1
|
Pérez-Cruz C, Moraleda-Montoya A, Liébana R, Terrones O, Arrizabalaga U, García-Alija M, Lorizate M, Martínez Gascueña A, García-Álvarez I, Nieto-Garai JA, Olazar-Intxausti J, Rodríguez-Colinas B, Mann E, Chiara JL, Contreras FX, Guerin ME, Trastoy B, Alonso-Sáez L. Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota. Nat Commun 2024; 15:10906. [PMID: 39738071 DOI: 10.1038/s41467-024-55268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans. One of the strains appears to internalize the polymer, while the other strain degrades it extracellularly. Multi-omic approaches show that fucoidan breakdown is mediated by the expression of divergent polysaccharide utilization loci, and endo-fucanases of family GH168 are strongly upregulated during fucoidan digestion. Enzymatic assays and structural biology studies reveal how GH168 endo-fucanases degrade various fucoidan cores from brown algae, assisted by auxiliary hydrolytic enzymes. Overall, our results provide insights into fucoidan processing mechanisms in macroalgal-associated bacteria.
Collapse
Affiliation(s)
- Carla Pérez-Cruz
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Alicia Moraleda-Montoya
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Raquel Liébana
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Oihana Terrones
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Uxue Arrizabalaga
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Mikel García-Alija
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Ana Martínez Gascueña
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Isabel García-Álvarez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - June Olazar-Intxausti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Bárbara Rodríguez-Colinas
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Enrique Mann
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain
| | - José Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, Tower R, Barcelona, Spain.
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain.
| |
Collapse
|
2
|
Øvreås L, Kallscheuer N, Calisto R, Bordin N, Storesund JE, Jogler C, Devos D, Lage O. Comparative genomic analyses of aerobic planctomycetes isolated from the deep sea and the ocean surface. Antonie Van Leeuwenhoek 2024; 118:33. [PMID: 39585435 PMCID: PMC11588811 DOI: 10.1007/s10482-024-02041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
On the deep and dark seafloor, a cryptic and yet untapped microbial diversity flourishes around hydrothermal vent systems. This remote environment of difficult accessibility exhibits extreme conditions, including high pressure, steep temperature- and redox gradients, limited availability of oxygen and complete darkness. In this study, we analysed the genomes of three aerobic strains belonging to the phylum Planctomycetota that were isolated from two deep-sea iron- rich hydroxide deposits with low temperature diffusive vents. The vents are located in the Arctic and Pacific Ocean at a depth of 600 and 1,734 m below sea level, respectively. The isolated strains Pr1dT, K2D and TBK1r were analyzed with a focus on genome-encoded features that allow phenotypical adaptations to the low temperature iron-rich deep-sea environment. The comparison with genomes of closely related surface-inhabiting counterparts indicates that the deep-sea isolates do not differ significantly from members of the phylum Planctomycetota inhabiting other habitats, such as macroalgae biofilms and the ocean surface waters. Despite inhabiting extreme environments, our "deep and dark"-strains revealed a mostly non-extreme genome biology.
Collapse
Affiliation(s)
- Lise Øvreås
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Rita Calisto
- Department of Biology, Faculty of Sciences and CIIMAR, University of Porto, Porto, Portugal
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - Christian Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Damien Devos
- CABD, Universidad Pablo de Olavidade, Seville, Spain
- Centre d'Infection Et d'Immunité de Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Olga Lage
- Department of Biology, Faculty of Sciences and CIIMAR, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Burbick CR, Lawhon SD, Bukouras B, Lazzerini G, Munson E. An update on novel taxa and revised taxonomic status of bacteria isolated from aquatic host species described in 2022-2023. J Clin Microbiol 2024; 62:e0104324. [PMID: 39445811 PMCID: PMC11558999 DOI: 10.1128/jcm.01043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The description of new taxa and nomenclature updates to currently known taxa from aquatic animal species continues. After a review of the literature from 2022 and 2023, multiple lists of bacteria, including members of Phylum Planctomycetota, were compiled. As with the previous review, most bacteria are oxidase-positive Gram-negative bacilli with familiar families including new taxa in Aeromonadaceae, Flavobacteriaceae, and Vibrionaceae. A number of Gram-positive bacilli are described including new taxa in the Nocardioides, Paenibacillus, and Streptomyces genera. Two anaerobic species are listed, and one new member of Family Planctomycetaceae is noted. Revised taxa are briefly mentioned. The majority of new and revised taxa are isolated from healthy aquatic animals, and therefore, the role of these new bacteria in health and disease is unknown. Bacteria with pathogenic association and potential production of bioactive substances are highlighted.
Collapse
Affiliation(s)
- Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Brittany Bukouras
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Giovanna Lazzerini
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Liu Y, Dai A, Xia L, Zhou Y, Ren T, Huang Y, Zhou Y. Deciphering the roles of nitrogen source in sharping synchronous metabolic pathways of linear alkylbenzene sulfonate and nitrogen in a membrane biofilm for treating greywater. ENVIRONMENTAL RESEARCH 2024; 260:119650. [PMID: 39034023 DOI: 10.1016/j.envres.2024.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Nitrogen (N) source is an important factor affecting biological wastewater treatment. Although the oxygen-based membrane biofilm showed excellent greywater treatment performance, how N source impacts the synchronous removal of organics and N is still unclear. In this work, how N species (urea, nitrate and ammonia) affect synchronous metabolic pathways of organics and N were evaluated during greywater treatment in the membrane biofilm. Urea and ammonia achieved efficient chemical oxygen demand (>97.5%) and linear alkylbenzene sulfonate (LAS, >98.5%) removal, but nitrate enabled the maximum total N removal (80.8 ± 2.6%). The nitrate-added system had poor LAS removal ratio and high residual LAS, promoting the accumulation of effluent protein-like organics and fulvic acid matter. N source significantly induced bacterial community succession, and the increasing of corresponded functional flora can promote the transformation and utilization of microbial-mediated N. The nitrate system was more conducive to the accumulation of denitrification related microorganisms and enzymes, enabling the efficient N removal. Combining with high amount of ammonia monooxygenase that contributing to LAS and N co-metabolism, LAS mineralization related microbes and functional enzymes were generously accumulated in the urea and ammonia systems, which achieved the high efficiency of organics and LAS removal.
Collapse
Affiliation(s)
- Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anqi Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Libo Xia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Li W, Lin S, Wang X, Chen S, Long L, Yang J. Molecular insights into the hydrolysis and transglycosylation of a deep-sea Planctomycetota-derived GH16 family laminarinase. Appl Environ Microbiol 2024; 90:e0094224. [PMID: 39287396 PMCID: PMC11497802 DOI: 10.1128/aem.00942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
The biochemical and structural characteristics of PtLam, a laminarinase from deep-sea Planctomycetota, have been extensively elucidated, unveiling the fundamental molecular mechanisms governing substrate recognition and enzymatic catalysis. PtLam functions as an exo-laminarinase with the ability to sequentially hydrolyze laminarin, cleaving glucose units individually. Notably, PtLam exhibits proficient transglycosylation capabilities, utilizing various sugar alcohols as acceptors, with lyxose, in particular, yielding exclusively transglycosylated products. Structural analysis of both apo-PtLam and its laminarin oligosaccharide-bound complex revealed significant conformational alterations in active residues upon substrate binding. Moreover, pivotal residues involved in substrate recognition were identified, with subsequent mutation assays indicating the contribution of positive subsites in modulating exo-hydrolysis and transglycosidic activities. These results enhance our comprehension of laminarin cycling mechanisms by marine Planctomycetota, while also providing essential enzyme components for laminarin hetero-oligosaccharide synthesis.IMPORTANCEThe ubiquitous Planctomycetota, with distinctive physiological traits, exert a significant influence on global carbon and nitrogen fluxes. Their intimate association with algae suggests a propensity for efficient polysaccharide degradation; however, research on glycoside hydrolases derived from Planctomycetota remains scarce. Herein, we unveil the GH16 family laminarinase PtLam from deep-sea Planctomycetota, shedding light on its catalytic mechanisms underlying hydrolysis and transglycosylation. Our findings elucidate the enzymatic pathways governing the marine laminarin cycle orchestrated by Planctomycetota, thereby fostering the exploration of novel polysaccharide hydrolases with promising practical implications.
Collapse
Affiliation(s)
- Wei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shanshan Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xianjie Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shiting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lijuan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
6
|
Wurzbacher CE, Hammer J, Haufschild T, Wiegand S, Kallscheuer N, Jogler C. " Candidatus Uabimicrobium helgolandensis"-a planctomycetal bacterium with phagocytosis-like prey cell engulfment, surface-dependent motility, and cell division. mBio 2024; 15:e0204424. [PMID: 39189742 PMCID: PMC11481906 DOI: 10.1128/mbio.02044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
The unique cell biology presented by members of the phylum Planctomycetota has puzzled researchers ever since their discovery. Initially thought to have eukaryotic-like features, their traits are now recognized as exceptional but distinctly bacterial. However, recently discovered strains again added novel and stunning aspects to the planctomycetal cell biology-shapeshifting by members of the "Saltatorellus" clade to an extent that is unprecedented in any other bacterial phylum, and phagocytosis-like cell engulfment in the bacterium "Candidatus Uabimicrobium amorphum." These recent additions to the phylum Planctomycetota indicate hitherto unexplored members with unique cell biology, which we aimed to make accessible for further investigations. Targeting bacteria with features like "Ca. U. amorphum", we first studied both the morphology and behavior of this microorganism in more detail. While similar to eukaryotic amoeboid organisms at first sight, we found "Ca. U. amorphum" to be rather distinct in many regards. Presenting a detailed description of "Ca. U. amorphum," we furthermore found this organism to divide in a fashion that has never been described in any other organism. Employing the obtained knowledge, we isolated a second "bacterium of prey" from the harbor of Heligoland Island (North Sea, Germany). Our isolate shares key features with "Ca. U. amorphum": phagocytosis-like cell engulfment, surface-dependent motility, and the same novel mode of cell division. Being related to "Ca. U. amorphum" within genus thresholds, we propose the name "Ca. Uabimicrobium helgolandensis" for this strain.IMPORTANCE"Candidatus Uabimicrobium helgolandensis" HlEnr_7 adds to the explored bacterial biodiversity with its phagocytosis-like uptake of prey bacteria. Enrichment of this strain indicates that there might be "impossible" microbes out there, missed by metagenomic analyses. Such organisms have the potential to challenge our understanding of nature. For example, the origin of eukaryotes remains enigmatic, with a contentious debate surrounding both the mitochondrial host entity and the moment of uptake. Currently, favored models involve a proteobacterium as the mitochondrial progenitor and an Asgard archaeon as the fusion partner. Models in which a eukaryotic ancestor engulfed the mitochondrial ancestor via phagocytosis had been largely rejected due to bioenergetic constraints. Thus, the phagocytosis-like abilities of planctomycetal bacteria might influence the debate, demonstrating that prey engulfment is possible in a prokaryotic cellular framework.
Collapse
Affiliation(s)
- Carmen E. Wurzbacher
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
7
|
Nadreen YM, Vrouwenvelder JS, Saikaly PE, Gonzalez-Gil G. The unique chemical and microbiological signatures of an array of bottled drinking water. Front Microbiol 2024; 15:1441142. [PMID: 39351306 PMCID: PMC11439718 DOI: 10.3389/fmicb.2024.1441142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
The bottled drinking water market has seen significant growth and diversification, yet the selection criteria lack scientific basis, as all must adhere to stringent health standards. Prior studies predominantly focused on chemical quality, with limited assessments of microbial quality using methods prone to underestimation. Moreover, insufficient research explores the impact of packaging materials and temperatures optimal for mesophilic growth on microbial quality. To understand the unique characteristics and justify the distinction among different types of bottled waters, a comprehensive analysis encompassing both chemical and microbiological aspects is imperative. Addressing these gaps, our study examines 19 diverse bottled water brands comprising purified, mineral, artesian, and sparkling water types from Saudi Arabia and abroad. Our findings reveal distinct chemical compositions among bottled waters, with notable variations across types. Flow cytometry analysis reveals significant differences in bacterial content among water types, with natural mineral waters having the highest concentrations and treated purified waters the lowest. Bacterial content in plastic-bottled mineral water suggests it may be higher than in glass-bottled water. Flow cytometry fingerprints highlight separate microbial communities for purified and mineral waters. Additionally, temperatures favorable for mesophilic growth reveal varying microbial responses among different types of bottled waters. Some variation is also observed in mineral water bottled in plastic versus glass, suggesting potential differences that warrant further investigation. 16S rRNA gene sequencing identifies unique microbial taxa among different mineral waters. Overall, our study underscores that all bottled waters meet health regulations. Furthermore, the combined chemical and microbial profiles may serve as authenticity indicators for distinct bottled water types. This study can serve as a basis for future research on the environmental impact of bottled water transportation, suggesting that locally produced water may offer a more sustainable option.
