1
|
Wang W, Ye C, Zhao B, Zheng Y, Zhang G, Su J, Huang H, Hao L, Chen M. Epidemiological and Molecular Characteristics of Hypermucoviscous and Hypervirulent Klebsiella pneumoniae Isolates in Community Patients in Shanghai, China. Infect Drug Resist 2024; 17:2685-2699. [PMID: 38953096 PMCID: PMC11216552 DOI: 10.2147/idr.s468482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Background The occurrence and dissemination of hypermucoviscous and hypervirulent Klebsiella pneumoniae (hm-hvKp) isolates in clinical settings are a critical public health problem in the world. However, the data on these isolates in community populations are limited. This study aims to understand the prevalence and molecular characteristics of hm-hvKp isolates in community patients in Shanghai, China. Methods In 2018, an active surveillance system focused on hm-hvKp in community diarrhoeal cases was implemented in Pudong New Area, Shanghai, China, involving 12 sentinel hospitals. The antimicrobial susceptibility of hm-hvKp isolates from fecal samples was tested, and whole-genome sequencing (WGS) was performed to predict the serotypes and sequence types and to identify antimicrobial resistance determinants, virulence determinants, and phylogenetic clusters. Results The overall prevalence of hm K. pneumoniae isolates was 2.48% (31/1252), with the proportions of 1.76% (22/1252) for hm-hvKp and 0.72% (9/1252) for hm not hv K. pneumoniae. The prevalence of hm-hvKp isolates among different age groups and different months was statistically significant. All the 22 hm-hvKp isolates were susceptible to 20 antimicrobial agents and only carried bla SHV gene, and KL1 and KL2 accounted for eight (36.36%) cases and seven (31.82%) cases, respectively. The eight ST23/KL1 isolates belonged to the predominant CG23-I clade, which typically possessed the virulence determinants profile of rmpA/rmpA2-iro-iuc-ybt-irp-clb. The five ST86/KL2 isolates were assigned to the global clusters ST86/KL2-1 (n=2), ST86/KL2-2 (n=2), ST86/KL2-3 (n=1), all lack of the clb gene. Shanghai ST23/KL1 and ST86/KL2 isolates were closely related to the global isolates from liver abscesses, blood, and urine. Conclusion Hm-hvKp is carried by the community population of Shanghai, with ST23/KL1 and ST86/KL2 isolates predominant. Hm-hvKp isolates of different continents, different sources, and different virulence levels were closely related. Ongoing surveillance of hm-hvKp isolates in the community population is warranted.
Collapse
Affiliation(s)
- Wenqing Wang
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, People’s Republic of China
| | - Chuchu Ye
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, People’s Republic of China
- Department of Infectious Disease Control and Prevention, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Bing Zhao
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Yingjie Zheng
- Department of Epidemiology/Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning/Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, People’s Republic of China
| | - Ge Zhang
- School of Public Health, Dali University, Yunnan, People’s Republic of China
| | - Jinghua Su
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Hong Huang
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Lipeng Hao
- Department of Microbiology, Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
- Fudan University Pudong Institute of Preventive Medicine, Shanghai, People’s Republic of China
| | - Mingliang Chen
- Research and Translational Laboratory of Acute Injury and Secondary Infection, and Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Geng H, Song L, Yang X, Xing S, Wang R, Xu Y, Jia X, Luan G. Resistance of Klebsiella pneumoniae to Phage hvKpP3 Due to High-Molecular Weight Lipopolysaccharide Synthesis Failure. Microbiol Spectr 2023; 11:e0438422. [PMID: 37022197 PMCID: PMC10269817 DOI: 10.1128/spectrum.04384-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
The spread of multidrug resistant and hypervirulent Klebsiella pneumoniae has recently increased. Phages have been considered alternatives for treating infections caused by tenacious pathogens. Our study describes a novel lytic Klebsiella phage, hvKpP3, and we obtained spontaneous mutants, hvKpP3R and hvKpP3R15, of hvKpLS8 strain that showing strong resistance to the lytic phage hvKpP3. Sequencing analysis showed that nucleotide-deletion mutations of the glycosyltransferase gene (GT) and wcaJ genes, located in the lipopolysaccharide (LPS) gene cluster and the capsular polysaccharide (CPS) gene cluster, respectively, led to phage resistance. The wcaJ mutation confers the inhibition of phage adsorption by affecting the synthesis of hvKpP3R15 capsular polysaccharide, indicating that the capsule is the main adsorption receptor for bacteriophage hvKpP3. Interestingly, the phage-resistant mutant hvKpP3R has a loss-of-function mutation in GT, which is responsible for lipopolysaccharide biosynthesis. This results in the loss of high-molecular weight lipopolysaccharide (HMW-LPS), and alteration of the lipopolysaccharide structure of the bacterial cell wall confers resistance to phages. In conclusion, our study provides a detailed description of phage hvKpP3 and provides new insights into phage resistance in K. pneumoniae. IMPORTANCE Multidrug-resistant (MDR) Klebsiella pneumoniae strains pose a particular threat to human health. Therefore, it is very important for us to isolate phage and overcome phage resistance. In this study, we isolated a novel phage belonging to the Myoviridae family, hvKpP3, that exhibited high lytic activity against K2 hypervirulent K. pneumoniae. We demonstrated the excellent stability of phage hvKpP3 through in vitro and in vivo experiments, indicating its potential as a candidate for future clinical phage therapy. Furthermore, we identified that loss of function in the glycotransferase gene (GT) caused the failure of HMW-LPS synthesis, leading to phage resistance, which provides new insights into phage resistance in K. pneumoniae.
