1
|
Eisa M, Gomez-Escobar E, Bédard N, Abdeltawab NF, Flores N, Mazouz S, Fieffé-Bédard A, Sakayan P, Gridley J, Abdel-Hakeem MS, Bruneau J, Grakoui A, Shoukry NH. Coordinated expansion of memory T follicular helper and B cells mediates spontaneous clearance of HCV reinfection. Front Immunol 2024; 15:1403769. [PMID: 38947319 PMCID: PMC11211980 DOI: 10.3389/fimmu.2024.1403769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Follicular helper T cells are essential for helping in the maturation of B cells and the production of neutralizing antibodies (NAbs) during primary viral infections. However, their role during recall responses is unclear. Here, we used hepatitis C virus (HCV) reinfection in humans as a model to study the recall collaborative interaction between circulating CD4 T follicular helper cells (cTfh) and memory B cells (MBCs) leading to the generation of NAbs. Methods We evaluated this interaction longitudinally in subjects who have spontaneously resolved primary HCV infection during a subsequent reinfection episode that resulted in either another spontaneous resolution (SR/SR, n = 14) or chronic infection (SR/CI, n = 8). Results Both groups exhibited virus-specific memory T cells that expanded upon reinfection. However, early expansion of activated cTfh (CD4+CXCR5+PD-1+ICOS+FoxP3-) occurred in SR/SR only. The frequency of activated cTfh negatively correlated with time post-infection. Concomitantly, NAbs and HCV-specific MBCs (CD19+CD27+IgM-E2-Tet+) peaked during the early acute phase in SR/SR but not in SR/CI. Finally, the frequency of the activated cTfh1 (CXCR3+CCR6-) subset correlated with the neutralization breadth and potency of NAbs. Conclusion These results underscore a key role for early activation of cTfh1 cells in helping antigen-specific B cells to produce NAbs that mediate the clearance of HCV reinfection.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Elsa Gomez-Escobar
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Nourtan F. Abdeltawab
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, Newgiza University, Giza, Egypt
| | - Nicol Flores
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Sabrina Mazouz
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Alizée Fieffé-Bédard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Patrick Sakayan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - John Gridley
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Mohamed S. Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine familiale et département d’urgence, Université de Montréal, Montréal, QC, Canada
| | - Arash Grakoui
- Department of Medicine, Emory University, Atlanta, GA, United States
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Zoldan K, Ehrlich S, Killmer S, Wild K, Smits M, Russ M, Globig AM, Hofmann M, Thimme R, Boettler T. Th1-Biased Hepatitis C Virus-Specific Follicular T Helper-Like Cells Effectively Support B Cells After Antiviral Therapy. Front Immunol 2021; 12:742061. [PMID: 34659236 PMCID: PMC8514946 DOI: 10.3389/fimmu.2021.742061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Circulating Th1-biased follicular T helper (cTfh1) cells have been associated with antibody responses to viral infection and after vaccination but their B cell helper functionality is less understood. After viral elimination, Tfh1 cells are the dominant subset within circulating Hepatitis C Virus (HCV)-specific CD4 T cells, but their functional capacity is currently unknown. To address this important point, we established a clone-based system to evaluate CD4 T cell functionality in vitro to overcome experimental limitations associated with their low frequencies. Specifically, we analyzed the transcription factor expression, cytokine secretion and B cell help in co-culture assays of HCV- (n = 18) and influenza-specific CD4 T cell clones (n = 5) in comparison to Tfh (n = 26) and Th1 clones (n = 15) with unknown antigen-specificity derived from healthy donors (n = 4) or direct-acting antiviral (DAA)-treated patients (n = 5). The transcription factor expression and cytokine secretion patterns of HCV-specific CD4 T cell clones indicated a Tfh1 phenotype, with expression of T-bet and Bcl6 and production of IFN-γ and IL-21. Their B helper capacity was superior compared to influenza-specific or Tfh and Th1 clones. Moreover, since Tfh cells are enriched in the IFN-rich milieu of the HCV-infected liver, we investigated the impact of IFN exposure on Tfh phenotype and function. Type I IFN exposure was able to introduce similar phenotypic and functional characteristics in the Tfh cell population within PBMCs or Tfh clones in vitro in line with our finding that Tfh cells are elevated in HCV-infected patients shortly after initiation of IFN-α therapy. Collectively, we were able to functionally characterize HCV-specific CD4 T cells in vitro and not only confirmed a Tfh1 phenotype but observed superior Tfh functionality despite their Th1 bias. Furthermore, our results suggest that chronic type I IFN exposure supports the enrichment of highly functional HCV-specific Tfh-like cells during HCV infection. Thus, HCV-specific Tfh-like cells after DAA therapy may be a promising target for future vaccination design aiming to introduce a neutralizing antibody response.
