15) were inserted into a loop in OspB. The N-terminal region of the FtlA protein was joined to the C-terminus of the chimeric. The second chimeric, Chv2M, consists of L5 (loop 5) and H5 (helix 5) ECDs derived from diverse OspC proteins. Borreliella species produce OspC upon exposure to the bloodmeal and during early infection in mammals. Here, we demonstrate that BAF and Chv2M are potent immunogens that elicit Abs that bind to each component protein (FtlA, FtlB, OspB, and multiple OspA and OspC variants). Anti-BAF and anti-Chv2M Abs kill Borreliella burgdorferi strains through Ab-mediated complement-dependent and complement-independent mechanisms. Eighty percent (32/40) of mice that received a three-dose vaccine regimen were protected from infection with B. burgdorferi B31. Efficacy increased to 90% (18/20) when the amount of Chv2M was increased in the third vaccine dose. Readouts for infection were flaB PCR and seroconversion to VlsE. This study establishes proof of principle for a chimeric immunogen vaccine formulation that elicits Abs to multiple targets on the B. burgdorferi cell surface produced during tick and mammalian stages of the enzootic cycle.IMPORTANCELyme disease is a growing public health threat across parts of the Northern Hemisphere. Regions that can support sustained tick populations are expanding, and the incidence of tick-borne diseases is increasing. In light of the increasing risk of Lyme disease, effective preventive strategies are needed. Most vaccine development efforts have focused on outer surface protein A, a Borreliella burgdorferi protein produced only in ticks. Herein, we describe the development of a novel vaccine formulation consisting of two multivalent chimeric proteins that are immunogenic and elicit antibodies with bactericidal activity that target several cell surface proteins produced by the Lyme disease spirochetes in feeding ticks and mammals. In a broader sense, this study advances efforts to develop custom-designed vaccinogens comprised of epitope-containing domains from multiple proteins.
Collapse
Affiliation(s)
- Nathaniel S. O’Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Andrew C. Camire
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dhara T. Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John S. Billingsley
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kelly R. Hodges
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Moylan AD, Patel DT, O’Brien C, Schuler EJA, Hinson AN, Marconi RT, Miller DP. Characterization of c-di-AMP signaling in the periodontal pathobiont, Treponema denticola. Mol Oral Microbiol 2024; 39:354-367. [PMID: 38436552 PMCID: PMC11368658 DOI: 10.1111/omi.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Pathobionts associated with periodontitis, such as Treponema denticola, must possess numerous sensory transduction systems to adapt to the highly dynamic subgingival environment. To date, the signaling pathways utilized by T. denticola to rapidly sense and respond to environmental stimuli are mainly unknown. Bis-(3'-5') cyclic diadenosine monophosphate (c-di-AMP) is a nucleotide secondary messenger that regulates osmolyte transport, central metabolism, biofilm development, and pathogenicity in many bacteria but is uncharacterized in T. denticola. Here, we studied c-di-AMP signaling in T. denticola to understand how it contributes to T. denticola physiology. We demonstrated that T. denticola produces c-di-AMP and identified enzymes that function in the synthesis (TDE1909) and hydrolysis (TDE0027) of c-di-AMP. To investigate how c-di-AMP may impact T. denticola cellular processes, a screening assay was performed to identify putative c-di-AMP receptor proteins. This approach identified TDE0087, annotated as a potassium uptake protein, as the first T. denticola c-di-AMP binding protein. As potassium homeostasis is critical for maintaining turgor pressure, we demonstrated that T. denticola c-di-AMP concentrations are impacted by osmolarity, suggesting that c-di-AMP negatively regulates potassium uptake in hypoosmotic solutions. Collectively, this study demonstrates T. denticola utilizes c-di-AMP signaling, identifies c-di-AMP metabolism proteins, identifies putative receptor proteins, and correlates c-di-AMP signaling to osmoregulation.
Collapse
Affiliation(s)
- Aidan D. Moylan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Dhara T. Patel
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Claire O’Brien
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward J. A. Schuler
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Annie N. Hinson
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Daniel P. Miller
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Dentistry, Richmond, VA, USA
| |
Collapse
|
3
|
Schuler EJ, Patel DT, Marconi RT. The leptospiral OmpA-like protein (Loa22) is a surface-exposed antigen that elicits bactericidal antibody against heterologous Leptospira. Vaccine X 2023; 15:100382. [PMID: 37727366 PMCID: PMC10506094 DOI: 10.1016/j.jvacx.2023.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
Leptospirosis is the most widespread zoonosis, affecting over 1 million humans each year, with more than 60,000 deaths worldwide. Leptospirosis poses a significant health threat to dogs, horses, cattle, and wildlife. The disease may be self-limiting or progress to a life-threatening multi-system disorder affecting the kidneys, liver, and lungs. Currently, bacterin vaccine formulations that consist of one or more laboratory-cultivated strains are used for prevention. However, the antibody response elicited by these vaccines is directed primarily at lipopolysaccharide and is generally serovar-specific. The development of broadly protective subunit vaccines for veterinary and human applications would be a significant step forward in efforts to combat this emerging and antigenically variable pathogen. This study assessed the properties and potential utility of the Leptospira Loa22 (Leptospira OmpA-like 22 kDa protein) protein as a vaccine antigen. Loa22 is a virulence factor that is predicted to transverse the outer membrane and present its N-terminal domain on the cell surface. This report demonstrates that diverse Leptospira strains express Loa22 in vitro and that the protein is antigenic during infection in dogs. Immunoblot and size exclusion chromatography revealed that Loa22 exists in monomeric and trimeric forms. Immunization of rats with recombinant Loa22 elicited bactericidal antibodies against diverse Leptospira strains. The immunodominant bactericidal epitopes were localized within the N-terminal domain using protein-blocking bactericidal assays. This study supports the utility of Loa22, or subfragments thereof, in developing a multivalent chimeric subunit vaccine to prevent leptospirosis and sheds new light on the cellular localization of Loa22.