Collapse
Affiliation(s)
- Huaixin Geng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Lingjie Song
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xianggui Yang
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Siyu Xing
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Rui Wang
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Xu
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guangxin Luan
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Characteristics of Environmental Klebsiella pneumoniae and Klebsiella oxytoca Bacteriophages and Their Therapeutic Applications. Pharmaceutics 2023; 15:pharmaceutics15020434. [PMID: 36839755 PMCID: PMC9960720 DOI: 10.3390/pharmaceutics15020434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, multidrug-resistant (MDR) strains of Klebsiella pneumoniae have spread globally, being responsible for the occurrence and severity of nosocomial infections. The NDM-1-kp, VIM-1 carbapenemase-producing isolates as well as extended-spectrum beta lactamase-producing (ESBL) isolates along with Klebsiella oxytoca strains have become emerging pathogens. Due to the growing problem of antibiotic resistance, bacteriophage therapy may be a potential alternative to combat such multidrug-resistant Klebsiella strains. Here, we present the results of a long-term study on the isolation and biology of bacteriophages active against K. pneumoniae, as well as K. oxytoca strains. We evaluated biological properties, morphology, host specificity, lytic spectrum and sensitivity of these phages to chemical agents along with their life cycle parameters such as adsorption, latent period, and burst size. Phages designated by us, vB_KpnM-52N (Kpn52N) and VB_KpnM-53N (Kpn53N), demonstrated relatively broad lytic spectra among tested Klebsiella strains, high burst size, adsorption rates and stability, which makes them promising candidates for therapeutic purposes. We also examined selected Klebsiella phages from our historical collection. Notably, one phage isolated nearly 60 years ago was successfully used in purulent cerebrospinal meningitis in a new-born and has maintained lytic activity to this day. Genomic sequences of selected phages were determined and analyzed. The phages of the sequenced genomes belong to the Slopekvirus and Jiaodavirus genus, a group of phages related to T4 at the family level. They share several features of T4 making them suitable for antibacterial therapies: the obligatorily lytic lifestyle, a lack of homologs of known virulence or antibiotic resistance genes, and a battery of enzymes degrading host DNA at infection.
Collapse
|
4
|
Role of Klebsiella pneumoniae Type VI secretion system (T6SS) in long-term gastrointestinal colonization. Sci Rep 2022; 12:16968. [PMID: 36216848 PMCID: PMC9550808 DOI: 10.1038/s41598-022-21396-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Type VI secretion systems (T6SS), recently described in hypervirulent K. pneumoniae (hvKp) strains, are involved in bacterial warfare but their role in classical clinical strains (cKp) has been little investigated. In silico analysis indicated the presence of T6SS clusters (from zero to four), irrespective of the strains origin or virulence, with a high prevalence in the K. pneumoniae species (98%). In the strain CH1157, two T6SS-apparented pathogenicity islands were detected, T6SS-1 and -2, harboring a phospholipase-encoding gene (tle1) and a potential new effector-encoding gene named tke (Type VI Klebsiella effector). Tle1 expression in Escherichia coli periplasm affected cell membrane permeability. T6SS-1 isogenic mutants colonized the highest gastrointestinal tract of mice less efficiently than their parental strain, at long term. Comparative analysis of faecal 16S sequences indicated that T6SS-1 impaired the microbiota richness and its resilience capacity. Oscillospiraceae family members could be specific competitors for the long-term gut establishment of K. pneumoniae.
