1
|
Conte A, Gulmini N, Costa F, Cartura M, Bröhl F, Patanè F, Filippini F. NERVE 2.0: boosting the new enhanced reverse vaccinology environment via artificial intelligence and a user-friendly web interface. BMC Bioinformatics 2024; 25:378. [PMID: 39695945 DOI: 10.1186/s12859-024-06004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Vaccines development in this millennium started by the milestone work on Neisseria meningitidis B, reporting the invention of Reverse Vaccinology (RV), which allows to identify vaccine candidates (VCs) by screening bacterial pathogens genome or proteome through computational analyses. When NERVE (New Enhanced RV Environment), the first RV software integrating tools to perform the selection of VCs, was released, it prompted further development in the field. However, the problem-solving potential of most, if not all, RV programs is still largely unexploited by experimental vaccinologists that impaired by somehow difficult interfaces, requiring bioinformatic skills. RESULTS We report here on the development and release of NERVE 2.0 (available at: https://nerve-bio.org ) which keeps the original integrative and modular approach of NERVE, while showing higher predictive performance than its previous version and other web-RV programs (Vaxign and Vaxijen). We renewed some of its modules and added innovative ones, such as Loop-Razor, to recover fragments of promising vaccine candidates or Epitope Prediction for the epitope prediction binding affinities and population coverage. Along with two newly built AI (Artificial Intelligence)-based models: ESPAAN and Virulent. To improve user-friendliness, NERVE was shifted to a tutored, web-based interface, with a noSQL-database to consent the user to submit, obtain and retrieve analysis results at any moment. CONCLUSIONS With its redesigned and updated environment, NERVE 2.0 allows customisable and refinable bacterial protein vaccine analyses to all different kinds of users.
Collapse
Affiliation(s)
- Andrea Conte
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Padua, Italy
| | - Nicola Gulmini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Padua, Italy
| | - Francesco Costa
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Padua, Italy
- EMBL-European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Matteo Cartura
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Padua, Italy
| | | | - Francesco Patanè
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Padua, Italy
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
2
|
Ghazi B, Harmak Z, Rghioui M, Kone AS, El Ghanmi A, Badou A. Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms. Front Immunol 2024; 15:1423232. [PMID: 39267734 PMCID: PMC11390556 DOI: 10.3389/fimmu.2024.1423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Zakia Harmak
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mounir Rghioui
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdou-Samad Kone
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Adil El Ghanmi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdallah Badou
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| |
Collapse
|
3
|
Bessen DE, Beall BW, Hayes A, Huang W, DiChiara JM, Velusamy S, Tettelin H, Jolley KA, Fallon JT, Chochua S, Alobaidallah MSA, Higgs C, Barnett TC, Steemson JT, Proft T, Davies MR. Recombinational exchange of M-fibril and T-pilus genes generates extensive cell surface diversity in the global group A Streptococcus population. mBio 2024; 15:e0069324. [PMID: 38587426 PMCID: PMC11078000 DOI: 10.1128/mbio.00693-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Among genes present in all group A streptococci (GAS), those encoding M-fibril and T-pilus proteins display the highest levels of sequence diversity, giving rise to the two primary serological typing schemes historically used to define strain. A new genotyping scheme for the pilin adhesin and backbone genes is developed and, when combined with emm typing, provides an account of the global GAS strain population. Cluster analysis based on nucleotide sequence similarity assigns most T-serotypes to discrete pilin backbone sequence clusters, yet the established T-types correspond to only half the clusters. The major pilin adhesin and backbone sequence clusters yield 98 unique combinations, defined as "pilin types." Numerous horizontal transfer events that involve pilin or emm genes generate extensive antigenic and functional diversity on the bacterial cell surface and lead to the emergence of new strains. Inferred pilin genotypes applied to a meta-analysis of global population-based collections of pharyngitis and impetigo isolates reveal highly significant associations between pilin genotypes and GAS infection at distinct ecological niches, consistent with a role for pilin gene products in adaptive evolution. Integration of emm and pilin typing into open-access online tools (pubmlst.org) ensures broad utility for end-users wanting to determine the architecture of M-fibril and T-pilus genes from genome assemblies.IMPORTANCEPrecision in defining the variant forms of infectious agents is critical to understanding their population biology and the epidemiology of associated diseases. Group A Streptococcus (GAS) is a global pathogen that causes a wide range of diseases and displays a highly diverse cell surface due to the antigenic heterogeneity of M-fibril and T-pilus proteins which also act as virulence factors of varied functions. emm genotyping is well-established and highly utilized, but there is no counterpart for pilin genes. A global GAS collection provides the basis for a comprehensive pilin typing scheme, and online tools for determining emm and pilin genotypes are developed. Application of these tools reveals the expansion of structural-functional diversity among GAS via horizontal gene transfer, as evidenced by unique combinations of surface protein genes. Pilin and emm genotype correlations with superficial throat vs skin infection provide new insights on the molecular determinants underlying key ecological and epidemiological trends.