Collapse
Affiliation(s)
- Edward J.A. Schuler
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| | - Dhara T. Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 E Clay St., Richmond, VA 23298, USA
| |
Collapse
|
4
|
Miyai-Murai Y, Okamoto-Shibayama K, Sato T, Kikuchi Y, Kokubu E, Potempa J, Ishihara K. Localization and pathogenic role of the cysteine protease dentipain in Treponema denticola. Mol Oral Microbiol 2023; 38:212-223. [PMID: 36641800 PMCID: PMC10175099 DOI: 10.1111/omi.12406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/16/2023]
Abstract
The Msp protein complex and the serine protease dentilisin are the best-characterized virulence factors in Treponema denticola, the major etiological agent of chronic periodontitis. In addition to these outer sheath factors, the cysteine protease dentipain contributes to pathogenicity, but its secretion, processing, cellular localization, and role in T. denticola virulence are not fully understood. In this study, we found that full-sized dentipain (74-kDa) and the 52-kDa truncated form of the enzyme are located, respectively, in the outer sheath derived from T. denticola dentilisin- and the Msp-deficient mutants. Furthermore, dentipain was barely detected in the wild-type strain. These results suggest that dentilisin and Msp, the major outer sheath proteins, are involved in the secretion and maturation of dentipain. Inactivation of the dentipain gene slowed the growth of T. denticola, and the effect was more profound in serum-free medium than in serum-containing medium. Several genes, including those encoding transporters and methyl-accepting chemotaxis proteins, were differentially expressed in the dentipain-deficient mutant. Furthermore, the mutant strain was more hydrophobic than the wild-type strain. Finally, the mutant showed less autoaggregation activity and adhesion to IgG in a serum-free medium than the wild-type strain. These findings suggest that dentipain contributes to the virulence of T. denticola by facilitating adhesion and acquisition of nutrients essential for colonization and proliferation in the gingival crevice under serum-rich conditions.
Collapse
Affiliation(s)
- Yuri Miyai-Murai
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazuko Okamoto-Shibayama
- Department of Microbiology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Toru Sato
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, 2-9-18 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland and Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
5
|
Identification and Characterization of the Alternative σ 28 Factor in Treponema denticola. J Bacteriol 2022; 204:e0024822. [PMID: 36043861 PMCID: PMC9487585 DOI: 10.1128/jb.00248-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FliA (also known as σ28), a member of the bacterial σ70 family of transcription factors, directs RNA polymerase to flagellar late (class 3) promoters and initiates transcription. FliA has been studied in several bacteria, yet its role in spirochetes has not been established. In this report, we identify and functionally characterize a FliA homolog (TDE2683) in the oral spirochete Treponema denticola. Computational, genetic, and biochemical analyses demonstrated that TDE2683 has a structure similar to that of the σ28 of Escherichia coli, binds to σ28-dependent promoters, and can functionally replace the σ28 of E. coli. However, unlike its counterparts from other bacteria, TDE2683 cannot be deleted, suggesting its essential role in the survival of T. denticola. In vitro site-directed mutagenesis revealed that E221 and V231, two conserved residues in the σ4 region of σ28, are indispensable for the binding activity of TDE2683 to the σ28-dependent promoter. We then mutated these two residues in T. denticola and found that the mutations impair the expression of flagellin and chemotaxis genes and bacterial motility as well. Cryo-electron tomography analysis further revealed that the mutations disrupt the flagellar symmetry (i.e., number and placement) of T. denticola. Collectively, these results indicate that TDE2683 is a σ28 transcription factor that regulates the class 3 gene expression and controls the flagellar symmetry of T. denticola. To the best of our knowledge, this is the first report establishing the functionality of FliA in spirochetes. IMPORTANCE Spirochetes are a group of medically important but understudied bacteria. One of the unique aspects of spirochetes is that they have periplasmic flagella (PF, also known as endoflagella) which give rise to their unique spiral shape and distinct swimming behaviors and play a critical role in the pathophysiology of spirochetes. PF are structurally similar to external flagella, but the underpinning mechanism that regulates PF biosynthesis and assembly remains largely unknown. By using the oral spirochete Treponema denticola as a model, this report provides several lines of evidence that FliA, a σ28 transcriptional factor, regulates the late flagellin gene (class 3) expression, PF assembly, and flagellar symmetry as well, which provides insights into flagellar regulation and opens an avenue to investigate the role of σ28 in spirochetes.
Collapse
|