Collapse
Affiliation(s)
- Yasmeen M Nadreen
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Graciela Gonzalez-Gil
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Stuij TM, Cleary DFR, Rocha RJM, Polonia ARM, Machado E Silva DA, Frommlet JC, Louvado A, Huang YM, De Voogd NJ, Gomes NCM. Development and validation of an experimental life support system to study coral reef microbial communities. Sci Rep 2024; 14:21260. [PMID: 39261551 PMCID: PMC11391067 DOI: 10.1038/s41598-024-69514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
In the present study, we developed and validated an experimental life support system (ELSS) designed to investigate coral reef associated bacterial communities. The microcosms in the ELSS consisted of coral reef sediment, synthetic seawater, and specimens of five benthic reef species. These included two hard corals Montipora digitata and Montipora capricornis, a soft coral Sarcophyton glaucum, a zoanthid Zoanthus sp., and a sponge Chondrilla sp.. Physicochemical parameters and bacterial communities in the ELSS were similar to those observed at shallow coral reef sites. Sediment bacterial evenness and higher taxonomic composition were more similar to natural-type communities at days 29 and 34 than at day 8 after transfer to the microcosms, suggesting microbial stabilization after an initial recovery period. Biotopes were compositionally distinct but shared a number of ASVs. At day 34, sediment specific ASVs were found in hosts and visa versa. Transplantation significantly altered the bacterial community composition of M. digitata and Chondrilla sp., suggesting microbial adaptation to altered environmental conditions. Altogether, our results support the suitability of the ELSS developed in this study as a model system to investigate coral reef associated bacterial communities using multi-factorial experiments.
Collapse
Affiliation(s)
- T M Stuij
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - R J M Rocha
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A R M Polonia
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - D A Machado E Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - J C Frommlet
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - A Louvado
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Y M Huang
- National Penghu University of Science and Technology, Magong, Taiwan
| | - N J De Voogd
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Institute of Biology (IBL), Leiden University, Leiden, the Netherlands
| | - N C M Gomes
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Serwecińska L, Font-Nájera A, Strapagiel D, Lach J, Tołoczko W, Bołdak M, Urbaniak M. Sewage sludge fertilization affects microbial community structure and its resistome in agricultural soils. Sci Rep 2024; 14:21034. [PMID: 39251745 PMCID: PMC11385149 DOI: 10.1038/s41598-024-71656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Global sewage sludge production is rapidly increasing, and its safe disposal is becoming an increasingly serious issue. One of the main methods of municipal sewage sludge management is based on its agricultural use. The wastewater and sewage sludge contain numerous antibiotic resistance genes (ARGs), and its microbiome differs significantly from the soil microbial community. The aim of the study was to assess the changes occurring in the soil microbial community and resistome after the addition of sewage sludge from municipal wastewater treatment plant (WWTP) in central Poland, from which the sludge is used for fertilizing agricultural soils on a regular basis. This study used a high-throughput shotgun metagenomics approach to compare the microbial communities and ARGs present in two soils fertilized with sewage sludge. The two soils represented different land uses and different physicochemical and granulometric properties. Both soils were characterized by a similar taxonomic composition of the bacterial community, despite dissimilarities between soils properties. Five phyla predominated, viz. Planctomycetes, Actinobacteria, Proteobacteria, Chloroflexi and Firmicutes, and they were present in comparable proportions in both soils. Network analysis revealed that the application of sewage sludge resulted in substantial qualitative and quantitative changes in bacterial taxonomic profile, with most abundant phyla being considerably depleted and replaced by Proteobacteria and Spirochaetes. In addition, the ratio of oligotrophic to copiotrophic bacteria substantially decreased in both amended soils. Furthermore, fertilized soils demonstrated greater diversity and richness of ARGs compared to control soils. The increased abundance concerned mainly genes of resistance to antibiotics most commonly used in human and animal medicine. The level of heavy metals in sewage sludge was low and did not exceed the standards permitted in Poland for sludge used in agriculture, and their level in fertilized soils was still inconsiderable.
Collapse
Affiliation(s)
- Liliana Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90‑364, Lodz, Poland.
| | - Arnoldo Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90‑364, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139, 90-235, Lodz, Poland
| | - Jakub Lach
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139, 90-235, Lodz, Poland
| | - Wojciech Tołoczko
- Department of Physical Geography, Faculty of Geographical Sciences, University of Lodz, Narutowicza 88, 90-139, Lodz, Poland
| | - Małgorzata Bołdak
- Department of Agriculture and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza 21, 31-120, Kraków, Poland
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90‑237, Lodz, Poland
| |
Collapse
|
10
|
Brewer TE, Wagner A. Horizontal Gene Transfer of a key Translation Factor and its Role in Polyproline Proteome Evolution. Mol Biol Evol 2024; 41:msae180. [PMID: 39189989 PMCID: PMC11388002 DOI: 10.1093/molbev/msae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Prolines cause ribosomes to stall during translation due to their rigid structure. This phenomenon occurs in all domains of life and is exacerbated at polyproline motifs. Such stalling can be eased by the elongation factor P (EF-P) in bacteria. We discovered a potential connection between the loss of ancestral EF-P, the appearance of horizontally transferred EF-P variants, and genomic signs of EF-P dysfunction. Horizontal transfer of the efp gene has occurred several times among bacteria and is associated with the loss of highly conserved polyproline motifs. In this study, we pinpoint cases of horizontal EF-P transfer among a diverse set of bacteria and examine genomic features associated with these events in the phyla Thermotogota and Planctomycetes. In these phyla, horizontal EF-P transfer is also associated with the loss of entire polyproline motif-containing proteins, whose expression is likely dependent on EF-P. In particular, three proteases (Lon, ClpC, and FtsH) and three tRNA synthetases (ValS, IleS1, and IleS2) appear highly sensitive to EF-P transfer. The conserved polyproline motifs within these proteins all reside within close proximity to ATP-binding-regions, some of which are crucial for their function. Our work shows that an ancient EF-P dysfunction has left genomic traces that persist to this day, although it remains unclear whether this dysfunction was strictly due to loss of ancestral EF-P or was related to the appearance of an exogenous variant. The latter possibility would imply that the process of "domesticating" a horizontally transferred efp gene can perturb the overall function of EF-P.
Collapse
Affiliation(s)
- Tess E Brewer
- Faculty of Biology, Microbiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
11
|
Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature 2024; 633:295-305. [PMID: 39261613 DOI: 10.1038/s41586-024-07677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Julian Vosseberg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jolien J E van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
12
|
Amaral AS, Devos DP. The neglected giants: Uncovering the prevalence and functional groups of huge proteins in proteomes. PLoS Comput Biol 2024; 20:e1012459. [PMID: 39283951 PMCID: PMC11573180 DOI: 10.1371/journal.pcbi.1012459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/18/2024] [Accepted: 09/04/2024] [Indexed: 11/19/2024] Open
Abstract
An often-overlooked aspect of biology is formed by the outliers of the protein length distribution, specifically those proteins with more than 5000 amino acids, which we refer to as huge proteins (HPs). By examining UniprotKB, we discovered more than 41 000 HPs throughout the tree of life, with the majority found in eukaryotes. Notably, the phyla with the highest propensity for HPs are Apicomplexa and Fornicata. Moreover, we observed that certain bacteria, such as Elusimicrobiota or Planctomycetota, have a higher tendency for encoding HPs, even more than the average eukaryote. To investigate if these macro-polypeptides represent "real" proteins, we explored several indirect metrics. Additionally, orthology analyses reveals thousands of clusters of homologous sequences of HPs, revealing functional groups related to key cellular processes such as cytoskeleton organization and functioning as chaperones or as E3-ubiquitin ligases in eukaryotes. In the case of bacteria, the major clusters have functions related to non-ribosomomal peptide synthesis/polyketide synthesis, followed by pathogen-host attachment or recognition surface proteins. Further exploration of the annotations for each HPs supported the previously identified functional groups. These findings underscore the need for further investigation of the cellular and ecological roles of these HPs and their potential impact on biology and biotechnology.
Collapse
Affiliation(s)
- Anibal S. Amaral
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide, Seville, Spain
| | - Damien P. Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide, Seville, Spain
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| |
Collapse
|
13
|
Yuan H, Xie M, Chen J, Hu N, Wang H, Tan B, Shi L, Zhang S. Combined intestinal microbiota and transcriptomic analysis to investigate the effect of different stocking densities on the ability of Pacific white shrimp ( Litopenaeus vannamei) to utilize Chlorella sorokiniana. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:203-219. [PMID: 39281052 PMCID: PMC11401160 DOI: 10.1016/j.aninu.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 09/18/2024]
Abstract
Aiming to investigate the impact of different stocking densities on the ability of Pacific white shrimp (Litopenaeus vannamei) to utilize Chlorella sorokiniana (CHL), a 3 × 2 factorial design stocking experiment was used in this study. Specifically, shrimp was fed with two dietary protein sources (fishmeal [FM] and CHL) at low (LSD; 100 per m3), medium (MSD; 200 per m3) and high (HSD; 300 per m3) stocking densities for 8 weeks. The growth performance and resistance to Vibrio parahaemolyticus (1.0 × 107 CFU/mL) of shrimp decreased with the increase of stocking density, but dietary CHL improved this result. Differences between the CHL and FM groups for V. parahaemolyticus resistance were significant only under high-density conditions (P < 0.05). Significant interactions between stocking density and protein source were found on the activities of catalase (CAT), superoxide dismutase (SOD) and phenol oxidase (PO), and the contents of malondialdehyde (MDA) in the hepatopancreas and the activities of intestinal amylase, most of which were significantly different between CHL and FM groups only at high stocking density (P < 0.05). Analysis of 16S rDNA sequencing showed that dietary CHL increased the alpha diversity of intestinal microbiota, inhibited the colonization of pathogenic bacteria and enhanced the abundance of beneficial bacteria. Transcriptomic results showed that at high stocking densities, differentially expressed genes (DEGs) in the FM vs CHL group were mostly upregulated and primarily enriched in immune and metabolic related pathways including Toll, immune deficiency (Imd) and glycolysis-gluconeogenesis pathways. Pearson correlation analysis revealed significant correlation between the top ten intestinal bacteria at the genus level and markedly enriched DEGs, also more were detected under high density situations. In conclusion, CHL has great potential as a novel protein source in the intensive farming of shrimp.