Collapse
Affiliation(s)
- Debra E. Bessen
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Bernard W. Beall
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
- Eagle Global Scientific, LLC, Atlanta, Georgia, USA
| | - Andrew Hayes
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Weihua Huang
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Brody School of Medicine, Eastern Carolina University, Greenville, North Carolina, USA
| | - Jeanne M. DiChiara
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Srinivasan Velusamy
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Keith A. Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - John T. Fallon
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Pathology, Brody School of Medicine, Eastern Carolina University, Greenville, North Carolina, USA
| | - Sopio Chochua
- Respiratory Disease Branch, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Mosaed S. A. Alobaidallah
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Charlie Higgs
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Timothy C. Barnett
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Australia
| | - John T. Steemson
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- School of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
4
|
Barbosa MS, Sampaio BA, Spergser J, Rosengarten R, Marques LM, Chopra-Dewasthaly R. Mycoplasma agalactiae Vaccines: Current Status, Hurdles, and Opportunities Due to Advances in Pathogenicity Studies. Vaccines (Basel) 2024; 12:156. [PMID: 38400139 PMCID: PMC10892753 DOI: 10.3390/vaccines12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Contagious agalactia (CA) is a serious multietiological disease whose classic etiological agent is Mycoplasma agalactiae and which causes high morbidity and mortality rates in infected herds. CA is classified as a notifiable disease by the World Organization for Animal Health due to its significant worldwide economic impact on livestock, primarily involving goat and sheep farms. The emergence of atypical symptoms and strains of M. agalactiae in wildlife ungulates reestablishes its highly plastic genome and is also of great epidemiological significance. Antimicrobial therapy is the main form of control, although several factors, such as intrinsic antibiotic resistance and the selection of resistant strains, must be considered. Available vaccines are few and mostly inefficient. The virulence and pathogenicity mechanisms of M. agalactiae mainly rely on surface molecules that have direct contact with the host. Because of this, they are essential for the development of vaccines. This review highlights the currently available vaccines and their limitations and the development of new vaccine possibilities, especially considering the challenge of antigenic variation and dynamic genome in this microorganism.
Collapse
Affiliation(s)
- Maysa Santos Barbosa
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
| | | | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista 45029-094, Brazil; (M.S.B.)
- Department of Microbiology, State University of Santa Cruz (UESC), Ilheus 45662-900, Brazil
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| |
Collapse
|
5
|
Monterrubio-López GP, Llamas-Monroy JL, Martínez-Gómez ÁA, Delgadillo-Gutiérrez K. Novel vaccine candidates of Bordetella pertussis identified by reverse vaccinology. Biologicals 2024; 85:101740. [PMID: 38217963 DOI: 10.1016/j.biologicals.2023.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 01/15/2024] Open
Abstract
Whooping cough is a disease caused by Bordetella pertussis, whose morbidity has increased, motivating the improvement of current vaccines. Reverse vaccinology is a strategy that helps identify proteins with good characteristics fast and with fewer resources. In this work, we applied reverse vaccinology to study the B. pertussis proteome and pangenome with several in-silico tools. We analyzed the B. pertussis Tohama I proteome with NERVE software and compared 234 proteins with B. parapertussis, B. bronchiseptica, and B. holmessi. VaxiJen was used to calculate an antigenicity value; our threshold was 0.6, selecting 84 proteins. The candidates were depurated and grouped in eight family proteins to select representative candidates, according to bibliographic information and their immunological response predicted with ABCpred, Bcepred, IgPred, and C-ImmSim. Additionally, a pangenome study was conducted with 603 B. pertussis strains and PanRV software, identifying 3421 core proteins that were analyzed to select the best candidates. Finally, we selected 15 proteins from the proteome study and seven proteins from the pangenome analysis as good vaccine candidates.
Collapse
Affiliation(s)
- Gloria Paulina Monterrubio-López
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - José Luis Llamas-Monroy
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Ángel Antonio Martínez-Gómez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Karen Delgadillo-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
| |
Collapse
|
6
|
Takahashi R, J-Khemlani AH, Loh JMS, Radcliff FJ, Proft T, Tsai CJY. Different Group A Streptococcus pili lead to varying proinflammatory cytokine responses and virulence. Immunol Cell Biol 2024; 102:21-33. [PMID: 37795567 DOI: 10.1111/imcb.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
The human pathogen Streptococcus pyogenes, or Group A Streptococcus (GAS), is associated with a variety of diseases ranging from mild skin and soft tissue infections to invasive diseases and immune sequelae such as rheumatic heart disease. We have recently reported that one of the virulence factors of this pathogen, the pilus, has inflammatory properties and strongly stimulates the innate immune system. Here we used a range of nonpathogenic Lactococcus lactis gain-of-function mutants, each expressing one of the major pilus types of GAS, to compare the immune responses generated by various types of fully assembled pili. In vitro assays indicated variability in the inflammatory response induced by different pili, with the fibronectin-binding, collagen-binding, T antigen (FCT)-1-type pilus from GAS serotype M6/T6 inducing significantly stronger cytokine secretion than other pili. Furthermore, we established that the same trend of pili-mediated immune response could be modeled in Galleria mellonella larvae, which possess a similar innate immune system to vertebrates. Counterintuitively, across the panel of pili types examined in this study, we observed a negative correlation between the intensity of the immune response demonstrated in our experiments and the disease severity observed clinically in the GAS strains associated with each pilus type. This observation suggests that pili-mediated inflammation is more likely to promote bacterial clearance instead of causing disruptive damages that intensify pathogenesis. This also indicates that pili may not be the main contributor to the inflammatory symptoms seen in GAS diseases. Rather, the immune-potentiating properties of the pilus components could potentially be exploited as a vaccine adjuvant.