Collapse
Affiliation(s)
- Katharina Zoldan
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Ehrlich
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Saskia Killmer
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Wild
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Maike Smits
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marissa Russ
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Anna-Maria Globig
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Helmold Hait S, Hogge CJ, Rahman MA, Hunegnaw R, Mushtaq Z, Hoang T, Robert-Guroff M. T FH Cells Induced by Vaccination and Following SIV Challenge Support Env-Specific Humoral Immunity in the Rectal-Genital Tract and Circulation of Female Rhesus Macaques. Front Immunol 2021; 11:608003. [PMID: 33584682 PMCID: PMC7876074 DOI: 10.3389/fimmu.2020.608003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
T follicular helper (TFH) cells are pivotal in lymph node (LN) germinal center (GC) B cell affinity maturation. Circulating CXCR5+ CD4+ T (cTFH) cells have supported memory B cell activation and broadly neutralizing antibodies in HIV controllers. We investigated the contribution of LN SIV-specific TFH and cTFH cells to Env-specific humoral immunity in female rhesus macaques following a mucosal Ad5hr-SIV recombinant priming and SIV gp120 intramuscular boosting vaccine regimen and following SIV vaginal challenge. TFH and B cells were characterized by flow cytometry. B cell help was evaluated in TFH-B cell co-cultures and by real-time PCR. Vaccination induced Env-specific TFH and Env-specific memory (ESM) B cells in LNs. LN Env-specific TFH cells post-priming and GC ESM B cells post-boosting correlated with rectal Env-specific IgA titers, and GC B cells at the same timepoints correlated with vaginal Env-specific IgG titers. Vaccination expanded cTFH cell responses, including CD25+ Env-specific cTFH cells that correlated negatively with vaginal Env-specific IgG titers but positively with rectal Env-specific IgA titers. Although cTFH cells post-2nd boost positively correlated with viral-loads following SIV challenge, cTFH cells of SIV-infected and protected macaques supported maturation of circulating B cells into plasma cells and IgA release in co-culture. Additionally, cTFH cells of naïve macaques promoted upregulation of genes associated with B cell proliferation, BCR engagement, plasma cell maturation, and antibody production, highlighting the role of cTFH cells in blood B cell maturation. Vaccine-induced LN TFH and GC B cells supported anti-viral mucosal immunity while cTFH cells provided B cell help in the periphery during immunization and after SIV challenge. Induction of TFH responses in blood and secondary lymphoid organs is likely desirable for protective efficacy of HIV vaccines.
Collapse
Affiliation(s)
- Sabrina Helmold Hait
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christopher James Hogge
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mohammad Arif Rahman
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ruth Hunegnaw
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zuena Mushtaq
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tanya Hoang
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Ghamar Talepoor A, Khosropanah S, Doroudchi M. Functional subsets of circulating follicular helper T cells in patients with atherosclerosis. Physiol Rep 2020; 8:e14637. [PMID: 33230950 PMCID: PMC7683878 DOI: 10.14814/phy2.14637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Frequencies of circulating T follicular helper (cTfh) functional subsets vary in autoimmune diseases. We evaluated the frequencies and clinical relevance of functional subsets of cTfhs in patients with different degrees of stenosis. Blood samples were collected from high (≥50%) (n = 12) and low (<50%) stenosis (n = 12) groups and healthy controls (n = 6). Three subsets of cTfh cells including cTfh1 (CXCR3+ CCR6- ), cTfh2 (CXCR3- CCX6- ), and cTfh17 (CXCR3- CCR6+ ) were detected by flow cytometry. The frequency of cTfh1 cells was higher in control (p = .0006) and low-stenosis groups (p = .005) compared to high-stenosis group. The percentages of cTfh2 and cTfh17 cells were increased in high-stenosis compared to low-stenosis (p = .002 and p = .007) and control groups (p = .0004 and p = .0005), respectively. The frequency of cTfh1 cells negatively correlated with cholesterol (p = .040; r = -.44), C-reactive protein (CRP) (p = .015; r = -.68), erythrocyte sedimentation rate (ESR) (p = .002; r = -.79), neutrophil/lymphocyte ratio (NLR) (p = .028; r = -.67), and cTfh17 (p = .017; r = -.7244) in the high-stenosis group. The percentages of cTfh2 and cTfh17 cells positively correlated with cholesterol (p = .025; r = .77 and p = .033; r = .71), CRP (p = .030; r = .61 and p = .020; r = .73), ESR (p = .027; r = .69 and p = .029; r = .70), NLR (p = .004; r = .76 and p = .005; r = .74), and with each other (p = .022; r = .7382), respectively, in the high-stenosis group. The increased frequencies of cTfh2 and cTfh17 subsets and their correlation with laboratory parameters in patients with atherosclerosis may suggest their role in promoting the inflammatory response and atherosclerosis progression.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Shahdad Khosropanah
- Department of CardiologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Mehrnoosh Doroudchi
- Department of ImmunologySchool of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|