Collapse
Affiliation(s)
- Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minghua Xie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jian Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Naijie Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Honming Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
14
|
Liu S, Chen Y, Li X, Lv J, Yang X, Li J, Bai Y, Zhang S. Linking soil nutrients, microbial community composition, and enzyme activities to saponin content of Paris polyphylla after addition of biochar and organic fertiliser. CHEMOSPHERE 2024; 363:142856. [PMID: 39043271 DOI: 10.1016/j.chemosphere.2024.142856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
The application of organic fertilisers and biochar has become widespread in agroforestry ecosystems to enhance the yield and quality of crops and medicinal plants. However, their specific impact on both the yield and quality of Paris polyphylla (P. polyphylla), along with the underlying mechanisms, remains unclear. In this study, we investigated the distinct effects of organic fertiliser (at concentrations of 5% and 10%) and biochar application (at levels of 2% and 4%) on P. polyphylla saponin content. This content is intricately regulated by available soil nutrients, enzyme activities, and microbial community compositions and activities. Our results clearly demonstrated a significant increase in the saponin content, including total saponin, polyphyllin I (PPI), polyphyllin II (PPII), polyphyllin VI (PPVI), and polyphyllin VII (PPVII), in P. polyphylla following the application of both biochar and organic fertiliser. Moreover, in comparison to the control group, the addition of biochar and organic fertiliser led to a considerable rise in the activity of glycosyltransferase enzyme (GTS) and cycloartenol synthase (CAS) in P. polyphylla. Additionally, it increased soil available potassium (AK) and soil organic matter (SOM) concentration, along with the activity of urease, acid phosphatase, and catalase, although biochar amendment resulted in a decrease in nitrate nitrogen (NO3--N) concentration. Crucially, our findings revealed a positive correlation between total saponin content and the activity of CAS in P. polyphylla, soil AK, SOM concentration, and the activities of urease, acid phosphatase, and catalase. Conversely, there was a negative correlation with NO3--N content. Furthermore, the application of organic fertiliser and biochar significantly influenced microbial community structures and specific microbial taxa. Notably, total saponin content exhibited a positive relationship with the relative abundances of Dehalococcoidia, Saccharomycetes, and Agaricomycetes taxa while showing a negative correlation with the abundance of Verrucomicrobiae. In conclusion, the observed increase in saponin content can be attributed to the modulation of specific microbial taxa in soils, as well as alterations in soil nutrients and enzyme activities resulting from the application of biochar and organic fertiliser. This study identifies a potential mechanism for enhancing saponin content in the artificial cultivation of P. polyphylla.
Collapse
Affiliation(s)
- Shouzan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ye Chen
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311300, China
| | - Junyan Lv
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311300, China
| | - Xing Yang
- School of Ecology and Environment, Hainan University, Haikou, Hainan, 570100, China
| | - Jiao Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Bai
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Shaobo Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311300, China.
| |
Collapse
|
15
|
Wang JX, Wang J, Liu JQ, Li J, Jiang WX, Xu F, Li PY, Qin QL, Chen XL, Zhang XY. The complete genome sequence of the planctomycetotal bacterium Bremerella sp. P1 with abundant genes involved in polysaccharide degradation. Mar Genomics 2024; 76:101126. [PMID: 39009497 DOI: 10.1016/j.margen.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024]
Abstract
Isolated from intertidal sediment of the Yellow Sea, China, Bremerella sp. P1 putatively represents a novel species within the genus Bremerella of the family Pirellulaceae in the phylum Planctomycetota. The complete genome of strain P1 comprises a single circular chromosome with a size of 6,955,728 bp and a GC content of 55.26%. The genome contains 5772 protein-coding genes, 80 tRNA and 6 rRNA genes. A total of 147 CAZymes and 128 sulfatases have been identified from the genome of strain P1, indicating that the strain has the capability to degrade a wide range of polysaccharides. Moreover, a gene cluster related to bacterial microcompartments (BMCs) formation containing genes encoding the shell proteins and related enzymes to metabolize fucose or rhamnose is also found in the genome of strain P1. The genome of strain P1 represents the second complete one in the genus Bremerella, expanding the understanding of the physiological and metabolic characteristics, interspecies diversity, and ecological functions of the genus.
Collapse
Affiliation(s)
- Jia-Xuan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Jing Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Ji-Qing Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Jian Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Wen-Xin Jiang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
16
|
Corthésy N, Saleh F, Thomas C, Antcliffe JB, Daley AC. The effects of clays on bacterial community composition during arthropod decay. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:26. [PMID: 39006952 PMCID: PMC11236854 DOI: 10.1186/s13358-024-00324-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Fossilization, or the transition of an organism from the biosphere to the geosphere, is a complex mechanism involving numerous biological and geological variables. Bacteria are one of the most significant biotic players to decompose organic matter in natural environments, early on during fossilization. However, bacterial processes are difficult to characterize as many different abiotic conditions can influence bacterial efficiency in degrading tissues. One potentially important variable is the composition and nature of the sediment on which a carcass is deposited after death. We experimentally examined this by decaying the marine shrimp Palaemon varians underwater on three different clay sediments. Samples were then analyzed using 16S ribosomal RNA sequencing to identify the bacterial communities associated with each clay system. Results show that samples decaying on the surface of kaolinite have a lower bacterial diversity than those decaying on the surface of bentonite and montmorillonite, which could explain the limited decay of carcasses deposited on this clay. However, this is not the only role played by kaolinite, as a greater proportion of gram-negative over gram-positive bacteria is observed in this system. Gram-positive bacteria are generally thought to be more efficient at recycling complex polysaccharides such as those forming the body walls of arthropods. This is the first experimental evidence of sediments shaping an entire bacterial community. Such interaction between sediments and bacteria might have contributed to arthropods' exquisite preservation and prevalence in kaolinite-rich Lagerstätten of the Cambrian Explosion. Supplementary Information The online version contains supplementary material available at 10.1186/s13358-024-00324-7.
Collapse
Affiliation(s)
- Nora Corthésy
- Institute of Earth Sciences, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland
| | - Farid Saleh
- Institute of Earth Sciences, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland
| | - Camille Thomas
- Institute of Geological Sciences, Oeschger Centre for Climate Research, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland
- Department of Earth Sciences, University of Geneva, rue des Maraichers 13, 1205 Geneva, Switzerland
| | - Jonathan B Antcliffe
- Institute of Earth Sciences, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland
| | - Allison C Daley
- Institute of Earth Sciences, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Sreya PK, Hari Naga Papa Rao A, Suresh G, Sasikala C, Venkata Ramana C. Genomic and functional insights of a mucin foraging Rhodopirellula halodulae sp. nov. Syst Appl Microbiol 2024; 47:126523. [PMID: 38897058 DOI: 10.1016/j.syapm.2024.126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Nine novel strains were obtained from various algal and seagrass samples. The analysis of the 16S rRNA gene-based phylogenetic tree revealed monophyletic placement of all novel strains within the Rhodopirellula genus. The type strain was identified as JC737T, which shared 99.1 % 16S rRNA gene sequence identity with Rhodopirellula baltica SH1T, while strain JC740 was designated as an additional strain. The genome sizes of strains JC737T and JC740 were 6.6 and 6.7 Mb, respectively, and the G + C content was 56.2 %. The strains cladded distinctly in the phylogenomic tree, and the ANI and dDDH values of the strain JC737T were 75.8-76.1 % and 20.8-21.3 %, respectively, in comparison to other Rhodopirellula members. The strain demonstrated a versatile degradation capability, exhibiting a diverse array of complex polysaccharides, including mucin which had not been previously identified within the members of the phylum Planctomycetota. The phylogenomic, pan-genomic, morphological, physiological, and genomic characterization of the strain lead to the proposal to describe the strain as Rhodopirellula halodulae sp. nov.
Collapse
Affiliation(s)
- P K Sreya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Atham Hari Naga Papa Rao
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Gandham Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | | | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India.
| |
Collapse
|
18
|
Khomyakova MA, Merkel AY, Slobodkin AI. Anaerobaca lacustris gen. nov., sp. nov., an obligately anaerobic planctomycete of the widespread SG8-4 group, isolated from a coastal lake, and proposal of Anaerobacaceae fam. nov. Syst Appl Microbiol 2024; 47:126522. [PMID: 38852331 DOI: 10.1016/j.syapm.2024.126522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
One of the numerous and widespread lineages of planctomycetes is the hitherto uncultured SG8-4 group inhabiting anoxic environments. A novel anaerobic, mesophilic, alkalitolerant, chemoorganotrophic bacterium (strain M17dextrT) was isolated from anaerobic sediment of a coastal lake (Taman Peninsula, Russia). The cell were mainly non-motile cocci, 0.3 to 1.0 µm in diameter forming chains or aggregates. The cells had a Gram-negative cell wall and divided by binary fission. The temperature range for growth was 20-37 0C (optimum at 30 0C). The pH range for growth was 6.5-10.0, with an optimum at pH 8.0-8.5. Strain M17dextrT fermented mono-, di- and polysaccharides (starch, xanthan gum, dextran, N-acetylglucosamine), but did not utilized proteinaceous compounds. Major cellular fatty acids were C16:0 and C18:0. The genome of strain M17dextrT had a size of 5.7 Mb with a G + C content of 62.49 %. The genome contained 345 CAZyme genes. The closest cultured phylogenetic relatives of strain M17dextrT were members of the order Sedimentisphaerales, class Phycisphaerae. Among characterized planctomycetes, the highest 16S rRNA gene sequence similarity (88.3 %) was observed with Anaerohalosphaera lusitana. According to phylogenomic analysis strain M17dextrT together with many uncultured representatives of Sedimentisphaerales forms a separate family-level lineage. We propose to assign strain M17dextrT to a novel genus and species, Anaerobaca lacustris gen. nov., sp. nov.; the type strain is M17dextrT (=VKM B-3571 T = DSM 113417 T = JCM 39238 T = KCTC 25381 T = UQM 41474 T). This genus is placed in a novel family, Anaerobacaceae fam. nov. within the order Sedimentisphaerales.
Collapse
Affiliation(s)
- M A Khomyakova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia.
| | - A Y Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| | - A I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy Prospect, 33, bld. 2, 119071, Moscow, Russia
| |
Collapse
|
19
|
Godinho O, Devos DP, Quinteira S, Lage OM. The influence of the phylum Planctomycetota in the environmental resistome. Res Microbiol 2024; 175:104196. [PMID: 38467354 DOI: 10.1016/j.resmic.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Antimicrobial resistance is one of the leading causes of death worldwide and research on this topic has been on the spotlight for a long time. More recently and in agreement with the One Health Approach, the focus has moved towards the environmental resistome. Members of the phylum Planctomycetota are ubiquitously present in the environment including in hotspots for antimicrobial resistance selection and dissemination. Furthermore, phenotypic broad-range resistance has been observed in diverse members of this phylum. Here we review the evidence available on antimicrobial resistance in the underexploited Planctomycetota and highlight key aspects for future studies.
Collapse
Affiliation(s)
- Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Quinteira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Rede de Investigação em Biodiversidade e Biologia Evolutiva, Laboratório Associado, Universidade do Porto, 4485-6661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
| | - Olga M Lage
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Ivanova AA, Naumoff DG, Kulichevskaya IS, Rakitin AL, Mardanov AV, Ravin NV, Dedysh SN. Planctomycetes of the Genus Singulisphaera Possess Chitinolytic Capabilities. Microorganisms 2024; 12:1266. [PMID: 39065035 PMCID: PMC11279305 DOI: 10.3390/microorganisms12071266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Planctomycetes of the genus Singulisphaera are common inhabitants of soils and peatlands. Although described members of this genus are characterized as possessing hydrolytic capabilities, the ability to degrade chitin has not yet been reported for these bacteria. In this study, a novel Singulisphaera representative, strain Ch08, was isolated from a chitinolytic enrichment culture obtained from a boreal fen in Northern European Russia. The 16S rRNA gene sequence of this isolate displayed 98.2% similarity to that of Singulisphaera acidiphila MOB10T. Substrate utilization tests confirmed that strain Ch08 is capable of growth on amorphous chitin. The complete genome of strain Ch08 determined in this study was 10.85 Mb in size and encoded two predicted chitinases, which were only distantly related to each other and affiliated with the glycoside hydrolase family GH18. One of these chitinases had a close homologue in the genome of S. acidiphila MOB10T. The experimental verification of S. acidiphila MOB10T growth on amorphous chitin was also positive. Transcriptome analysis performed with glucose- and chitin-growth cells of strain Ch08 showed upregulation of the predicted chitinase shared by strain Ch08 and S. acidiphila MOB10T. The gene encoding this protein was expressed in Escherichia coli, and the endochitinase activity of the recombinant enzyme was confirmed. The ability to utilize chitin, a major constituent of fungal cell walls and arthropod exoskeletons, appears to be one of the previously unrecognized ecological functions of Singulisphaera-like planctomycetes.
Collapse
Affiliation(s)
- Anastasia A. Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.A.I.); (D.G.N.); (I.S.K.)
| | - Daniil G. Naumoff
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.A.I.); (D.G.N.); (I.S.K.)
| | - Irina S. Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.A.I.); (D.G.N.); (I.S.K.)
| | - Andrey L. Rakitin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.L.R.); (A.V.M.); (N.V.R.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.L.R.); (A.V.M.); (N.V.R.)
