1
|
Toolbox for Genetic Transformation of Non-Conventional Saccharomycotina Yeasts: High Efficiency Transformation of Yeasts Belonging to the Schwanniomyces Genus. J Fungi (Basel) 2022; 8:jof8050531. [PMID: 35628786 PMCID: PMC9146037 DOI: 10.3390/jof8050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Non-conventional yeasts are increasingly being investigated and used as producers in biotechnological processes which often offer advantages in comparison to traditional and well-established systems. Most biotechnologically interesting non-conventional yeasts belong to the Saccharomycotina subphylum, including those already in use (Pichia pastoris, Yarrowia lypolitica, etc.), as well as those that are promising but as yet insufficiently characterized. Moreover, for many of these yeasts the basic tools of genetic engineering needed for strain construction, including a procedure for efficient genetic transformation, heterologous protein expression and precise genetic modification, are lacking. The first aim of this study was to construct a set of integrative and replicative plasmids which can be used in various yeasts across the Saccharomycotina subphylum. Additionally, we demonstrate here that the electroporation procedure we developed earlier for transformation of B. bruxellensis can be applied in various yeasts which, together with the constructed plasmids, makes a solid starting point when approaching a transformation of yeasts form the Saccharomycotina subphylum. To provide a proof of principle, we successfully transformed three species from the Schwanniomyces genus (S. polymorphus var. polymorphus, S. polymorphus var. africanus and S. pseudopolymorphus) with high efficiencies (up to 8 × 103 in case of illegitimate integration of non-homologous linear DNA and up to 4.7 × 105 in case of replicative plasmid). For the latter two species this is the first reported genetic transformation. Moreover, we found that a plasmid carrying replication origin from Scheffersomyces stipitis can be used as a replicative plasmid for these three Schwanniomyces species.
Collapse
|
2
|
Varela C, Borneman AR. Molecular approaches improving our understanding of Brettanomyces physiology. FEMS Yeast Res 2022; 22:6585649. [PMID: 35561744 DOI: 10.1093/femsyr/foac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Brettanomyces species and particularly B. bruxellensis as the most studied representative, are strongly linked to industrial fermentation processes. This association is considered either positive or undesirable depending on the industry. While in some brewing applications and in kombucha production Brettanomyces yeasts contribute to the flavour and aroma profile of these beverages, in winemaking and bioethanol production Brettanomyces is considered a spoilage or contaminant microorganism. Nevertheless, understanding Brettanomyces biology and metabolism in detail will benefit all industries. This review discusses recent molecular biology tools including genomics, transcriptomics and genetic engineering techniques that can improve our understanding of Brettanomyces physiology and how these approaches can be used to make the industrial potential of this species a reality.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Varela C, Bartel C, Onetto C, Borneman A. Targeted gene deletion in Brettanomyces bruxellensis with an expression-free CRISPR-Cas9 system. Appl Microbiol Biotechnol 2020; 104:7105-7115. [DOI: 10.1007/s00253-020-10750-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
|
4
|
Colomer MS, Chailyan A, Fennessy RT, Olsson KF, Johnsen L, Solodovnikova N, Forster J. Assessing Population Diversity of Brettanomyces Yeast Species and Identification of Strains for Brewing Applications. Front Microbiol 2020; 11:637. [PMID: 32373090 PMCID: PMC7177047 DOI: 10.3389/fmicb.2020.00637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
Brettanomyces yeasts have gained popularity in many sectors of the biotechnological industry, specifically in the field of beer production, but also in wine and ethanol production. Their unique properties enable Brettanomyces to outcompete conventional brewer’s yeast in industrially relevant traits such as production of ethanol and pleasant flavors. Recent advances in next-generation sequencing (NGS) and high-throughput screening techniques have facilitated large population studies allowing the selection of appropriate yeast strains with improved traits. In order to get a better understanding of Brettanomyces species and its potential for beer production, we sequenced the whole genome of 84 strains, which we make available to the scientific community and carried out several in vitro assays for brewing-relevant properties. The collection includes isolates from different substrates and geographical origin. Additionally, we have included two of the oldest Carlsberg Research Laboratory isolates. In this study, we reveal the phylogenetic pattern of Brettanomyces species by comparing the predicted proteomes of each strain. Furthermore, we show that the Brettanomyces collection is well described using similarity in genomic organization, and that there is a direct correlation between genomic background and phenotypic characteristics. Particularly, genomic patterns affecting flavor production, maltose assimilation, beta-glucosidase activity, and phenolic off-flavor (POF) production are reported. This knowledge yields new insights into Brettanomyces population survival strategies, artificial selection pressure, and loss of carbon assimilation traits. On a species-specific level, we have identified for the first time a POF negative Brettanomyces anomalus strain, without the main spoilage character of Brettanomyces species. This strain (CRL-90) has lost DaPAD1, making it incapable of converting ferulic acid to 4-ethylguaiacol (4-EG) and 4-ethylphenol (4-EP). This loss of function makes CRL-90 a good candidate for the production of characteristic Brettanomyces flavors in beverages, without the contaminant increase in POF. Overall, this study displays the potential of exploring Brettanomyces yeast species biodiversity to find strains with relevant properties applicable to the brewing industry.