Collapse
Affiliation(s)
- Risa Takahashi
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Adrina Hema J-Khemlani
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jacelyn Mei San Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Fiona Jane Radcliff
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Catherine Jia-Yun Tsai
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Raynes JM, Young PG, Lorenz N, Loh JM, McGregor R, Baker EN, Proft T, Moreland NJ. Identification of an immunodominant region on a group A Streptococcus T-antigen reveals temperature-dependent motion in pili. Virulence 2023; 14:2180228. [PMID: 36809931 PMCID: PMC9980535 DOI: 10.1080/21505594.2023.2180228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Group A Streptococcus (GAS) is a globally important pathogen causing a broad range of human diseases. GAS pili are elongated proteins with a backbone comprised repeating T-antigen subunits, which extend from the cell surface and have important roles in adhesion and establishing infection. No GAS vaccines are currently available, but T-antigen-based candidates are in pre-clinical development. This study investigated antibody-T-antigen interactions to gain molecular insight into functional antibody responses to GAS pili. Large, chimeric mouse/human Fab-phage libraries generated from mice vaccinated with the complete T18.1 pilus were screened against recombinant T18.1, a representative two-domain T-antigen. Of the two Fab identified for further characterization, one (designated E3) was cross-reactive and also recognized T3.2 and T13, while the other (H3) was type-specific reacting with only T18.1/T18.2 within a T-antigen panel representative of the major GAS T-types. The epitopes for the two Fab, determined by x-ray crystallography and peptide tiling, overlapped and mapped to the N-terminal region of the T18.1 N-domain. This region is predicted to be buried in the polymerized pilus by the C-domain of the next T-antigen subunit. However, flow cytometry and opsonophagocytic assays showed that these epitopes were accessible in the polymerized pilus at 37°C, though not at lower temperature. This suggests that there is motion within the pilus at physiological temperature, with structural analysis of a covalently linked T18.1 dimer indicating "knee-joint" like bending occurs between T-antigen subunits to expose this immunodominant region. This temperature dependent, mechanistic flexing provides new insight into how antibodies interact with T-antigens during infection.
Collapse
Affiliation(s)
- Jeremy M. Raynes
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Paul G. Young
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand,School of Biological Sciences, The University of Auckland, Auckland, New Zealand,CONTACT Paul G. Young
| | - Natalie Lorenz
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M.S. Loh
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Edward N. Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Nicole J. Moreland
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand,Nicole J. Moreland
| |
Collapse
|
8
|
Soto Perezchica MM, Guerrero Barrera AL, Avelar Gonzalez FJ, Quezada Tristan T, Macias Marin O. Actinobacillus pleuropneumoniae, surface proteins and virulence: a review. Front Vet Sci 2023; 10:1276712. [PMID: 38098987 PMCID: PMC10720984 DOI: 10.3389/fvets.2023.1276712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/17/2023] Open
Abstract
Actinobacillus pleuropneumoniae (App) is a globally distributed Gram-negative bacterium that produces porcine pleuropneumonia. This highly contagious disease produces high morbidity and mortality in the swine industry. However, no effective vaccine exists to prevent it. The infection caused by App provokes characteristic lesions, such as edema, inflammation, hemorrhage, and necrosis, that involve different virulence factors. The colonization and invasion of host surfaces involved structures and proteins such as outer membrane vesicles (OMVs), pili, flagella, adhesins, outer membrane proteins (OMPs), also participates proteases, autotransporters, and lipoproteins. The recent findings on surface structures and proteins described in this review highlight them as potential immunogens for vaccine development.