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.L.R.); (A.V.M.); (N.V.R.)
| | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.A.I.); (D.G.N.); (I.S.K.)
| |
Collapse
|
21
|
Huang H, Liu Y, Zhou H, Lin X, Wang X, Jiang W, Zhang L, Mi H, Deng J. Effects of Replacing Soybean Meal with Sunflower Meal or Fermented Sunflower Meal on the Growth Performance, Intestinal Microbiota, and Intestinal Health of Tilapia (GIFT, Oreochromis niloticus). AQUACULTURE NUTRITION 2024; 2024:9366952. [PMID: 39555540 PMCID: PMC11211014 DOI: 10.1155/2024/9366952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 11/19/2024]
Abstract
A 9-week feeding trial was conducted to evaluate the effects of replacing soybean meal (SBM) with sunflower meal (SM) or fermented sunflower meal (FSM) on the growth performance, intestinal microbiota, and intestinal health of genetically improved farmed tilapia (Oreochromis niloticus) (initial weight 6.55 ± 0.01 g). Eleven isonitrogenous and isolipidic experimental diets were formulated by replacing 0%, 20%, 40%, 60%, 80%, and 100% of dietary SBM with SM or FSM. The results showed that the replacement of more than 40% of SBM with SM decreased the weight gain and special growth rate of tilapia, while the complete replacement of SBM with FSM did not affect the growth performance of tilapia. From transmission electron microscopy analyses, it was shown that high levels of both SM and FSM substitution resulted in damage to the intestinal epithelium of tilapia. Replaced of 20% SBM with SM upregulated intestinal tight junction (zo-1, claudin, occludin) and anti-inflammatory (tgf-β1, tgf-β2) gene expression and downregulated pro-inflammatory gene expression (tnf-α, il-1β, il-6, il-8). However, the expression of tight junction, anti-inflammatory, and pro-inflammatory genes showed opposite trends when SBM was substituted by SM at high levels. FSM completely replaces SBM and downregulates the expression of tight junction genes (claudin, occludin), replacement of more than 20% of SBM with FSM downregulated pro-inflammatory (tnf-α, il-1β, il-8) gene expression, whereas substitution of less than 80% increased the expression of anti-inflammatory genes (tgf-β1). The 100% FSM group exhibited a decreased abundance of Fusobacteriota and an increased abundance of Actinobacteriota compared to the control and 100% SM groups. In summary, our data confirm that replacing more than 40% of SBM with SM induces gut inflammation, damages gut health, and decreases growth performance, whereas FSM replacement of SBM did not negatively affect tilapia growth and health, it also did not have a significant ameliorative effect, with some parameters negatively affected at high replacement levels. Therefore, FSM replacement of SBM levels above 80% is not recommended.
Collapse
Affiliation(s)
- Huajing Huang
- College of FisheriesGuangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong ProvinceGuangdong Ocean University, Zhanjiang 524088, China
| | - Yu Liu
- College of FisheriesGuangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong ProvinceGuangdong Ocean University, Zhanjiang 524088, China
| | - Hang Zhou
- College of FisheriesGuangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong ProvinceGuangdong Ocean University, Zhanjiang 524088, China
| | - Xiangqin Lin
- College of FisheriesGuangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong ProvinceGuangdong Ocean University, Zhanjiang 524088, China
| | - Xuehan Wang
- College of FisheriesGuangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong ProvinceGuangdong Ocean University, Zhanjiang 524088, China
| | - Wen Jiang
- College of FisheriesGuangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong ProvinceGuangdong Ocean University, Zhanjiang 524088, China
| | - Lu Zhang
- Tongwei Agricultural Development Co. Ltd., Chengdu 610093, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co. Ltd., Chengdu 610093, China
| | - Junming Deng
- College of FisheriesGuangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Centre of Guangdong ProvinceGuangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
22
|
Fiard M, Militon C, Sylvi L, Migeot J, Michaud E, Jézéquel R, Gilbert F, Bihannic I, Devesa J, Dirberg G, Cuny P. Uncovering potential mangrove microbial bioindicators to assess urban and agricultural pressures on Martinique island in the eastern Caribbean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172217. [PMID: 38583633 DOI: 10.1016/j.scitotenv.2024.172217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Martinique's mangroves, which cover 1.85 ha of the island (<0.1 % of the total area), are considerably vulnerable to local urban, agricultural, and industrial pollutants. Unlike for temperate ecosystems, there are limited indicators that can be used to assess the anthropogenic pressures on mangroves. This study investigated four stations on Martinique Island, with each being subject to varying anthropogenic pressures. An analysis of mangrove sediment cores approximately 18 cm in depth revealed two primary types of pressures on Martinique mangroves: (i) an enrichment in organic matter in the two stations within the highly urbanized bay of Fort-de-France and (ii) agricultural pressure observed in the four studied mangrove stations. This pressure was characterized by contamination, exceeding the regulatory thresholds, with dieldrin, total DDT, and metals (As, Cu and Ni) found in phytosanitary products. The mangroves of Martinique are subjected to varying degrees of anthropogenic pressure, but all are subjected to contamination by organochlorine pesticides. Mangroves within the bay of Fort-de-France experience notably higher pressures compared to those in the island's northern and southern regions. In these contexts, the microbial communities exhibited distinct responses. The microbial biomass and the abundance of bacteria and archaea were higher in the two less-impacted stations, while in the mangrove of Fort-de-France, various phyla typically associated with polluted environments were more prevalent. These differences in the microbiota composition led to the identification of 65 taxa, including Acanthopleuribacteraceae, Spirochaetaceae, and Pirellulaceae, that could potentially serve as indicators of an anthropogenic influence on the mangrove sediments of Martinique Island.
Collapse
Affiliation(s)
- Maud Fiard
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Cécile Militon
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Léa Sylvi
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| | - Jonathan Migeot
- Impact Mer consulting, expertise, and R&D firm, 20 rue Karukéra, 97200 Fort de France, Martinique/FWI, France.
| | - Emma Michaud
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Ronan Jézéquel
- CEDRE, 715 rue Alain Colas, 29218 Brest CEDEX 2, France.
| | - Franck Gilbert
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier, Toulouse, France.
| | | | - Jeremy Devesa
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France.
| | - Guillaume Dirberg
- Biologie des Organismes et Ecosystèmes Aquatiques (UMR 8067 BOREA) Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, IRD, UCN, UA, Rue Buffon, 75005 Paris, France.
| | - Philippe Cuny
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France.
| |
Collapse
|
23
|
Wang YC, Fu HM, Shen Y, Wang J, Wang N, Chen YP, Yan P. Biosynthetic potential of uncultured anammox community bacteria revealed through multi-omics analysis. BIORESOURCE TECHNOLOGY 2024; 401:130740. [PMID: 38677385 DOI: 10.1016/j.biortech.2024.130740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Microbial secondary metabolites (SMs) and their derivatives have been widely used in medicine, agriculture, and energy. Growing needs for renewable energy and the challenges posed by antibiotic resistance, cancer, and pesticides emphasize the crucial hunt for new SMs. Anaerobic ammonium-oxidation (anammox) systems harbor many uncultured or underexplored bacteria, representing potential resources for discovering novel SMs. Leveraging HiFi long-read metagenomic sequencing, 1,040 biosynthetic gene clusters (BGCs) were unearthed from the anammox microbiome with 58% being complete and showcasing rich diversity. Most of them showed distant relations to known BGCs, implying novelty. Members of the underexplored lineages (Chloroflexota and Planctomycetota) and Proteobacteria contained lots of BGCs, showcasing substantial biosynthetic potential. Metaproteomic results indicated that Planctomycetota members harbored the most active BGCs, particularly those involved in producing potential biofuel-ladderane. Overall, these findings underscore that anammox microbiomes could serve as valuable resources for mining novel BGCs and discovering new SMs for practical application.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Nuo Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
24
|
Klimek D, Herold M, Calusinska M. Comparative genomic analysis of Planctomycetota potential for polysaccharide degradation identifies biotechnologically relevant microbes. BMC Genomics 2024; 25:523. [PMID: 38802741 PMCID: PMC11131199 DOI: 10.1186/s12864-024-10413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Members of the Planctomycetota phylum harbour an outstanding potential for carbohydrate degradation given the abundance and diversity of carbohydrate-active enzymes (CAZymes) encoded in their genomes. However, mainly members of the Planctomycetia class have been characterised up to now, and little is known about the degrading capacities of the other Planctomycetota. Here, we present a comprehensive comparative analysis of all available planctomycetotal genome representatives and detail encoded carbohydrolytic potential across phylogenetic groups and different habitats. RESULTS Our in-depth characterisation of the available planctomycetotal genomic resources increases our knowledge of the carbohydrolytic capacities of Planctomycetota. We show that this single phylum encompasses a wide variety of the currently known CAZyme diversity assigned to glycoside hydrolase families and that many members encode a versatile enzymatic machinery towards complex carbohydrate degradation, including lignocellulose. We highlight members of the Isosphaerales, Pirellulales, Sedimentisphaerales and Tepidisphaerales orders as having the highest encoded hydrolytic potential of the Planctomycetota. Furthermore, members of a yet uncultivated group affiliated to the Phycisphaerales order could represent an interesting source of novel lytic polysaccharide monooxygenases to boost lignocellulose degradation. Surprisingly, many Planctomycetota from anaerobic digestion reactors encode CAZymes targeting algal polysaccharides - this opens new perspectives for algal biomass valorisation in biogas processes. CONCLUSIONS Our study provides a new perspective on planctomycetotal carbohydrolytic potential, highlighting distinct phylogenetic groups which could provide a wealth of diverse, potentially novel CAZymes of industrial interest.
Collapse
Affiliation(s)
- Dominika Klimek
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, L-4422, Luxembourg.
- The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 2 Avenue de l'Université, Esch-sur-Alzette, L-4365, Luxembourg.
| | - Malte Herold
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, L-4422, Luxembourg
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
25
|
Hooper PM, Bass D, Feil EJ, Vincent WF, Lovejoy C, Owen CJ, Tsola SL, Jungblut AD. Arctic cyanobacterial mat community diversity decreases with latitude across the Canadian Arctic. FEMS Microbiol Ecol 2024; 100:fiae067. [PMID: 38653723 DOI: 10.1093/femsec/fiae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Cyanobacterial mats are commonly reported as hotspots of microbial diversity across polar environments. These thick, multilayered microbial communities provide a refuge from extreme environmental conditions, with many species able to grow and coexist despite the low allochthonous nutrient inputs. The visibly dominant phototrophic biomass is dependent on internal nutrient recycling by heterotrophic organisms within the mats; however, the specific contribution of heterotrophic protists remains little explored. In this study, mat community diversity was examined along a latitudinal gradient (55-83°N), spanning subarctic taiga, tundra, polar desert, and the High Arctic ice shelves. The prokaryotic and eukaryotic communities were targeted, respectively, by V4 16S ribosomal RNA (rRNA) and V9 18S rRNA gene amplicon high-throughput sequencing. Prokaryotic and eukaryotic richness decreased, in tandem with decreasing temperatures and shorter seasons of light availability, from the subarctic to the High Arctic. Taxonomy-based annotation of the protist community revealed diverse phototrophic, mixotrophic, and heterotrophic genera in all mat communities, with fewer parasitic taxa in High Arctic communities. Co-occurrence network analysis identified greater heterogeneity in eukaryotic than prokaryotic community structure among cyanobacterial mats across the Canadian Arctic. Our findings highlight the sensitivity of microbial eukaryotes to environmental gradients across northern high latitudes.