Collapse
Affiliation(s)
- Marc Serra Colomer
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark.,National Institute for Food, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Chailyan
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | - Ross T Fennessy
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | - Kim Friis Olsson
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| | | | | | - Jochen Forster
- Carlsberg Research Laboratory, Group Research, Copenhagen, Denmark
| |
Collapse
|
5
|
A novel electroporation procedure for highly efficient transformation of Lipomyces starkeyi. J Microbiol Methods 2020; 169:105816. [DOI: 10.1016/j.mimet.2019.105816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
|
6
|
The biotechnological potential of the yeast Dekkera bruxellensis. World J Microbiol Biotechnol 2019; 35:103. [PMID: 31236799 DOI: 10.1007/s11274-019-2678-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
Dekkera bruxellensis is an industrial yeast mainly regarded as a contaminant species in fermentation processes. In winemaking, it is associated with off-flavours that cause wine spoilage, while in bioethanol production this yeast is linked to a reduction of industrial productivity by competing with Saccharomyces cerevisiae for the substrate. In spite of that, this point of view is gradually changing, mostly because D. bruxellensis is also able to produce important metabolites, such as ethanol, acetate, fusel alcohols, esters and others. This dual role is likely due to the fact that this yeast presents a set of metabolic traits that might be either industrially attractive or detrimental, depending on how they are faced and explored. Therefore, a proper industrial application for D. bruxellensis depends on the correct assembly of its central metabolic puzzle. In this sense, researchers have addressed issues regarding the physiological and genetic aspects of D. bruxellensis, which have brought to light much of our current knowledge on this yeast. In this review, we shall outline what is presently understood about the main metabolic features of D. bruxellensis and how they might be managed to improve its current or future industrial applications (except for winemaking, in which it is solely regarded as a contaminant). Moreover, we will discuss the advantages and challenges that must be overcome in order to take advantage of the full biotechnological potential of this yeast.
