1
|
Liu ZL, Huang X. Copy number variants impact phenotype-genotype relationships for adaptation of industrial yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2022; 106:6611-6623. [PMID: 36117206 DOI: 10.1007/s00253-022-12137-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
The industrial yeast Saccharomyces cerevisiae possesses a plastic genome enabling its adaptation to varied environment conditions. A more robust ethanologenic industrial yeast strain NRRL Y-50049 was obtained through laboratory adaptation that is resistant to 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF), a major class of toxic chemicals associated with lignocellulose-to-biofuel conversion. A significant amount of knowledge has been achieved in characterizing its tolerant phenotypes and molecular mechanisms of the resistance. Recent findings on a limited number of nonsynonymous SNP (single nucleotide polymorphism) detected in NRRL Y-50049 compared with its progenitor NRRL Y-12632 raised doubt of SNP roles in the tolerance adaptation. The genotype-phenotype relationship for yeast adaptation to the toxic chemicals is yet unclear. Here, we examine copy number variant (CNV) of the adapted strain NRRL Y-50049 to address phenotype-genotype relationships. As a background information, CNV of model strain S288C of the reference genome was also examined versus the industrial-type strain NRRL Y-12632. More than 200 CNVs, mostly duplication events, were detected in NRRL Y-12632 compared with the laboratory model strain S288C. Such enriched genetic background supports its more diversified phenotype response for the industrial yeast than the laboratory strain S288C. Comparing the two industrial strains, we found extra nine CNVs in the mitochondrial genome and 28 CNVs in the nuclear genome of NRRL Y-50049 versus its progenitor NRRL Y-12632. Continued DNA recombination event and high rate of CNV observed in NRRL Y-50049 versus its progenitor suggests that CNV is more impactful than SNP in association with phenotype-genotype relationships of yeast adaptation to the toxic chemical stress. COX1 and COB loci were defined as DNA recombination hotspots in the mitochondrial genome for the industrial yeast based on the high frequency of CNVs observed in these loci. KEY POINTS: • COX1 and COB loci are identified as DNA recombination hotspots for the industrial yeast. • The industrial yeast type strain NRRL Y-12632 possesses more CNVs vs the reference genome S288C. • CNV is more important than SNP on phenotype-genotype relationships for yeast adaptation.
Collapse
Affiliation(s)
- Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N. University Street, Peoria, IL, 61604, USA.
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
2
|
Stovicek V, Dato L, Almqvist H, Schöpping M, Chekina K, Pedersen LE, Koza A, Figueira D, Tjosås F, Ferreira BS, Forster J, Lidén G, Borodina I. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:22. [PMID: 35219341 PMCID: PMC8882276 DOI: 10.1186/s13068-022-02121-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.
Collapse
Affiliation(s)
- Vratislav Stovicek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Laura Dato
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,River Stone Biotech ApS, Fruebjergvej 3, 2100, Copenhagen, Denmark
| | - Henrik Almqvist
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Marie Schöpping
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark.,Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Ksenia Chekina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.,Chr. Hansen A/S, Boge Alle 10-12, 2970, Hørsholm, Denmark
| | - Diogo Figueira
- Biotrend S.A., Biocant Park Núcleo 04, Lote 2, 3060-197, Cantanhede, Portugal
| | - Freddy Tjosås
- Borregaard ApS, Hjalmar Wessels vei 6, 1721, Sarpsborg, Norway
| | | | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|