Collapse
Affiliation(s)
- María M. Soto Perezchica
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Alma L. Guerrero Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Francisco J. Avelar Gonzalez
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Teodulo Quezada Tristan
- Departamento de Ciencias Veterinaria, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Osvaldo Macias Marin
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
9
|
Lan S, Li Z, Hao H, Liu S, Huang Z, Bai Y, Li Y, Yan X, Gao P, Chen S, Chu Y. A genome-wide transposon mutagenesis screening identifies LppB as a key factor associated with Mycoplasma bovis colonization and invasion into host cells. FASEB J 2023; 37:e23176. [PMID: 37665592 DOI: 10.1096/fj.202300678r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Mycoplasma spp., the smallest self-replicating and genome-reduced organisms, have raised a great concern in both the medical and veterinary fields due to their pathogenicity. The molecular determinants of these wall-less bacterium efficiently use their limited genes to ensure successful infection of the host remain unclear. In the present study, we used the ruminant pathogen Mycoplasma bovis as a model to identify the key factors for colonization and invasion into host cells. We constructed a nonredundant fluorescent transposon mutant library of M. bovis using a modified transposon plasmid, and identified 34 novel adhesion-related genes based on a high-throughput screening approach. Among them, the ΔLppB mutant exhibited the most apparent decrease in adhesion to embryonic bovine lung (EBL) cells. The surface-localized lipoprotein LppB, which is highly conserved in Mycoplasma species, was then confirmed as a key factor for M. bovis adhesion with great immunogenicity. LppB interacted with various components (fibronectin, vitronectin, collagen IV, and laminin) of host extracellular matrix (ECM) and promoted plasminogen activation through tPA to degrade ECM. The 439-502 amino acid region of LppB is a critical domain, and F465 and Y493 are important residues for the plasminogen activation activity. We further revealed LppB as a key factor facilitating internalization through clathrin- and lipid raft-mediated endocytosis, which helps the Mycoplasma invade the host cells. Our study indicates that LppB plays a key role in Mycoplasma infection and is a potential new therapeutic and vaccine target for Mycoplasma species.
Collapse
Affiliation(s)
- Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhicheng Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yutong Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yanzhao Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Animal Biosafety Risk Warning and Control (North), Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
10
|
The Cell Wall Deacetylases Spy1094 and Spy1370 Contribute to Streptococcus pyogenes Virulence. Microorganisms 2023; 11:microorganisms11020305. [PMID: 36838272 PMCID: PMC9966966 DOI: 10.3390/microorganisms11020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a strictly human pathogen that causes a wide range of diseases, including skin and soft tissue infections, toxic shock syndrome and acute rheumatic fever. We have recently reported that Spy1094 and Spy1370 of S. pyogenes serotype M1 are N-acetylglucosamine (GlcNAc) deacetylases. We have generated spy1094 and spy1370 gene deletion mutants in S. pyogenes and gain-of-function mutants in Lactococcus lactis. Similar to other cell wall deacetylases, our results show that Spy1094 and Spy1370 confer lysozyme-resistance. Furthermore, deletion of the genes decreased S. pyogenes virulence in a human whole blood killing assay and a Galleria mellonella (Greater wax moth) larvae infection model. Expression of the two genes in L. lactis resulted in increased lysozyme resistance and survival in whole human blood, and reduced survival of infected G. mellonella larvae. Deletion of the spy1370, but not the spy1094 gene, decreased resistance to the cationic antimicrobial peptide cecropin B, whereas both enzymes increased biofilm formation, probably resulting from the increase in positive charges due to deacetylation of the cell wall. In conclusion, Spy1094 and Spy1370 are important S. pyogenes virulence factors and might represent attractive targets for the development of antibacterial agents.
Collapse
|
11
|
Sokurenko EV, Tchesnokova V, Interlandi G, Klevit R, Thomas WE. Neutralizing antibodies against allosteric proteins: insights from a bacterial adhesin. J Mol Biol 2022; 434:167717. [DOI: 10.1016/j.jmb.2022.167717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
|
12
|
Application of Reverse Vaccinology and Immunoinformatic Strategies for the Identification of Vaccine Candidates Against Shigella flexneri. Methods Mol Biol 2021. [PMID: 34784029 DOI: 10.1007/978-1-0716-1900-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Reverse vaccinology (RV) was first introduced by Rappuoli for the development of an effective vaccine against serogroup B Neisseria meningitidis (MenB). With the advances in next generation sequencing technologies, the amount of genomic data has risen exponentially. Since then, the RV approach has widely been used to discover potential vaccine protein targets by screening whole genome sequences of pathogens using a combination of sophisticated computational algorithms and bioinformatic tools. In contrast to conventional vaccine development strategies, RV offers a novel method to facilitate rapid vaccine design and reduces reliance on the traditional, relatively tedious, and labor-intensive approach based on Pasteur"s principles of isolating, inactivating, and injecting the causative agent of an infectious disease. Advances in biocomputational techniques have remarkably increased the significance for the rapid identification of the proteins that are secreted or expressed on the surface of pathogens. Immunogenic proteins which are able to induce the immune response in the hosts can be predicted based on the immune epitopes present within the protein sequence. To date, RV has successfully been applied to develop vaccines against a variety of infectious pathogens. In this chapter, we apply a pipeline of bioinformatic programs for identification of Shigella flexneri potential vaccine candidates as an illustration immunoinformatic tools available for RV.
