1
|
de Garcia V, Gonzalez Flores M, Kleinjan V, Rodríguez ME, Lopes CA. Contaminated Perry in Patagonia Argentina: A Case Study. Curr Microbiol 2023; 80:329. [PMID: 37624570 DOI: 10.1007/s00284-023-03442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Perry is a beverage obtained by fermentation of pear juice, popular in the North Hemisphere. In Argentina it is an emerging market, particularly in the Patagonian region. The aim of this work is to describe and to evaluate the spoilage yeasts associated to six perry samples showing signs of microbiological contamination from a local craft perry company in North Patagonian region. Eighteen yeasts were isolated from four of the six perry samples where Brettanomyces custersianus, Brettanomyces bruxellensis and Zygosaccharomyces parabailii were identified. The growth capacity of these isolates in the presence of antimicrobial agents (sulfite and potassium sorbate) was analyzed in solid media. Growth parameters in sterile perry must was evaluated and the production of undesirable compounds were evaluated, products were characterized in terms of their aromatic and physicochemical features. The yeasts Z. parabailii NPCC1791 was able to grow on plates containing sulfite concentrations of up to 4 mM and produced high methanol concentrations in perry. Additionally, B. bruxellensis NPPC1792 was able to produce methanol as well as high concentrations of volatile phenols including 4-ethylphenol and 4-ethylguaiacol. These results demonstrate the potential of these species as perry contaminants. Given the lack of studies describing the contaminating yeasts in perry production, this work represents the first report about perry spoilage yeasts in Argentina, with this knowledge, control strategies can be developed to prevent microbiological contamination and minimize product loss.
Collapse
Affiliation(s)
- Virginia de Garcia
- Instituto de Investigación y Desarrollo en Ingeniería de ProcesosBiotecnología y Energías Alternativas (PROBIEN), CONICET - Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina.
| | - Melisa Gonzalez Flores
- Instituto de Investigación y Desarrollo en Ingeniería de ProcesosBiotecnología y Energías Alternativas (PROBIEN), CONICET - Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Ruta 51, Km 12,5 Cinco Saltos, 8303, Rio Negro, Argentina
| | - Victoria Kleinjan
- Instituto de Investigación y Desarrollo en Ingeniería de ProcesosBiotecnología y Energías Alternativas (PROBIEN), CONICET - Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina
| | - María Eugenia Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de ProcesosBiotecnología y Energías Alternativas (PROBIEN), CONICET - Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Los Arrayanes y Av. Toschi, 8324, Cipolletti, Argentina
| | - Christian A Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de ProcesosBiotecnología y Energías Alternativas (PROBIEN), CONICET - Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Ruta 51, Km 12,5 Cinco Saltos, 8303, Rio Negro, Argentina
| |
Collapse
|
2
|
Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. J Fungi (Basel) 2023; 9:jof9020186. [PMID: 36836301 PMCID: PMC9964053 DOI: 10.3390/jof9020186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Changes in biological properties over several generations, induced by controlling short-term evolutionary processes in the laboratory through selective pressure, and whole-genome re-sequencing, help determine the genetic basis of microorganism's adaptive laboratory evolution (ALE). Due to the versatility of this technique and the imminent urgency for alternatives to petroleum-based strategies, ALE has been actively conducted for several yeasts, primarily using the conventional species Saccharomyces cerevisiae, but also non-conventional yeasts. As a hot topic at the moment since genetically modified organisms are a debatable subject and a global consensus on their employment has not yet been attained, a panoply of new studies employing ALE approaches have emerged and many different applications have been exploited in this context. In the present review, we gathered, for the first time, relevant studies showing the ALE of non-conventional yeast species towards their biotechnological improvement, cataloging them according to the aim of the study, and comparing them considering the species used, the outcome of the experiment, and the employed methodology. This review sheds light on the applicability of ALE as a powerful tool to enhance species features and improve their performance in biotechnology, with emphasis on the non-conventional yeast species, as an alternative or in combination with genome editing approaches.
Collapse
|
3
|
Varela C, Borneman AR. Molecular approaches improving our understanding of Brettanomyces physiology. FEMS Yeast Res 2022; 22:6585649. [PMID: 35561744 DOI: 10.1093/femsyr/foac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Brettanomyces species and particularly B. bruxellensis as the most studied representative, are strongly linked to industrial fermentation processes. This association is considered either positive or undesirable depending on the industry. While in some brewing applications and in kombucha production Brettanomyces yeasts contribute to the flavour and aroma profile of these beverages, in winemaking and bioethanol production Brettanomyces is considered a spoilage or contaminant microorganism. Nevertheless, understanding Brettanomyces biology and metabolism in detail will benefit all industries. This review discusses recent molecular biology tools including genomics, transcriptomics and genetic engineering techniques that can improve our understanding of Brettanomyces physiology and how these approaches can be used to make the industrial potential of this species a reality.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|