Collapse
Affiliation(s)
- Patrick M Hooper
- Science Department, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - David Bass
- Science Department, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB, United Kingdom
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Edward J Feil
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Warwick F Vincent
- Département de Biologie, Takuvik International Research Laboratory and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Connie Lovejoy
- Département de Biologie, Takuvik International Research Laboratory and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, G1V 0A6, Canada
- Québec Océan, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christopher J Owen
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Stephania L Tsola
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Anne D Jungblut
- Science Department, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
| |
Collapse
|
26
|
Cohen Y, Johnke J, Abed-Rabbo A, Pasternak Z, Chatzinotas A, Jurkevitch E. Unbalanced predatory communities and a lack of microbial degraders characterize the microbiota of a highly sewage-polluted Eastern-Mediterranean stream. FEMS Microbiol Ecol 2024; 100:fiae069. [PMID: 38684474 PMCID: PMC11099661 DOI: 10.1093/femsec/fiae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/10/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Wastewater pollution of water resources takes a heavy toll on humans and on the environment. In highly polluted water bodies, self-purification is impaired, as the capacity of the riverine microbes to regenerate the ecosystem is overwhelmed. To date, information on the composition, dynamics and functions of the microbial communities in highly sewage-impacted rivers is limited, in particular in arid and semi-arid environments. In this year-long study of the highly sewage-impacted Al-Nar/Kidron stream in the Barr al-Khalil/Judean Desert east of Jerusalem, we show, using 16S and 18S rRNA gene-based community analysis and targeted qPCR, that both the bacterial and micro-eukaryotic communities, while abundant, exhibited low stability and diversity. Hydrolyzers of organics compounds, as well as nitrogen and phosphorus recyclers were lacking, pointing at reduced potential for regeneration. Furthermore, facultative bacterial predators were almost absent, and the obligate predators Bdellovibrio and like organisms were found at very low abundance. Finally, the micro-eukaryotic predatory community differed from those of other freshwater environments. The lack of essential biochemical functions may explain the stream's inability to self-purify, while the very low levels of bacterial predators and the disturbed assemblages of micro-eukaryote predators present in Al-Nar/Kidron may contribute to community instability and disfunction.
Collapse
Affiliation(s)
- Yossi Cohen
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Presently at DayTwo, Rehovot, Israel
| | - Julia Johnke
- Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel, Kiel, Germany
| | | | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Presently at the Division of Identification and Forensic Science, Israel Police, National Headquarters
| | - Antonis Chatzinotas
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute of Biology, Leipzig University, Talstrasse 33, 04103 Leipzig, Germany
- Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
27
|
Mukherjee I, Grujčić V, Salcher MM, Znachor P, Seďa J, Devetter M, Rychtecký P, Šimek K, Shabarova T. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. ENVIRONMENTAL MICROBIOME 2024; 19:31. [PMID: 38720385 PMCID: PMC11080224 DOI: 10.1186/s40793-024-00574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Protists are essential contributors to eukaryotic diversity and exert profound influence on carbon fluxes and energy transfer in freshwaters. Despite their significance, there is a notable gap in research on protistan dynamics, particularly in the deeper strata of temperate lakes. This study aimed to address this gap by integrating protists into the well-described spring dynamics of Římov reservoir, Czech Republic. Over a 2-month period covering transition from mixing to established stratification, we collected water samples from three reservoir depths (0.5, 10 and 30 m) with a frequency of up to three times per week. Microbial eukaryotic and prokaryotic communities were analysed using SSU rRNA gene amplicon sequencing and dominant protistan groups were enumerated by Catalysed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). Additionally, we collected samples for water chemistry, phyto- and zooplankton composition analyses. RESULTS Following the rapid changes in environmental and biotic parameters during spring, protistan and bacterial communities displayed swift transitions from a homogeneous community to distinct strata-specific communities. A prevalence of auto- and mixotrophic protists dominated by cryptophytes was associated with spring algal bloom-specialized bacteria in the epilimnion. In contrast, the meta- and hypolimnion showcased a development of a protist community dominated by putative parasitic Perkinsozoa, detritus or particle-associated ciliates, cercozoans, telonemids and excavate protists (Kinetoplastida), co-occurring with bacteria associated with lake snow. CONCLUSIONS Our high-resolution sampling matching the typical doubling time of microbes along with the combined microscopic and molecular approach and inclusion of all main components of the microbial food web allowed us to unveil depth-specific populations' successions and interactions in a deep lentic ecosystem.
Collapse
Affiliation(s)
- Indranil Mukherjee
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| | - Vesna Grujčić
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Michaela M Salcher
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Petr Znachor
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Jaromír Seďa
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Pavel Rychtecký
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
| | - Karel Šimek
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Tanja Shabarova
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, Na Sádkách 7, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
28
|
Quiñonero-Coronel MDM, Devos DP, Garcillán-Barcia MP. Specificities and commonalities of the Planctomycetes plasmidome. Environ Microbiol 2024; 26:e16638. [PMID: 38733104 DOI: 10.1111/1462-2920.16638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Plasmids, despite their critical role in antibiotic resistance and modern biotechnology, are understood in only a few bacterial groups in terms of their natural ecological dynamics. The bacterial phylum Planctomycetes, known for its unique molecular and cellular biology, has a largely unexplored plasmidome. This study offers a thorough exploration of the diversity of natural plasmids within Planctomycetes, which could serve as a foundation for developing various genetic research tools for this phylum. Planctomycetes plasmids encode a broad range of biological functions and appear to have coevolved significantly with their host chromosomes, sharing many homologues. Recent transfer events of insertion sequences between cohabiting chromosomes and plasmids were also observed. Interestingly, 64% of plasmid genes are distantly related to either chromosomally encoded genes or have homologues in plasmids from other bacterial groups. The planctomycetal plasmidome is composed of 36% exclusive proteins. Most planctomycetal plasmids encode a replication initiation protein from the Replication Protein A family near a putative iteron-containing replication origin, as well as active type I partition systems. The identification of one conjugative and three mobilizable plasmids suggests the occurrence of horizontal gene transfer via conjugation within this phylum. This comprehensive description enhances our understanding of the plasmidome of Planctomycetes and its potential implications in antibiotic resistance and biotechnology.
Collapse
Affiliation(s)
| | - Damien Paul Devos
- Centro Andaluz de Biología del Desarrollo (CABD, CSIC-Universidad Pablo de Olavide), Sevilla, Spain
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, CSIC-Universidad de Cantabria), Cantabria, Spain
| |
Collapse
|
29
|
Liu Q, Jia J, Hu H, Li X, Zhao Y, Wu C. Nitrogen and phosphorus limitations promoted bacterial nitrate metabolism and propagation of antibiotic resistome in the phycosphere of Auxenochlorella pyrenoidosa. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133786. [PMID: 38367442 DOI: 10.1016/j.jhazmat.2024.133786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Despite that nitrogen (N) and phosphorus (P) play critical roles in the lifecycle of microalgae, how N and P further affect the distribution of bacteria and antibiotic resistance genes (ARGs) in the phycosphere is still poorly understood. In this study, the effects of N and P on the distribution of ARGs in the phycosphere of Auxenochlorella pyrenoidosa were investigated. Results showed that the growth and chlorophyll synthesis of microalgae were inhibited when N or P was limited, regardless of the N/P ratios, but the extracellular polymeric substances content and nitrate assimilation efficiency were enhanced in contrast. Metagenomic sequencing revealed that N or P limitation resulted in the recruitment of specific bacteria that highly contribute to the nitrate metabolism in the phycosphere. Besides, N or P limitation promoted the propagation of phycosphere ARGs, primarily through horizontal gene transfer mediated by mobile genetic elements. The enrichment of specific bacteria induced by changes in the algal physiology also contributed to the ARGs proliferation under nutrient limitation. Our results demonstrated that the reduction of algal cells caused by nutrient limitation could promote the propagation of ARGs, which provides new insights into the occurrence and spread of ARGs in the phycosphere.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jia Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yanhui Zhao
- Ecology and Environment Monitoring and Scientific Research Center, Yangtze Basin Ecology and Environment Administration, Ministry of Ecological and Environment, Wuhan 430010, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
30
|
Wurzbacher CE, Haufschild T, Hammer J, van Teeseling MCF, Kallscheuer N, Jogler C. Planctoellipticum variicoloris gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from wastewater of the aeration lagoon of a sugar processing plant in Northern Germany. Sci Rep 2024; 14:5741. [PMID: 38459238 PMCID: PMC10923784 DOI: 10.1038/s41598-024-56373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
In the present study, we characterise a strain isolated from the wastewater aeration lagoon of a sugar processing plant in Schleswig (Northern Germany) by Heinz Schlesner. As a pioneer in planctomycetal research, he isolated numerous strains belonging to the phylum Planctomycetota from aquatic habitats around the world. Phylogenetic analyses show that strain SH412T belongs to the family Planctomycetaceae and shares with 91.6% the highest 16S rRNA gene sequence similarity with Planctopirus limnophila DSM 3776T. Its genome has a length of 7.3 Mb and a G + C content of 63.6%. Optimal growth of strain SH412T occurs at pH 7.0-7.5 and 28 °C with its pigmentation depending on sunlight exposure. Strain SH412T reproduces by polar asymmetric division ("budding") and forms ovoid cells. The cell size determination was performed using a semi-automatic pipeline, which we first evaluated with the model species P. limnophila and then applied to strain SH412T. Furthermore, the data acquired during time-lapse analyses suggests a lifestyle switch from flagellated daughter cells to non-flagellated mother cells in the subsequent cycle. Based on our data, we suggest that strain SH412T represents a novel species within a novel genus, for which we propose the name Planctoellipticum variicoloris gen. nov., sp. nov., with strain SH412T (= CECT 30430T = STH00996T, the STH number refers to the Jena Microbial Resource Collection JMRC) as the type strain of the new species.
Collapse
Affiliation(s)
- Carmen E Wurzbacher
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Muriel C F van Teeseling
- Junior Research Group "Prokaryotic Cell Biology", Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
31
|
Hancock TL, Dahedl EK, Kratz MA, Urakawa H. Bacterial community shifts induced by high concentration hydrogen peroxide treatment of Microcystis bloom in a mesocosm study. HARMFUL ALGAE 2024; 133:102587. [PMID: 38485437 DOI: 10.1016/j.hal.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Hydrogen peroxide has gained popularity as an environmentally friendly treatment for cyanobacterial harmful algal blooms (cHABs) that takes advantage of oxidative stress sensitivity in cyanobacteria at controlled concentrations. Higher concentrations of hydrogen peroxide treatments may seem appealing for more severe cHABs but there is currently little understanding of the environmental impacts of this approach. Of specific concern is the associated microbial community, which may play key roles in the succession/recovery process post-treatment. To better understand impacts of a high concentration treatment on non-target microbial communities, we applied a hydrogen peroxide spray equating to a total volume concentration of 14 mM (473 mg/L, 0.04%) to 250 L mesocosms containing Microcystis bloom biomass, monitoring treatment and control mesocosms for 4 days. Cyanobacteria dominated control mesocosms throughout the experiment while treatment mesocosms experienced a 99% reduction, as determined by bacterial amplicon sequencing, and a 92% reduction in bacterial cell density within 1 day post-treatment. Only the bacterial community exhibited signs of regrowth, with a fold change of 9.2 bacterial cell density from day 1 to day 2. Recovery consisted of succession by Planctomycetota (47%) and Gammaproteobacteria (17%), which were likely resilient due to passive cell component compartmentalization and rapid upregulation of dnaK and groEL oxidative stress genes, respectively. The altered microbiome retained beneficial functionality of microcystin degradation through a currently recognized but unidentified pathway in Gammaproteobacteria, resulting in a 70% reduction coinciding with bacterial regrowth. There was also an 81% reduction of both total nitrogen and phosphorus, as compared to 91 and 93% in the control, respectively, due to high expressions of genes related to nitrogen (argH, carB, glts, glnA) and phosphorus (pntAB, phoB, pstSCB) cycling. Overall, we found a portion of the bacterial community was resilient to the high-concentration hydrogen peroxide treatment, resulting in Planctomycetota and Gammaproteobacteria dominance. This high-concentration treatment may be suitable to rapidly end cHABs which have already negatively impacted the aquatic environment rather than allow them to persist.