Collapse
|
13
|
de Loizaga SR, Beaton AZ, Nascimento BR, Macedo FVB, Spolaor BCM, de Pádua LB, Ribeiro TFS, Oliveira GCF, Oliveira LR, de Almeida LFR, Moura TD, de Barros TT, Sable C, Nunes MCP. Diagnosing rheumatic heart disease: where are we now and what are the challenges? Expert Rev Cardiovasc Ther 2021; 19:777-786. [PMID: 34424119 DOI: 10.1080/14779072.2021.1970531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Rheumatic heart disease (RHD), a sequela of acute rheumatic fever (ARF), affects 40.5 million people worldwide. The burden of disease disproportionately falls on low- and middle-income countries (LMIC) and sub-populations within high-income countries (HIC). Advances have been made in earlier detection of RHD, though several barriers to ideal management persist. AREAS COVERED This article reviews the current burden of RHD, highlighting the disparate impact of disease. It also reviews the clinical and echocardiographic presentation of RHD, as some may present in late stages of disease with associated complications. Finally, we review the advances which have been made in echocardiographic screening to detect latent RHD, highlighting the challenges which remain regarding secondary prophylaxis management and uncertainty of best practices for treatment of latent RHD. EXPERT OPINION Advances in technology and validation of portable echocardiography have made screening and identifying latent RHD feasible in the most burdened regions. However, uncertainty remains around best management of those with latent RHD and best methods to ensure ideal secondary prophylaxis for RHD. Research regarding latent RHD management, as well as continued work on innovative solutions (such as group A streptococcal vaccine), are promising as efforts to improve outcomes of this preventable disease persist.
Collapse
Affiliation(s)
- Sarah R de Loizaga
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Andrea Z Beaton
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,University of Cincinnati School of Medicine, Cincinnati, Oh, United States
| | - Bruno R Nascimento
- Hospital das Clínicas da Ufmg, Belo Horizonte, MG, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Mg, Brazil
| | | | | | - Lucas Bretas de Pádua
- Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Lucas Rocha Oliveira
- Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Craig Sable
- Children's National Hospital, Washington, DC, USA
| | - Maria Carmo Pereira Nunes
- Hospital das Clínicas da Ufmg, Belo Horizonte, MG, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Mg, Brazil
| |
Collapse
|
14
|
Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol Aspects Med 2021; 81:100998. [PMID: 34294411 DOI: 10.1016/j.mam.2021.100998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.
Collapse
|
15
|
Monzon V, Lafita A, Bateman A. Discovery of fibrillar adhesins across bacterial species. BMC Genomics 2021; 22:550. [PMID: 34275445 PMCID: PMC8286594 DOI: 10.1186/s12864-021-07586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fibrillar adhesins are long multidomain proteins that form filamentous structures at the cell surface of bacteria. They are an important yet understudied class of proteins composed of adhesive and stalk domains that mediate interactions of bacteria with their environment. This study aims to characterize fibrillar adhesins in a wide range of bacterial phyla and to identify new fibrillar adhesin-like proteins to improve our understanding of host-bacteria interactions. RESULTS Through careful literature and computational searches, we identified 82 stalk and 27 adhesive domain families in fibrillar adhesins. Based on the presence of these domains in the UniProt Reference Proteomes database, we identified and analysed 3,542 fibrillar adhesin-like proteins across species of the most common bacterial phyla. We further enumerate the adhesive and stalk domain combinations found in nature and demonstrate that fibrillar adhesins have complex and variable domain architectures, which differ across species. By analysing the domain architecture of fibrillar adhesins, we show that in Gram positive bacteria, adhesive domains are mostly positioned at the N-terminus and cell surface anchors at the C-terminus of the protein, while their positions are more variable in Gram negative bacteria. We provide an open repository of fibrillar adhesin-like proteins and domains to enable further studies of this class of bacterial surface proteins. CONCLUSION This study provides a domain-based characterization of fibrillar adhesins and demonstrates that they are widely found in species across the main bacterial phyla. We have discovered numerous novel fibrillar adhesins and improved our understanding of pathogenic adhesion and invasion mechanisms.
Collapse
Affiliation(s)
- Vivian Monzon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
| | - Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| |
Collapse
|
16
|
Genomic Analysis of Pasteurella atlantica Provides Insight on Its Virulence Factors and Phylogeny and Highlights the Potential of Reverse Vaccinology in Aquaculture. Microorganisms 2021; 9:microorganisms9061215. [PMID: 34199775 PMCID: PMC8226905 DOI: 10.3390/microorganisms9061215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Pasteurellosis in farmed lumpsuckers, Cyclopterus lumpus, has emerged as a serious disease in Norwegian aquaculture in recent years. Genomic characterization of the causative agent is essential in understanding the biology of the bacteria involved and in devising an efficient preventive strategy. The genomes of two clinical Pasteurella atlantica isolates were sequenced (≈2.3 Mbp), and phylogenetic analysis confirmed their position as a novel species within the Pasteurellaceae. In silico analyses revealed 11 genomic islands and 5 prophages, highlighting the potential of mobile elements as driving forces in the evolution of this species. The previously documented pathogenicity of P. atlantica is strongly supported by the current study, and 17 target genes were recognized as putative primary drivers of pathogenicity. The expression level of a predicted vaccine target, an uncharacterized adhesin protein, was significantly increased in both broth culture and following the exposure of P. atlantica to lumpsucker head kidney leucocytes. Based on in silico and functional analyses, the strongest gene target candidates will be prioritized in future vaccine development efforts to prevent future pasteurellosis outbreaks.