Collapse
|
5
|
From Klebsiella pneumoniae Colonization to Dissemination: An Overview of Studies Implementing Murine Models. Microorganisms 2021; 9:microorganisms9061282. [PMID: 34204632 PMCID: PMC8231111 DOI: 10.3390/microorganisms9061282] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen responsible for community-acquired and nosocomial infections. The strains of this species belong to the opportunistic group, which is comprised of the multidrug-resistant strains, or the hypervirulent group, depending on their accessory genome, which determines bacterial pathogenicity and the host immune response. The aim of this survey is to present an overview of the murine models mimicking K. pneumoniae infectious processes (i.e., gastrointestinal colonization, urinary, pulmonary, and systemic infections), and the bacterial functions deployed to colonize and disseminate into the host. These in vivo approaches are pivotal to develop new therapeutics to limit K. pneumoniae infections via a modulation of the immune responses and/or microbiota.
Collapse
|
6
|
Yap PSX, Ahmad Kamar A, Chong CW, Ngoi ST, Teh CSJ. Genomic Insights into Two Colistin-Resistant Klebsiella pneumoniae Strains Isolated from the Stool of Preterm Neonate During the First Week of Life. Microb Drug Resist 2019; 26:190-203. [PMID: 31545116 DOI: 10.1089/mdr.2019.0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Klebsiella pneumoniae is a major opportunistic pathogen frequently associated with nosocomial infections, and often poses a major threat to immunocompromised patients. In our previous study, two K. pneumoniae (K36 and B13), which displayed resistance to almost all major antibiotics, including colistin, were isolated. Both isolates were not associated with infection and isolated from the stools of two preterm neonates admitted to the neonatal intensive care unit (NICU) during their first week of life. Materials and Methods: In this study, whole genome sequencing was performed on these two clinical multidrug resistant K. pneumoniae. We aimed to determine the genetic factors that underline the antibiotic-resistance phenotypes of these isolates. Results: The strains harbored blaSHV-27, blaSHV-71, and oqxAB genes conferring resistance to cephalosporins, carbapenems, and fluoroquinolones, respectively, but not harboring any known plasmid-borne colistin resistance determinants such as mcr-1. However, genome analysis discovered interruption of mgrB gene by insertion sequences gaining insight into the development of colistin resistance. Conclusion: The observed finding that points to a scenario of potential gut-associated resistance genes to Gram negative (K. pneumoniae) host in the NICU environment warrants attention and further investigation.
Collapse
Affiliation(s)
- Polly Soo Xi Yap
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azanna Ahmad Kamar
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Soo Tein Ngoi
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology and Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Moura Q, Esposito F, Fernandes MR, Espinoza-Muñoz M, Souza TA, Santos SR, Cerdeira L, Cassettari V, Lincopan N. Genome sequence analysis of a hypermucoviscous/hypervirulent and MDR CTX-M-15/K19/ST29 Klebsiella pneumoniae isolated from human infection. Pathog Dis 2018; 75:4705889. [PMID: 29228178 DOI: 10.1093/femspd/ftx121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
The emergence of hypervirulent Klebsiella pneumoniae (hvKP) with multidrug resistance (MDR) profile is a worrisome public health issue. We report the first draft genome sequence of a hypermucoviscous (positive string test) and MDR K. pneumoniae serotype K19, belonging to ST29, isolated from human infection. This strain harboured multiple antimicrobial resistance genes, including blaCTX-M-15, besides yersiniabactin and type 3 fimbriae virulence genes. In vivo experiments carried out with the Galleria mellonella infection model revealed that K. pneumoniae K19/ST29 killed 100% of the larvae at 24 h post-infection, in a similar way to the known hypermucoviscous hvKP K1/ST23 lineage.