Collapse
Affiliation(s)
- Taylor L Hancock
- School of Geosciences, University of South Florida, Tampa, FL 33620, United States; Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Elizabeth K Dahedl
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Michael A Kratz
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Hidetoshi Urakawa
- School of Geosciences, University of South Florida, Tampa, FL 33620, United States; Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, United States.
| |
Collapse
|
32
|
Milke L, Kabuu M, Zschoche R, Gätgens J, Krumbach K, Carlstedt KL, Wurzbacher CE, Balluff S, Beemelmanns C, Jogler C, Marienhagen J, Kallscheuer N. A type III polyketide synthase cluster in the phylum Planctomycetota is involved in alkylresorcinol biosynthesis. Appl Microbiol Biotechnol 2024; 108:239. [PMID: 38407604 PMCID: PMC10896814 DOI: 10.1007/s00253-024-13065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Members of the bacterial phylum Planctomycetota have recently emerged as promising and for the most part untapped sources of novel bioactive compounds. The characterization of more than 100 novel species in the last decade stimulated recent bioprospection studies that start to unveil the chemical repertoire of the phylum. In this study, we performed systematic bioinformatic analyses based on the genomes of all 131 described members of the current phylum focusing on the identification of type III polyketide synthase (PKS) genes. Type III PKSs are versatile enzymes involved in the biosynthesis of a wide array of structurally diverse natural products with potent biological activities. We identified 96 putative type III PKS genes of which 58 are encoded in an operon with genes encoding a putative oxidoreductase and a methyltransferase. Sequence similarities on protein level and the genetic organization of the operon point towards a functional link to the structurally related hierridins recently discovered in picocyanobacteria. The heterologous expression of planctomycetal type III PKS genes from strains belonging to different families in an engineered Corynebacterium glutamicum strain led to the biosynthesis of pentadecyl- and heptadecylresorcinols. Phenotypic assays performed with the heterologous producer strains and a constructed type III PKS gene deletion mutant suggest that the natural function of the identified compounds differs from that confirmed in other bacterial alkylresorcinol producers. KEY POINTS: • Planctomycetal type III polyketide synthases synthesize long-chain alkylresorcinols. • Phylogenetic analyses suggest an ecological link to picocyanobacterial hierridins. • Engineered C. glutamicum is suitable for an expression of planctomycete-derived genes.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Renè Zschoche
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karin Krumbach
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Kim-Loreen Carlstedt
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Carmen E Wurzbacher
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Sven Balluff
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
| | - Christine Beemelmanns
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
33
|
Stuij TM, Cleary DFR, Rocha RJM, Polónia ARM, Silva DAM, Louvado A, de Voogd NJ, Gomes NCM. Impacts of humic substances, elevated temperature, and UVB radiation on bacterial communities of the marine sponge Chondrilla sp. FEMS Microbiol Ecol 2024; 100:fiae022. [PMID: 38366951 PMCID: PMC10939426 DOI: 10.1093/femsec/fiae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
Sponges are abundant components of coral reefs known for their filtration capabilities and intricate interactions with microbes. They play a crucial role in maintaining the ecological balance of coral reefs. Humic substances (HS) affect bacterial communities across terrestrial, freshwater, and marine ecosystems. However, the specific effects of HS on sponge-associated microbial symbionts have largely been neglected. Here, we used a randomized-controlled microcosm setup to investigate the independent and interactive effects of HS, elevated temperature, and UVB radiation on bacterial communities associated with the sponge Chondrilla sp. Our results indicated the presence of a core bacterial community consisting of relatively abundant members, apparently resilient to the tested environmental perturbations, alongside a variable bacterial community. Elevated temperature positively affected the relative abundances of ASVs related to Planctomycetales and members of the families Pseudohongiellaceae and Hyphomonadaceae. HS increased the relative abundances of several ASVs potentially involved in recalcitrant organic matter degradation (e.g., the BD2-11 terrestrial group, Saccharimonadales, and SAR202 clade). There was no significant independent effect of UVB and there were no significant interactive effects of HS, heat, and UVB on bacterial diversity and composition. The significant, independent impact of HS on the composition of sponge bacterial communities suggests that alterations to HS inputs may have cascading effects on adjacent marine ecosystems.
Collapse
Affiliation(s)
- Tamara M Stuij
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Rui J M Rocha
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Davide A M Silva
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Antonio Louvado
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands
- Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Newton C M Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
34
|
Rzehak T, Praeg N, Zink H, Simon A, Geitner C, Illmer P. Microbial perspective of inhibited carbon turnover in Tangel humus of the Northern Limestone Alps. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13215. [PMID: 38062558 PMCID: PMC10866079 DOI: 10.1111/1758-2229.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/01/2023] [Indexed: 02/15/2024]
Abstract
Tangel humus primarily occurs in montane and subalpine zones of the calcareous Alps that exhibit low temperatures and high precipitation sums. This humus form is characterized by inhibited carbon turnover and accumulated organic matter, leading to the typical thick organic layers. However, the reason for this accumulation of organic matter is still unclear, and knowledge about the microbial community within Tangel humus is lacking. Therefore, we investigated the prokaryotic and fungal communities along with the physical and chemical properties within a depth gradient (0-10, 10-20, 20-30, 30-40, 40-50 cm) of a Tangel humus located in the Northern Limestone Alps. We hypothesized that humus properties and microbial activity, biomass, and diversity differ along the depth gradient and that microbial key players refer to certain humus depths. Our results give the first comprehensive information about microbiota within the Tangel humus and establish a microbial zonation of the humus. Microbial activity, biomass, as well as microbial alpha diversity significantly decreased with increasing depths. We identified microbial biomarkers for both, the top and the deepest depth, indicating different, microbial habitats. The microbial characterization together with the established nutrient deficiencies in the deeper depths might explain reduced C-turnover and Tangel humus formation.
Collapse
Affiliation(s)
- Theresa Rzehak
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Nadine Praeg
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| | - Harald Zink
- Department of GeographyUniversität InnsbruckInnsbruckAustria
| | - Alois Simon
- Department of Forest PlanningOffice of the Tyrolean GovernmentInnsbruckAustria
| | - Clemens Geitner
- Department of GeographyUniversität InnsbruckInnsbruckAustria
| | - Paul Illmer
- Department of MicrobiologyUniversität InnsbruckInnsbruckAustria
| |
Collapse
|
35
|
Zheng R, Wang C, Liu R, Cai R, Sun C. Physiological and metabolic insights into the first cultured anaerobic representative of deep-sea Planctomycetes bacteria. eLife 2024; 12:RP89874. [PMID: 38265071 PMCID: PMC10945688 DOI: 10.7554/elife.89874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Planctomycetes bacteria are ubiquitously distributed across various biospheres and play key roles in global element cycles. However, few deep-sea Planctomycetes members have been cultivated, limiting our understanding of Planctomycetes in the deep biosphere. Here, we have successfully cultured a novel strain of Planctomycetes (strain ZRK32) from a deep-sea cold seep sediment. Our genomic, physiological, and phylogenetic analyses indicate that strain ZRK32 is a novel species, which we propose be named: Poriferisphaera heterotrophicis. We show that strain ZRK32 replicates using a budding mode of division. Based on the combined results from growth assays and transcriptomic analyses, we found that rich nutrients, or supplementation with NO3- or NH4+ promoted the growth of strain ZRK32 by facilitating energy production through the tricarboxylic acid cycle and the Embden-Meyerhof-Parnas glycolysis pathway. Moreover, supplementation with NO3- or NH4+ induced strain ZRK32 to release a bacteriophage in a chronic manner, without host cell lysis. This bacteriophage then enabled strain ZRK32, and another marine bacterium that we studied, to metabolize nitrogen through the function of auxiliary metabolic genes. Overall, these findings expand our understanding of deep-sea Planctomycetes bacteria, while highlighting their ability to metabolize nitrogen when reprogrammed by chronic viruses.
Collapse
Affiliation(s)
- Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega-Science, Chinese Academy of SciencesQingdaoChina
- College of Earth Science, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
36
|
Vitorino IR, Pinto E, Martín J, Mackenzie TA, Ramos MC, Sánchez P, de la Cruz M, Vicente F, Vasconcelos V, Reyes F, Lage OM. Uncovering the biotechnological capacity of marine and brackish water Planctomycetota. Antonie Van Leeuwenhoek 2024; 117:26. [PMID: 38261060 PMCID: PMC10805854 DOI: 10.1007/s10482-023-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
An appealing strategy for finding novel bioactive molecules in Nature consists in exploring underrepresented and -studied microorganisms. Here, we investigated the antimicrobial and tumoral anti-proliferative bioactivities of twenty-three marine and estuarine bacteria of the fascinating phylum Planctomycetota. This was achieved through extraction of compounds produced by the Planctomycetota cultured in oligotrophic medium followed by an antimicrobial screening against ten relevant human pathogens including Gram-positive and Gram-negative bacteria, and fungi. Cytotoxic effects of the extracts were also evaluated against five tumoral cell lines. Moderate to potent activities were obtained against Enterococcus faecalis, methicillin-sensitive and methicillin-resistant Staphylococcus aureus and vancomycin-sensitive and vancomycin-resistant Enterococcus faecium. Anti-fungal effects were observed against Trichophyton rubrum, Candida albicans and Aspergillus fumigatus. The highest cytotoxic effects were observed against human breast, pancreas and melanoma tumoral cell lines. Novipirellula caenicola and Rhodopirellula spp. strains displayed the widest spectrum of bioactivities while Rubinisphaera margarita ICM_H10T affected all Gram-positive bacteria tested. LC-HRMS analysis of the extracts did not reveal the presence of any known bioactive natural product, suggesting that the observed activities are most likely caused by novel molecules, that need identification. In summary, we expanded the scope of planctomycetal species investigated for bioactivities and demonstrated that various strains are promising sources of novel bioactive compounds, which reenforces the potential biotechnological prospects offered by Planctomycetota.
Collapse
Affiliation(s)
- Inês R Vitorino
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Eugénia Pinto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Jesús Martín
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Thomas A Mackenzie
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Maria C Ramos
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Pilar Sánchez
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Vítor Vasconcelos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Fernando Reyes
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
| |
Collapse
|
37
|
Kallscheuer N, Wurzbacher CE, Schmitz RA, Jogler C. In the footsteps of Heinz Schlesner and Peter Hirsch: Exploring the untapped diversity of the phylum Planctomycetota in isolates from the 1980s to the early 2000s. Syst Appl Microbiol 2024; 47:126486. [PMID: 38104493 DOI: 10.1016/j.syapm.2023.126486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Recent sampling and strain isolation campaigns have accelerated research on the bacterial phylum Planctomycetota. The contribution of more than 100 novel isolates to the open collection of currently 123 described planctomycetal species in the last decade benefited greatly from pioneering work conducted in the second half of the last century. One of those pioneers was Heinz Schlesner, who investigated budding and prosthecate bacteria from habitats world-wide during his time at Christian-Albrechts-University Kiel. An outcome of his research was a strain collection with more than 500 isolates belonging to different bacterial phyla, many of which are uncharacterised members of the phylum Planctomycetota. Due to the lack of affordable genome sequencing techniques at the time of their isolation, most of them were characterised based on phenotypic features and DNA-DNA hybridisation experiments. After the retirement of Heinz Schlesner in 2002, the collection was stored for several years and transferred to Jena in 2019. To get a glimpse on the diversity of members from the phylum Planctomycetota in Schlesner's collection, we here summarised from his records and publications all available information about the collection regarding sampling habitat and phylogeny. Furthermore, we conducted an updated phylogenetic analysis for a representative excerpt of the collection based on the 16S rRNA gene sequence of 59 strains Schlesner deposited in the NCBI database during strain characterisation studies published in the 1980s until the early 2000s. The results support that strains from his collection are still a valuable contribution to expand the cultivated diversity of the understudied phylum Planctomycetota.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Carmen E Wurzbacher
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
38
|
Sliti A, Singh V, Ibal JC, Jeong M, Shin JH. Impact of propiconazole fungicide on soil microbiome (bacterial and fungal) diversity, functional profile, and associated dehydrogenase activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8240-8253. [PMID: 38175519 DOI: 10.1007/s11356-023-31643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Pesticides, protect crops but can harm the environment and human health when used without caution. This study evaluated the impact of propiconazole, a fungicide that acts on fungal cell membranes, on soil microbiome abundance, diversity, and functional profile, as well as soil dehydrogenase activity (DHA). The study conducted microcosm experiments using soil samples treated with propiconazole and employed next-generation sequencing (MiSeq) and chromatographic approaches (GC-MS/MS) to analyze the shift in microbial communities and propiconazole level, respectively. The results showed that propiconazole significantly altered the distribution of microbial communities, with notable changes in the abundance of various bacterial and fungal taxa. Among soil bacterial communities, the relative abundance of Proteobacteria and Planctomycetota increased, while that of Acidobacteria decreased after propiconazole treatment. In the fungal communities, propiconazole increased the abundance of Ascomycota and Basidiomycota in the treated soil, while that of Mortierellomycota was reduced. Fungicide application further triggered a significant decrease in DHA over time. Analysis of the functional profile of bacterial communities showed that propiconazole significantly affected bacterial cellular and metabolic pathways. The carbon degradation pathway was upregulated, indicating the microbial detoxification of the contaminant in the treated soil. Our findings suggest that propiconazole application has a discernible impact on soil microbial communities, which could have long-term consequences for soil health, quality, and function.