Collapse
|
17
|
Loh JMS, Rivera-Hernandez T, McGregor R, Khemlani AHJ, Tay ML, Cork AJ, M Raynes J, Moreland NJ, Walker MJ, Proft T. A multivalent T-antigen-based vaccine for Group A Streptococcus. Sci Rep 2021; 11:4353. [PMID: 33623073 PMCID: PMC7902606 DOI: 10.1038/s41598-021-83673-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022] Open
Abstract
Pili of Group A Streptococcus (GAS) are surface-exposed structures involved in adhesion and colonisation of the host during infection. The major protein component of the GAS pilus is the T-antigen, which multimerises to form the pilus shaft. There are currently no licenced vaccines against GAS infections and the T-antigen represents an attractive target for vaccination. We have generated a multivalent vaccine called TeeVax1, a recombinant protein that consists of a fusion of six T-antigen domains. Vaccination with TeeVax1 produces opsonophagocytic antibodies in rabbits and confers protective efficacy in mice against invasive disease. Two further recombinant proteins, TeeVax2 and TeeVax3 were constructed to cover 12 additional T-antigens. Combining TeeVax1–3 produced a robust antibody response in rabbits that was cross-reactive to a full panel of 21 T-antigens, expected to provide over 95% vaccine coverage. These results demonstrate the potential for a T-antigen-based vaccine to prevent GAS infections.
Collapse
Affiliation(s)
- Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.,Cátedras CONACYT-Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Reuben McGregor
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Adrina Hema J Khemlani
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Mei Lin Tay
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jeremy M Raynes
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.,Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Nicole J Moreland
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
18
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
19
|
Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2020; 20:102740. [PMID: 33333234 DOI: 10.1016/j.autrev.2020.102740] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
Abstract
Rheumatic heart disease (RHD) is a serious and long-term consequence of acute rheumatic fever (ARF), an autoimmune sequela of a mucosal infection by Streptococcus pyogenes (Group A Streptococcus, Strep A). The pathogenesis of ARF and RHD is complex and not fully understood but involves host and bacterial factors, molecular mimicry, and aberrant host innate and adaptive immune responses that result in loss of self-tolerance and subsequent cross-reactivity with host tissues. RHD is entirely preventable yet claims an estimated 320 000 lives annually. The major burden of disease is carried by developing nations and Indigenous populations within developed nations, including Australia. This review will focus on the epidemiology, pathogenesis and treatment of ARF and RHD in Australia, where: streptococcal pyoderma, rather than streptococcal pharyngitis, and Group C and Group G Streptococcus, have been implicated as antecedents to ARF; the rates of RHD in remote Indigenous communities are persistently among the highest in the world; government register-based programs coordinate disease screening and delivery of prophylaxis with variable success; and researchers are making significant progress in the development of a broad-spectrum vaccine against Strep A.
Collapse
Affiliation(s)
- Leanne M Dooley
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Tarek B Ahmad
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael F Good
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| |
Collapse
|
20
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Rama JLR, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance, and Production of Antimicrobial and Virulence Factors in Streptococcus Species Associated with Bovine Mastitis. Could Enzybiotics Represent Novel Therapeutic Agents Against These Pathogens? Antibiotics (Basel) 2020; 9:antibiotics9060302. [PMID: 32512932 PMCID: PMC7344566 DOI: 10.3390/antibiotics9060302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023] Open
Abstract
Streptococcus spp. are major mastitis pathogens present in dairy products, which produce a variety of virulence factors that are involved in streptococcal pathogenicity. These include neuraminidase, pyrogenic exotoxin, and M protein, and in addition they might produce bacteriocins and antibiotic-resistance proteins. Unjustifiable misuse of antimicrobials has led to an increase in antibiotic-resistant bacteria present in foodstuffs. Identification of the mastitis-causing bacterial strain, as well as determining its antibiotic resistance and sensitivity is crucial for effective therapy. The present work focused on the LC–ESI–MS/MS (liquid chromatography–electrospray ionization tandem mass spectrometry) analysis of tryptic digestion peptides from mastitis-causing Streptococcus spp. isolated from milk. A total of 2706 non-redundant peptides belonging to 2510 proteins was identified and analyzed. Among them, 168 peptides were determined, representing proteins that act as virulence factors, toxins, anti-toxins, provide resistance to antibiotics that are associated with the production of lantibiotic-related compounds, or play a role in the resistance to toxic substances. Protein comparisons with the NCBI database allowed the identification of 134 peptides as specific to Streptococcus spp., while two peptides (EATGNQNISPNLTISNAQLNLEDKNK and DLWC*NM*IIAAK) were found to be species-specific to Streptococcus dysgalactiae. This proteomic repository might be useful for further studies and research work, as well as for the development of new therapeutics for the mastitis-causing Streptococcus strains.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain;
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - José-Luis R. Rama
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Area de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.G.A.); (J.-L.R.R.)