Collapse
|
7
|
Varela C, Lleixà J, Curtin C, Borneman A. Development of a genetic transformation toolkit for Brettanomyces bruxellensis. FEMS Yeast Res 2019; 18:5049007. [PMID: 29982550 DOI: 10.1093/femsyr/foy070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Brettanomyces bruxellensis is usually considered a spoilage microorganism, responsible for significant economic losses during the production of fermented beverages such as wine, beer and cider, though for some styles of beer its influence is essential. In recent years, the competitiveness of this yeast in bioethanol production processes has brought to attention its broader biotechnological potential. Furthermore, the species has evolved key fermentation traits in parallel with Saccharomyces cerevisiae. Attempts to better understand B. bruxellensis physiology through genomics-driven research have been hampered by a lack of functional genomics tools. Genetic transformation for B. bruxellensis has only been developed recently and with limited efficiency. Here we describe gene transformation cassettes tailored for B. bruxellensis, which provide multiple drug-resistant markers and the ability to tag B. bruxellensis with different fluorescent proteins. All marker cassettes resulted in increased transformation efficiency compared to the maximum reported in literature, with one cassette, TDH1p natMX, showing five times greater efficiency. Transformation cassettes encoding fluorescent proteins enabled discrimination between subpopulations of transformed B. bruxellensis cells by flow cytometry and fluorescent microscopy. Thus, the genetic transformation toolkit described here unlocks several molecular applications such as strain tagging, insertional mutagenesis and potentially targeted gene deletion.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| | - Jessica Lleixà
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C/ Marcellí Domingo s/n, 43007 Tarragona, Spain
| | - Chris Curtin
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| |
Collapse
|
8
|
Avramova M, Grbin P, Borneman A, Albertin W, Masneuf-Pomarède I, Varela C. Competition experiments between Brettanomyces bruxellensis strains reveal specific adaptation to sulfur dioxide and complex interactions at intraspecies level. FEMS Yeast Res 2019; 19:5307081. [DOI: 10.1093/femsyr/foz010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/03/2019] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT
Recent studies have suggested a strong niche adaptation for Brettanomyces bruxellensis strains according to human-related fermentation environments, including beer, wine and bioethanol. This is further supported by a correlation between B. bruxellensis genetic grouping and tolerance to SO2, the main antimicrobial used in wine. The allotriploid AWRI1499-like cluster, in particular, shows high SO2 tolerance suggesting that the genetic configuration observed for these strains may confer a selective advantage in winemaking conditions. To test this hypothesis, we evaluated the relative selective advantage of representatives of the three main B. bruxellensis genetic groups in presence of SO2. As a proof-of-concept and using recently developed transformation cassettes, we compared strains under different SO2 concentrations using pairwise competitive fitness experiments. Our results showed that AWRI1499 is specifically adapted to environments with high SO2 concentrations compared to other B. bruxellensis wine strains, indicating a potential correlation between allotriploidisation origin and environmental adaptation in this species. Additionally, our findings suggest different types of competition between strains, such as coexistence and exclusion, revealing new insights on B. bruxellensis interactions at intraspecies level.
Collapse
Affiliation(s)
- Marta Avramova
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - Paul Grbin
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| | - Warren Albertin
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- ENSCBP, Bordeaux INP, 33600 Pessac, France
| | - Isabelle Masneuf-Pomarède
- Unité de recherche Œnologie EA 4577, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, USC 1366 INRA, Bordeaux INP, 33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia 5064, Australia
| |
Collapse
|
9
|
Poyedinok NL, Blume YB. Advances, Problems, and Prospects of Genetic Transformation of Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271802007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Liu H, Jiao X, Wang Y, Yang X, Sun W, Wang J, Zhang S, Zhao ZK. Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. FEMS Yeast Res 2017; 17:3089757. [PMID: 28369336 DOI: 10.1093/femsyr/fox017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Metabolic engineering of Rhodosporidium toruloides, a robust lipid and caroteinoid producer, is of great importance for oleochemicals and carotenoids production. However, the Agrobacterium-mediated gene transformation is tedious and time consuming. Here, we described a fast and efficient genetic transformation of R. toruloides using electroporation with linear DNA fragments, and the process was optimized. The results showed that 2 × 103 transformants can be obtained at 0.7 kV/μg linear DNA by using hygromycin and bleomycin as selection markers after the competent cells pretreated with 25 mM DTT and 100 mM LiAc. Our results would facilitate mutant library construction and metabolic engineering of R. toruloides for production of oleochemicals and carotenoids. We further demonstrated that all transformants arose due to illegitimate integration of transforming DNA fragments by colony PCR.
Collapse
Affiliation(s)
- Hongdi Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.,Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiang Jiao
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Yanan Wang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiaobing Yang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Wenyi Sun
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Jihui Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Sufang Zhang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Zongbao Kent Zhao
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
11
|
Štafa A, Miklenić MS, Zandona A, Žunar B, Čadež N, Petković H, Svetec IK. In Saccharomyces cerevisiae gene targeting fidelity depends on a transformation method and proportion of the overall length of the transforming and targeted DNA. FEMS Yeast Res 2017. [DOI: 10.1093/femsyr/fox041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Marina Svetec Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Antonio Zandona
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Bojan Žunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Neža Čadež
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Ivan Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Yeasts found in vineyards and wineries. Yeast 2016; 34:111-128. [DOI: 10.1002/yea.3219] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/07/2022] Open
|