Collapse
Affiliation(s)
- Amani Sliti
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jerald Conrad Ibal
- Department of Biological Sciences, Idaho State University, Pocatello, ID, 83209, USA
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- NGS Core Facility, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
39
|
Cha QQ, Liu SS, Dang YR, Ren XB, Xu F, Li PY, Chen XL, Wang P, Zhang XY, Zhang YZ, Qin QL. Ecological function and interaction of different bacterial groups during alginate processing in coastal seawater community. ENVIRONMENT INTERNATIONAL 2023; 182:108325. [PMID: 37995388 DOI: 10.1016/j.envint.2023.108325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.
Collapse
Affiliation(s)
- Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Sha-Sha Liu
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Yan-Ru Dang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
40
|
Fuster M, Ruiz T, Lamarque A, Coulon M, Legrand B, Sabart M, Latour D, Mallet C. Cyanosphere Dynamic During Dolichospermum Bloom: Potential Roles in Cyanobacterial Proliferation. MICROBIAL ECOLOGY 2023; 87:3. [PMID: 38008821 DOI: 10.1007/s00248-023-02317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/24/2023] [Indexed: 11/28/2023]
Abstract
Under the effect of global change, management of cyanobacterial proliferation becomes increasingly pressing. Given the importance of interactions within microbial communities in aquatic ecosystems, a handful of studies explored the potential relations between cyanobacteria and their associated bacterial community (i.e., cyanosphere). Yet, most of them specifically focused on the ubiquitous cyanobacteria Microcystis, overlooking other genera. Here, based on 16s rDNA metabarcoding analysis, we confirmed the presence of cyanosphere representing up to 30% of the total bacterial community diversity, during bloom episode of another preponderant cyanobacterial genus, Dolichospermum. Moreover, we highlighted a temporal dynamic of this cyanosphere. A sPLS-DA model permits to discriminate three important dates and 220 OTUs. With their affiliations, we were able to show how these variations potentially imply a turnover in ecological functions depending on bloom phases. Although more studies are necessary to quantify the impacts of these variations, we argue that cyanosphere can have an important, yet underestimated, role in the modulation of cyanobacterial blooms.
Collapse
Affiliation(s)
- Maxime Fuster
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France.
| | - Thomas Ruiz
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Amélie Lamarque
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Marianne Coulon
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | | | - Marion Sabart
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Delphine Latour
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| | - Clarisse Mallet
- Université Clermont Auvergne, CNRS, LMGE, F-63000, Clermont-Ferrand, France
| |
Collapse
|
41
|
Jin Y, Huang Y, Luo H, Wang L, Chen B, Zhang Y, Deng K, Zhao N, Lai A. Effects of replacing hybrid giant napier with sugarcane bagasse and fermented sugarcane bagasse on growth performance, nutrient digestibility, rumen fermentation characteristics, and rumen microorganisms of Simmental crossbred cattle. Front Microbiol 2023; 14:1236955. [PMID: 38045032 PMCID: PMC10693430 DOI: 10.3389/fmicb.2023.1236955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023] Open
Abstract
This study investigated the effects of replacing hybrid giant napiers with sugarcane bagasse and fermented sugarcane bagasse on the growth performance, apparent nutrient digestibility, rumen fermentation characteristics, and rumen microorganisms of Simmental crossbred cattle. Twenty-one Simmental crossbred cattle with similar initial body weight (363.42 ± 8.67 kg) were randomly divided into three groups: Group CON (20% hybrid giant napier +45% distillers grains +35% concentrate mixture), Group SB (20% sugarcane bagasse +45% distillers grains +35% concentrate mixture), and Group FSB (20% fermented sugarcane bagasse +45% distillers grains +35% concentrate mixture). The average daily weight gain in the SB group was lower than in the CON group, no significant difference was found between the CON and FSB groups. The feed conversion ratio of the CON and FSB groups was lower compared to the SB group. The apparent digestibility of neutral detergent fiber and acid detergent fiber in the SB group was lower than in the CON group, no significant difference was found between the CON and FSB groups. The levels of NH3-N, microbial protein, acetate, propionate, butyrate, isobutyrate, and total volatile fatty acids were higher in the CON and FSB groups than in the SB group, no significant difference was found between the CON and FSB groups. The relative abundances of Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-003, Saccharofermentans, and Eubacteriumcoprostanoligenes_group were lower in the CON and FSB groups compared to the SB group. The relative abundance of Succiniclasticum was highest in the FSB group, followed by the CON group and then the SB group. Correlation analysis showed that the relative abundance of Succiniclasticum was positively correlated with propionate and NH3-N content, while the relative abundance of Rikenellaceae_RC9_gut_group was inversely correlated with NH3-N content. Gene function prediction indicated that fermented sugarcane bagasse promoted rumen microbial amino acid metabolism. In conclusion, replacing hybrid giant napiers with 20% sugarcane bagasse negatively affected the growth performance of Simmental crossbred cattle, while the addition of 20% fermented sugarcane bagasse had no adverse effects on growth performance and rumen fermentation characteristics, and did not alter the abundance of the rumen core flora in Simmental crossbred cattle.
Collapse
Affiliation(s)
- Yadong Jin
- College of Animal Science, Xichang University, Xichang, China
| | - Yanru Huang
- College of Animal Science, Xichang University, Xichang, China
| | - Haocen Luo
- College of Animal Science, Xichang University, Xichang, China
| | - Langzhou Wang
- College of Animal Science, Xichang University, Xichang, China
| | - Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
- Sichuan Key Laboratory of Goats with Local Characteristics, Xichang, China
| | - Yi Zhang
- College of Animal Science, Xichang University, Xichang, China
- Sichuan Key Laboratory of Goats with Local Characteristics, Xichang, China
| | - Kaimei Deng
- Ningnan County Rural Industry Technology Service Center, Liangshan, China
| | - Ningbo Zhao
- Ningnan County Rural Industry Technology Service Center, Liangshan, China
| | - Anqiang Lai
- College of Animal Science, Xichang University, Xichang, China
| |
Collapse
|
42
|
Stevens JTE, Ray NE, Al-Haj AN, Fulweiler RW, Chowdhury PR. Oyster aquaculture enhances sediment microbial diversity- Insights from a multi-omics study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566866. [PMID: 38014072 PMCID: PMC10680616 DOI: 10.1101/2023.11.13.566866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The global aquaculture industry has grown substantially, with consequences for coastal ecology and biogeochemistry. Oyster aquaculture can alter the availability of resources for microbes that live in sediments as oysters move large quantities of organic material to the sediments via filter feeding, possibly leading to changes in the structure and function of sediment microbial communities. Here, we use a chronosequence approach to investigate the impacts of oyster farming on sediment microbial communities over 7 years of aquaculture activity in a temperate coastal system. We detected shifts in bacterial composition (16S rRNA amplicon sequencing), changes in gene expression (meta-transcriptomics), and variations in sediment elemental concentrations (sediment geochemistry) across different durations of oyster farming. Our results indicate that both the structure and function of bacterial communities vary between control (no oysters) and farm sites, with an overall increase in diversity and a shift towards anoxic tolerance in farm sites. However, little to no variation was observed in either structure or function with respect to farming duration suggesting these sediment microbial communities are resilient to change. We also did not find any significant impact of farming on heavy metal accumulation in the sediments. The minimal influence of long-term oyster farming on sediment bacterial function and biogeochemical processes as observed here can bear important consequences for establishing best practices for sustainable farming in these areas. Importance Sediment microbial communities drive a range of important ecosystem processes such as nutrient recycling and filtration. Oysters are well-known ecological engineers, and their presence is increasing as aquaculture expands in coastal waters globally. Determining how oyster aquaculture impacts sediment microbial processes is key to understanding current and future estuarine biogeochemical processes. Here, we use a multi-omics approach to study the effect of different durations of oyster farming on the structure and function of bacteria and elemental accumulation in the farm sediments. Our results indicate an increase in the diversity of bacterial communities in the farm sites with no such increases observed for elemental concentrations. Further, these effects persist across multiple years of farming with an increase of anoxic tolerant bacteria at farm sites. The multi-omics approach used in this study can serve as a valuable tool to facilitate understanding of the environmental impacts of oyster aquaculture.
Collapse
|
43
|
Rivas-Marin E, Moyano-Palazuelo D, Henriques V, Merino E, Devos DP. Essential gene complement of Planctopirus limnophila from the bacterial phylum Planctomycetes. Nat Commun 2023; 14:7224. [PMID: 37940686 PMCID: PMC10632474 DOI: 10.1038/s41467-023-43096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Planctopirus limnophila belongs to the bacterial phylum Planctomycetes, a relatively understudied lineage with remarkable cell biology features. Here, we report a genome-wide analysis of essential gene content in P. limnophila. We show that certain genes involved in peptidoglycan synthesis or cell division, which are essential in most other studied bacteria, are not essential for growth under laboratory conditions in this species. We identify essential genes likely involved in lipopolysaccharide biosynthesis, consistent with the view of Planctomycetes as diderm bacteria, and highlight other essential genes of unknown functions. Furthermore, we explore potential stages of evolution of the essential gene repertoire in Planctomycetes and the related phyla Verrucomicrobia and Chlamydiae. Our results provide insights into the divergent molecular and cellular biology of Planctomycetes.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain.
| | - David Moyano-Palazuelo
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain
| | - Valentina Henriques
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain.
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, University of Lille, Lille, France.
| |
Collapse
|
44
|
Chang J, Shen FT, Lai WA, Liao CS, Chen WC. Co-exposure of dimethomorph and imidacloprid: effects on soil bacterial communities in vineyard soil. Front Microbiol 2023; 14:1249167. [PMID: 38029114 PMCID: PMC10653314 DOI: 10.3389/fmicb.2023.1249167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
In Taiwan, the pesticides dimethomorph and imidacloprid are recommended for pest control in vineyards. Therefore, tank-mixing of these two pesticides is usually a routine practice before application. This study analyzed the influence of vineyard soil microbial flora under the recommended and high dosages (100 times the recommended dosage) of dimethomorph and imidacloprid. Individual and combined applications of pesticides were also tested through batches of soil incubation experiments. Four treatments-control (C), dimethomorph (DT), imidacloprid (IM), and mixed application of dimethomorph and imidacloprid (ID)-were used in the experimental design. From the soil metabolism, no significant reaction was observed after 2 months in the recommended dosage group, regardless of whether the pesticides were being applied individually or combined. For the high dosage, imidacloprid showed a higher effect than the co-exposure treatments, showing a possible prolonged effect after its repetitive application. From PCoA analysis, pesticide treatments altered the soil ecology after 2 months, and the effect of imidacloprid can be explicitly observed at high dosages. At the phylum level, Acidobacteria can indicate pesticide application around the recommended dosage. It was inhibited by ID on day 7 and was augmented by all pesticides on day 63. The effect of the recommended dosage of pesticide mixtures after 2 months of incubation was revealed in the minor families Gemmataceae and Pirellulaceae, while the high dosage treatments affected both the core and the minor families. Our findings verified the changes in the composition of microbial communities upon pesticide application, which would affect carbon, nitrogen, sulfur, phosphorous cycles, and contaminant removal ability within the vineyard.