- Correspondence:
| |
Collapse
|
21
|
Dai C, Khalil ZG, Hussein WM, Yang J, Wang X, Zhao L, Capon RJ, Toth I, Stephenson RJ. Opsonic Activity of Conservative Versus Variable Regions of the Group A Streptococcus M Protein. Vaccines (Basel) 2020; 8:vaccines8020210. [PMID: 32392777 PMCID: PMC7349123 DOI: 10.3390/vaccines8020210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Group A Streptococcus (GAS) and GAS-associated infections are a global challenge, with no licensed GAS vaccine on the market. The GAS M protein is a critical virulence factor in the fight against GAS infection, and it has been a primary target for GAS vaccine development. Measuring functional opsonic antibodies against GAS is an important component in the clinical development path for effective vaccines. In this study, we compared the opsonic activity of two synthetic, self-adjuvanting subunit vaccines containing either the J8- or 88/30-epitope in Swiss outbred mice using intranasal administration. Following primary immunization and three boosts, sera were assessed for IgG activity using ELISA, and opsonization activity against seven randomly selected clinical isolates of GAS was measured. Vaccine constructs containing the conservative J8-epitope showed significant opsonic activity against six out of the seven GAS clinical isolates, while the vaccine containing the variable 88/30-epitope did not show any significant opsonic activity.
Collapse
Affiliation(s)
- Chuankai Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
| | - Xiumin Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.G.K.); (R.J.C.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.D.); (W.M.H.); (J.Y.); (X.W.); (L.Z.); (I.T.)
- Correspondence:
| |
Collapse
|
22
|
Li Z, Chang P, Xu J, Tan C, Wang X, Bei W, Li J. A Streptococcus suis Live Vaccine Suppresses Streptococcal Toxic Shock-Like Syndrome and Provides Sequence Type-Independent Protection. J Infect Dis 2019; 219:448-458. [PMID: 30165645 DOI: 10.1093/infdis/jiy512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background Streptococcus suis is an encapsulated zoonotic pathogen. Increasing antimicrobial resistance invokes the need for effective vaccines. Despite many attempts to develop an effective vaccine, none is currently available. Methods A capsular polysaccharide (CPS)-expressing attenuated mutant 2015033 was constructed by deleting 5 virulence-associated factors (sly, scpA, ssnA, fhb, and ssads) in an infective S. suis strain SC19. The safety and immune effect of 2015033 were determined both in vitro and in vivo. Results Deletion of 5 genes did not impact the growth ability and CPS generation of 2015033, and the mutant exhibited no cytotoxicity in different cell models. 2015033 was more easily eliminated by innate immunity both in vitro and in vivo. In addition, 2015033 showed a diminished invasive ability in different mouse organs (brain, lung, and liver) and avirulent properties in mice associated with weak inflammation-inducing ability. Immunization with 2015033 triggered T cell-dependent immunity, suppressed streptococcal toxic shock-like syndrome, and conferred sequence type-independent protection to mice during infection. Conclusions This study presents the feasibility of the strategy of multigene deletion for the development of promising live vaccines against invasive encapsulated pathogens.
Collapse
Affiliation(s)
- Zhiwei Li
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Peixi Chang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jiali Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Xiaohong Wang
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinquan Li
- Bio-Medical Center, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
23
|
Ryndak MB, Laal S. Mycobacterium tuberculosis Primary Infection and Dissemination: A Critical Role for Alveolar Epithelial Cells. Front Cell Infect Microbiol 2019; 9:299. [PMID: 31497538 PMCID: PMC6712944 DOI: 10.3389/fcimb.2019.00299] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022] Open
Abstract
Globally, tuberculosis (TB) has reemerged as a major cause of morbidity and mortality, despite the use of the Mycobacterium bovis BCG vaccine and intensive attempts to improve upon BCG or develop new vaccines. Two lacunae in our understanding of the Mycobacterium tuberculosis (M. tb)-host pathogenesis have mitigated the vaccine efforts; the bacterial-host interaction that enables successful establishment of primary infection and the correlates of protection against TB. The vast majority of vaccine efforts are based on the premise that cell-mediated immunity (CMI) is the predominating mode of protection against TB. However, studies in animal models and in humans demonstrate that post-infection, a period of several weeks precedes the initiation of CMI during which the few inhaled bacteria replicate dramatically and disseminate systemically. The “Trojan Horse” mechanism, wherein M. tb is phagocytosed and transported across the alveolar barrier by infected alveolar macrophages has been long postulated as the sole, primary M. tb:host interaction. In the current review, we present evidence from our studies of transcriptional profiles of M. tb in sputum as it emerges from infectious patients where the bacteria are in a quiescent state, to its adaptations in alveolar epithelial cells where the bacteria transform to a highly replicative and invasive phenotype, to its maintenance of the invasive phenotype in whole blood to the downregulation of invasiveness upon infection of epithelial cells at an extrapulmonary site. Evidence for this alternative mode of infection and dissemination during primary infection is supported by in vivo, in vitro cell-based, and transcriptional studies from multiple investigators in recent years. The proposed alternative mechanism of primary infection and dissemination across the alveolar barrier parallels our understanding of infection and dissemination of other Gram-positive pathogens across their relevant mucosal barriers in that barrier-specific adhesins, toxins, and enzymes synergize to facilitate systemic establishment of infection prior to the emergence of CMI. Further exploration of this M. tb:non-phagocytic cell interaction can provide alternative approaches to vaccine design to prevent infection with M. tb and not only decrease clinical disease but also decrease the overwhelming reservoir of latent TB infection.