Collapse
Affiliation(s)
- Quézia Moura
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Miriam R Fernandes
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Maria Espinoza-Muñoz
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Tiago A Souza
- Genome Investigation and Analysis Laboratory (GENIAL), Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Silvia R Santos
- Laboratory of Clinical Analysis, Hospital Universitário, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Louise Cerdeira
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Valéria Cassettari
- Hospital Infection Control Committee, Hospital Universitário, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, CEP 05508-000, Brazil
| |
Collapse
|
8
|
Lev AI, Astashkin EI, Kislichkina AA, Solovieva EV, Kombarova TI, Korobova OV, Ershova ON, Alexandrova IA, Malikov VE, Bogun AG, Borzilov AI, Volozhantsev NV, Svetoch EA, Fursova NK. Comparative analysis of Klebsiella pneumoniae strains isolated in 2012-2016 that differ by antibiotic resistance genes and virulence genes profiles. Pathog Glob Health 2018; 112:142-151. [PMID: 29708041 DOI: 10.1080/20477724.2018.1460949] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The antibacterial resistance and virulence genotypes and phenotypes of 148 non-duplicate Klebsiella pneumoniae strains collected from 112 patients in Moscow hospitals in 2012-2016 including isolates from the respiratory system (57%), urine (30%), wounds (5%), cerebrospinal fluid (4%), blood (3%), and rectal swab (1%) were determined. The majority (98%) were multidrug resistant (MDR) strains carrying blaSHV (91%), blaCTX-M (74%), blaTEM (51%), blaOXA (38%), and blaNDM (1%) beta-lactamase genes, class 1 integrons (38%), and the porin protein gene ompK36 (96%). The beta-lactamase genes blaTEM-1, blaSHV-1, blaSHV-11, blaSHV-110, blaSHV-190, blaCTX-M-15, blaCTX-M-3, blaCTX-M-55, blaOXA-48, blaOXA-244, and blaNDM-1 were detected; class 1 integron gene cassette arrays (aadA1), (dfrA7), (dfrA1-orfC), (aadB-aadA1), (dfrA17-aadA5), and (dfrA12-orfF-aadA2) were identified. Twenty-two (15%) of clinical K. pneumoniae strains had hypermucoviscous (HV) phenotype defined as string test positive. The rmpA gene associated with HV phenotype was detected in 24% of strains. The intrapersonal mutation of rmpA gene (deletion of one nucleotide at the polyG tract) was a reason for negative hypermucoviscosity phenotype and low virulence of rmpA-positive K. pneumoniae strain KPB584. Eighteen virulent for mice strains with LD50 ≤ 104 CFU were attributed to sequence types ST23, ST86, ST218, ST65, ST2174, and ST2280 and to capsular types K1, K2, and K57. This study is the first report about hypervirulent K. pneumoniae strain KPB2580-14 of ST23K1 harboring extended-spectrum beta-lactamase CTX-M-15 and carbapenemase OXA-48 genes located on pCTX-M-15-like and pOXA-48-like plasmids correspondingly.
Collapse
Affiliation(s)
- Anastasia I Lev
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Eugeny I Astashkin
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | | | - Ekaterina V Solovieva
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Tatiana I Kombarova
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Olga V Korobova
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Olga N Ershova
- b Center for Neurosurgery (Academician Burdenko) , Moscow , Russia
| | | | | | - Alexander G Bogun
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Alexander I Borzilov
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | | | - Edward A Svetoch
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| | - Nadezhda K Fursova
- a State Research Center for Applied Microbiology and Biotechnology , Obolensk , Russia
| |
Collapse
|
9
|
Comparative genome analysis of novel Podoviruses lytic for hypermucoviscous Klebsiella pneumoniae of K1, K2, and K57 capsular types. Virus Res 2017; 243:10-18. [PMID: 28988127 DOI: 10.1016/j.virusres.2017.09.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 01/06/2023]
Abstract
Hypermucoviscous (HV) strains of capsular types K1, K2 and K57 are the most virulent representatives of the Klebsiella pneumoniae species. Eight novel bacteriophages lytic for HV K. pneumoniae were isolated and characterized. Three bacteriophages, KpV41, KpV475, and KpV71 were found to have a lytic activity against mainly K. pneumoniae of capsular type K1. Two phages, KpV74, and KpV763 were lytic for K2 capsular type K. pneumoniae, and the phage KpV767 was specific to K57-type K. pneumoniae only. Two more phages, KpV766, and KpV48 had no capsular specificity. The phage genomes consist of a linear double-stranded DNA of 40,395-44,623bp including direct terminal repeats of 180-246 bp. The G + C contents are 52.3-54.2 % that is slightly lower than that of genomes of K. pneumoniae strains being used for phage propagation. According to the genome structures, sequence similarity and phylogenetic data, the phages are classified within the genus Kp32virus and Kp34virus of subfamily Autographivirinae, family Podoviridae. In the phage genomes, genes encoding proteins with putative motifs of polysaccharide depolymerase were identified. Depolymerase genes of phages KpV71 and KpV74 lytic for hypermucoviscous K. pneumoniae of K1 and K2 capsular type, respectively, were cloned and expressed in Escherichia coli, and the recombinant gene products were purified. The specificity and polysaccharide-degrading activity of the recombinant depolymerases were demonstrated.
Collapse
|