Collapse
Affiliation(s)
- Jean Chang
- International Master Program in Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Fo-Ting Shen
- Department of Soil and Environmental Science, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, Taiwan
| | - Wei-An Lai
- Department of Soil and Environmental Science, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Sen Liao
- Department of Medical Science & Biotechnology, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Ching Chen
- International Bachelor Program in Agribusiness, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
45
|
Martin-Pozas T, Fernandez-Cortes A, Cuezva S, Cañaveras JC, Benavente D, Duarte E, Saiz-Jimenez C, Sanchez-Moral S. New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165218. [PMID: 37419360 DOI: 10.1016/j.scitotenv.2023.165218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
In the absence of sunlight, caves harbor a great diversity of microbial colonies to extensive biofilms with different sizes and colors visible to the naked eye. One of the most widespread and visible types of biofilm are those with yellow hues that can constitute a serious problem for the conservation of cultural heritage in many caves, such as Pindal Cave (Asturias, Spain). This cave, declared a World Heritage Site by UNESCO for its Paleolithic parietal art, shows a high degree of development of yellow biofilms that represents a real threat to the conservation of painted and engraved figures. This study aims to: 1) identify the microbial structures and the most characteristic taxa composing the yellow biofilms, 2) seek the linked microbiome reservoir primarily contributing to their growth; 3) seed light on the driving vectors that contribute to their formation and determine the subsequent proliferation and spatial distribution. To achieve this goal, we used amplicon-based massive sequencing, in combination with other techniques such as microscopy, in situ hybridization and environmental monitoring, to compare the microbial communities of yellow biofilms with those of drip waters, cave sediments and exterior soil. The results revealed microbial structures related to the phylum Actinomycetota and the most characteristic bacteria in yellow biofilms, represented by the genera wb1-P19, Crossiella, Nitrospira, and Arenimonas. Our findings suggest that sediments serve as potential reservoirs and colonization sites for these bacteria that can develop into biofilms under favorable environmental and substrate conditions, with a particular affinity for speleothems and rugged-surfaced rocks found in condensation-prone areas. This study presents an exhaustive study of microbial communities of yellow biofilms in a cave, which could be used as a procedure for the identification of similar biofilms in other caves and to design effective conservation strategies in caves with valuable cultural heritage.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | | | - Soledad Cuezva
- Department of Geology, Geography and Environment, University of Alcala, Campus Cientifico-Tecnologico, 28802 Alcala de Henares, Spain.
| | - Juan Carlos Cañaveras
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - David Benavente
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Elsa Duarte
- Department of History, University of Oviedo, 33011 Oviedo, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
46
|
Fan X, Ji M, Mu D, Zeng X, Tian Z, Sun K, Gao R, Liu Y, He X, Wu L, Li Q. Global diversity and biogeography of DNA viral communities in activated sludge systems. MICROBIOME 2023; 11:234. [PMID: 37865788 PMCID: PMC10589946 DOI: 10.1186/s40168-023-01672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/21/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses that regulate microbial metabolism and nutrient cycling, significantly influencing the stability of AS systems. However, our knowledge about the diversity of viral taxonomic groups and functional traits in global AS systems is still limited. To address this gap, we investigated the global diversity and biogeography of DNA viral communities in AS systems using 85,114 viral operational taxonomic units (vOTUs) recovered from 144 AS samples collected across 54 WWTPs from 13 different countries. RESULTS AS viral communities and their functional traits exhibited distance-decay relationship (DDR) at the global scale and latitudinal diversity gradient (LDG) from equator to mid-latitude. Furthermore, it was observed that AS viral community and functional gene structures were largely driven by the geographic factors and wastewater types, of which the geographic factors were more important. Carrying and disseminating auxiliary metabolic genes (AMGs) associated with the degradation of polysaccharides, sulfate reduction, denitrification, and organic phosphoester hydrolysis, as well as the lysis of crucial functional microbes that govern biogeochemical cycles were two major ways by which viruses could regulate AS functions. It was worth noting that our study revealed a high abundance of antibiotic resistance genes (ARGs) in viral genomes, suggesting that viruses were key reservoirs of ARGs in AS systems. CONCLUSIONS Our results demonstrated the highly diverse taxonomic groups and functional traits of viruses in AS systems. Viral lysis of host microbes and virus-mediated HGT can regulate the biogeochemical and nutrient cycles, thus affecting the performance of AS systems. These findings provide important insights into the viral diversity, function, and ecology in AS systems on a global scale. Video Abstract.
Collapse
Affiliation(s)
- Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China.
- Artificial Intelligence Institute, University of Jinan, Jinan, Shandong Province, China.
| | - Mengzhi Ji
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Dashuai Mu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong Province, China
- Marine College, Shandong University, Weihai, Shandong Province, China
| | - Xianghe Zeng
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Zhen Tian
- Artificial Intelligence Institute, University of Jinan, Jinan, Shandong Province, China
| | - Kaili Sun
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Rongfeng Gao
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China
| | - Yang Liu
- Artificial Intelligence Institute, University of Jinan, Jinan, Shandong Province, China
| | - Xinyuan He
- Artificial Intelligence Institute, University of Jinan, Jinan, Shandong Province, China
| | - Linwei Wu
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, China.
| |
Collapse
|
47
|
Kumar G, Kallscheuer N, Jogler M, Wiegand S, Heuer A, Boedeker C, Rohde M, Jogler C. Stratiformator vulcanicus gen. nov., sp. nov., a marine member of the family Planctomycetaceae isolated from a red biofilm in the Tyrrhenian Sea close to the volcanic island Panarea. Antonie Van Leeuwenhoek 2023; 116:995-1007. [PMID: 37584762 PMCID: PMC10509075 DOI: 10.1007/s10482-023-01860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
A novel planctomycetal strain, designated Pan189T, was isolated from biofilm material sampled close to Panarea Island in the Tyrrhenian Sea. Cells of strain Pan189T are round grain rice-shaped, form pink colonies and display typical planctomycetal characteristics including asymmetric cell division through polar budding and presence of crateriform structures. Cells bear a stalk opposite to the division pole and fimbriae cover the cell surface. Strain Pan189T has a mesophilic (optimum at 24 °C) and neutrophilic (optimum at pH 7.5) growth profile, is aerobic and heterotrophic. Under laboratory-scale cultivation conditions, it reached a generation time of 102 h (µmax = 0.0068 h-1), which places the strain among the slowest growing members of the phylum Planctomycetota characterized so far. The genome size of the strain is with 5.23 Mb at the lower limit among the family Planctomycetaceae (5.1-8.9 Mb). Phylogenetically, the strain represents a novel genus and species in the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. We propose the name Stratiformator vulcanicus gen. nov., sp. nov. for the novel taxon, that is represented by the type strain Pan189T (= DSM 101711 T = CECT 30699 T).
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
48
|
Campos MA, Zhang Q, Acuña JJ, Rilling JI, Ruiz T, Carrazana E, Reyno C, Hollenback A, Gray K, Jaisi DP, Ogram A, Bai J, Zhang L, Xiao R, Elias M, Sadowsky MJ, Hu J, Jorquera MA. Structure and Functional Properties of Bacterial Communities in Surface Sediments of the Recently Declared Nutrient-Saturated Lake Villarrica in Southern Chile. MICROBIAL ECOLOGY 2023; 86:1513-1533. [PMID: 36752910 DOI: 10.1007/s00248-023-02173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Lake Villarrica, one of Chile's main freshwater water bodies, was recently declared a nutrient-saturated lake due to increased phosphorus (P) and nitrogen (N) levels. Although a decontamination plan based on environmental parameters is being established, it does not consider microbial parameters. Here, we conducted high-throughput DNA sequencing and quantitative polymerase chain reaction (qPCR) analyses to reveal the structure and functional properties of bacterial communities in surface sediments collected from sites with contrasting anthropogenic pressures in Lake Villarrica. Alpha diversity revealed an elevated bacterial richness and diversity in the more anthropogenized sediments. The phylum Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria dominated the community. The principal coordinate analysis (PCoA) and redundancy analysis (RDA) showed significant differences in bacterial communities of sampling sites. Predicted functional analysis showed that N cycling functions (e.g., nitrification and denitrification) were significant. The microbial co-occurrence networks analysis suggested Chitinophagaceae, Caldilineaceae, Planctomycetaceae, and Phycisphaerae families as keystone taxa. Bacterial functional genes related to P (phoC, phoD, and phoX) and N (nifH and nosZ) cycling were detected in all samples by qPCR. In addition, an RDA related to N and P cycling revealed that physicochemical properties and functional genes were positively correlated with several nitrite-oxidizing, ammonia-oxidizing, and N-fixing bacterial genera. Finally, denitrifying gene (nosZ) was the most significant factor influencing the topological characteristics of co-occurrence networks and bacterial interactions. Our results represent one of a few approaches to elucidate the structure and role of bacterial communities in Chilean lake sediments, which might be helpful in conservation and decontamination plans.
Collapse
Affiliation(s)
- Marco A Campos
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Qian Zhang
- The BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St Paul, MN, 55108-6106, USA
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Joaquin I Rilling
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Tay Ruiz
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Elizabeth Carrazana
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Cristóbal Reyno
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Anthony Hollenback
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Katelyn Gray
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deb P Jaisi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Andrew Ogram
- Soil and Water Sciences Department, University of Florida, PO Box 110290, Gainesville, FL, 32608-32611, USA
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Rong Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Mikael Elias
- The BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St Paul, MN, 55108-6106, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St Paul, MN, 55108-6106, USA
| | - Michael J Sadowsky
- The BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St Paul, MN, 55108-6106, USA
| | - Jingming Hu
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
49
|
Padayhag BM, Nada MAL, Baquiran JIP, Sison-Mangus MP, San Diego-McGlone ML, Cabaitan PC, Conaco C. Microbial community structure and settlement induction capacity of marine biofilms developed under varied reef conditions. MARINE POLLUTION BULLETIN 2023; 193:115138. [PMID: 37321001 DOI: 10.1016/j.marpolbul.2023.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Coral larval settlement relies on biogenic cues such as those elicited by microbial biofilm communities, a crucial element of coral recruitment. Eutrophication can modify these biofilm-associated communities, but studies on how this affects coral larval settlement are limited. In this study, we developed biofilm communities on glass slides at four sites with increasing distance from a mariculture zone. Biofilms farthest from the mariculture area were more effective at inducing the settlement of Acropora tenuis larvae. These biofilms were characterized by a greater proportion of crustose coralline algae (CCA) and gammaproteobacterial taxa compared to biofilms from sites closer to the mariculture zone, which had a greater proportion of cyanobacteria and no CCA. These findings suggest that nutrient enrichment due to mariculture activities alters the composition of biofilm-associated microbiome at nearby reef sites and indirectly causes poor coral larval settlement.
Collapse
Affiliation(s)
- Blaire M Padayhag
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Michael Angelou L Nada
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Jake Ivan P Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | | | | | - Patrick C Cabaitan
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
50
|
Li D, Dong Y, Li S, Jiang P, Zhang J. Biological carbon promotes the recovery of anammox granular sludge after starvation. BIORESOURCE TECHNOLOGY 2023:129305. [PMID: 37311527 DOI: 10.1016/j.biortech.2023.129305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
This article adopts the strategy of adding biochar and increasing HRT to accelerate the performance and particle morphology recovery of anaerobic ammonia oxidation granular sludge stored at room temperature for 68 days. The results showed that biochar accelerated the death of heterotrophic bacteria, shortened the cell lysis and lag period of the recovery process by 4 days, and it only took 28 days for the nitrogen removal performance of the reactor to recover to the original level, and 56 days for re-granulation. Biochar promoted the secretion of EPS (56.96 mg gVSS-1), and the sludge volume and nitrogen removal performance of the bioreactor remain stable. Biochar also accelerated the growth of Anammox bacteria. The abundance of Anammox bacteria in the biochar reactor reached 38.76% on the 28th day. The high abundance of functional bacteria and the optimized community structure of biochar made system (Candidatus_Kuenenia: 38.30%) more risk-resistant than control reactor.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Yiwen Dong
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Pengfei Jiang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|