Collapse
Affiliation(s)
- Michelle B Ryndak
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Suman Laal
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
24
|
Abstract
Group B Streptococcus (GBS) is estimated to have caused 319,000 cases of neonatal disease resulting in 90,000 infant deaths globally in 2015. It is also associated with maternal sepsis, preterm births, stillbirths and neonatal encephalopathy. There is a significant burden of neurologic impairment among survivors of infant GBS disease. Intrapartum antibiotic prophylaxis strategies have reduced the incidence of newborn early-onset GBS (occurring days 0-6) in some settings, but they are not feasible in many low and middle-income countries. A maternal vaccine given to pregnant women to stimulate passive transplacental transfer of protective antibodies has the potential to reduce maternal disease, adverse pregnancy outcomes and newborn disease. Phase I and II vaccine studies are occurring, but conducting phase III efficacy studies of a GBS vaccine candidate would require very large numbers due to the relatively low incidence of invasive GBS disease. It has therefore been proposed that alternative pathways to vaccine licensure should be explored, for example, through use of a regulatory approved correlate of protection and safety evaluation in mothers, fetuses and infants. These studies would then be followed-up with post-licensure phase IV studies in which vaccine effectiveness is evaluated.
Collapse
|
25
|
Group A Streptococcus T Antigens Have a Highly Conserved Structure Concealed under a Heterogeneous Surface That Has Implications for Vaccine Design. Infect Immun 2019; 87:IAI.00205-19. [PMID: 30936156 DOI: 10.1128/iai.00205-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Group A Streptococcus (GAS) (Streptococcus pyogenes) is an important human pathogen associated with significant global morbidity and mortality for which there is no safe and efficacious vaccine. The T antigen, a protein that polymerizes to form the backbone of the GAS pilus structure, is a potential vaccine candidate. Previous surveys of the tee gene, which encodes the T antigen, have identified 21 different tee types and subtypes such that any T antigen-based vaccine must be multivalent and carefully designed to provide broad strain coverage. In this study, the crystal structures of three two-domain T antigens (T3.2, T13, and T18.1) were determined and found to have remarkable structural similarity to the previously reported T1 antigen, despite moderate overall sequence similarity. This has enabled reliable modeling of all major two-domain T antigens to reveal that T antigen sequence variation is distributed along the full length of the protein and shields a highly conserved core. Immunoassays performed with sera from immunized animals and commercial T-typing sera identified a significant cross-reactive antibody response between T18.1, T18.2, T3.2, and T13. The existence of shared epitopes between T antigens, combined with the remarkably conserved structure and high level of surface sequence divergence, has important implications for the design of multivalent T antigen-based vaccines.
Collapse
|
26
|
Song JY, Lim JH, Lim S, Yong Z, Seo HS. Progress toward a group B streptococcal vaccine. Hum Vaccin Immunother 2018; 14:2669-2681. [PMID: 29995578 PMCID: PMC6314413 DOI: 10.1080/21645515.2018.1493326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 01/31/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of severe invasive disease in neonate, elderly, and immunocompromised patients worldwide. Despite recent advances in the diagnosis and intrapartum antibiotic prophylaxis (IAP) of GBS infections, it remains one of the most common causes of neonatal morbidity and mortality, causing serious infections. Furthermore, recent studies reported an increasing number of GBS infections in pregnant women and elderly. Although IAP is effective, it has several limitations, including increasing antimicrobial resistance and late GBS infection after negative antenatal screening. Maternal immunization is the most promising and effective countermeasure against GBS infection in neonates. However, no vaccine is available to date, but two types of vaccines, protein subunit and capsular polysaccharide conjugate vaccines, were investigated in clinical trials. Here, we provide an overview of the GBS vaccine development status and recent advances in the development of immunoassays to evaluate the GBS vaccine clinical efficacy.
Collapse
Affiliation(s)
- Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sangyong Lim
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Zhi Yong
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ho Seong Seo
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|