1
|
Papouskova K, Zimmermannova O, Sychrova H. Distinct regions of its first intracellular loop contribute to the proper localization, transport activity and substrate-affinity adjustment of the main yeast K + importer Trk1. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184369. [PMID: 38969203 DOI: 10.1016/j.bbamem.2024.184369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Trk1 is the main K+ importer of Saccharomyces cerevisiae. Its proper functioning enables yeast cells to grow in environments with micromolar amounts of K+. Although the structure of Trk1 has not been experimentally determined, the transporter is predicted to be composed of four MPM (transmembrane segment - pore loop - transmembrane segment) motifs which are connected by intracellular loops. Of those, in particular the first loop (IL1) is unique in its length; it forms more than half of the entire protein. The deletion of the majority of IL1 does not abolish the transport activity of Trk1. However IL1 is thought to be involved in the modulation of the transporter's functioning. In this work, we prepared a series of internally shortened versions of Trk1 that lacked various parts of IL1, and we studied their properties in S. cerevisiae cells without chromosomal copies of TRK genes. Using this approach, we were able to determine that both N- and C-border regions of IL1 are necessary for the proper localization of Trk1. Moreover, the N-border part of IL1 is also important for the functioning of Trk1, as its absence resulted in a decrease in the transporter's substrate affinity. In addition, in the internal part of IL1, we newly identified a stretch of amino-acid residues that are indispensable for retaining the transporter's maximum velocity, and another region whose deletion affected the ability of Trk1 to adjust its affinity in response to external levels of K+.
Collapse
Affiliation(s)
- Klara Papouskova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic.
| | - Olga Zimmermannova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic.
| | - Hana Sychrova
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague 4, Czech Republic.
| |
Collapse
|
2
|
Wu D, Guan YX, Li CH, Zheng Q, Yin ZJ, Wang H, Liu NN. "Nutrient-fungi-host" tripartite interaction in cancer progression. IMETA 2024; 3:e170. [PMID: 38882486 PMCID: PMC11170973 DOI: 10.1002/imt2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 06/18/2024]
Abstract
The human microbiome exhibits a profound connection with the cancer development, progression, and therapeutic response, with particular emphasis on its components of the mycobiome, which are still in the early stages of research. In this review, we comprehensively summarize cancer-related symbiotic and pathogenic fungal genera. The intricate mechanisms through which fungi impact cancer as an integral member of both gut and tissue-resident microbiomes are further discussed. In addition, we shed light on the pivotal physiological roles of various nutrients, including cholesterol, carbohydrates, proteins and minerals, in facilitating the growth, reproduction, and invasive pathogenesis of the fungi. While our exploration of the interplay between nutrients and cancer, mediated by the mycobiome, is ongoing, the current findings have yet to yield conclusive results. Thus, delving into the relationship between nutrients and fungal pathogenesis in cancer development and progression would provide valuable insights into anticancer therapy and foster precision nutrition and individualized treatments that target fungi from bench to bedside.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yun-Xuan Guan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chen-Hao Li
- Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Quan Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zuo-Jing Yin
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
3
|
Papouskova K, Akinola J, Ruiz-Castilla FJ, Morrissey JP, Ramos J, Sychrova H. The superior growth of Kluyveromyces marxianus at very low potassium concentrations is enabled by the high-affinity potassium transporter Hak1. FEMS Yeast Res 2024; 24:foae031. [PMID: 39363175 PMCID: PMC11484806 DOI: 10.1093/femsyr/foae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
The non-conventional yeast Kluyveromyces marxianus has recently emerged as a promising candidate for many food, environment, and biotechnology applications. This yeast is thermotolerant and has robust growth under many adverse conditions. Here, we show that its ability to grow under potassium-limiting conditions is much better than that of Saccharomyces cerevisiae, suggesting a very efficient and high-affinity potassium uptake system(s) in this species. The K. marxianus genome contains two genes for putative potassium transporters: KmHAK1 and KmTRK1. To characterize the products of the two genes, we constructed single and double knock-out mutants in K. marxianus and also expressed both genes in an S. cerevisiae mutant, that lacks potassium importers. Our results in K. marxianus and S. cerevisiae revealed that both genes encode efficient high-affinity potassium transporters, contributing to potassium homeostasis and maintaining plasma-membrane potential and cytosolic pH. In K. marxianus, the presence of HAK1 supports growth at low K+ much better than that of TRK1, probably because the substrate affinity of KmHak1 is about 10-fold higher than that of KmTrk1, and its expression is induced ~80-fold upon potassium starvation. KmHak1 is crucial for salt stress survival in both K. marxianus and S. cerevisiae. In co-expression experiments with ScTrk1 and ScTrk2, its robustness contributes to an increased tolerance of S. cerevisiae cells to sodium and lithium salt stress.
Collapse
Affiliation(s)
- Klara Papouskova
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague 4, Czechia
| | - Joel Akinola
- School of Microbiology, SUSFERM Fermentation Science Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Francisco J Ruiz-Castilla
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, E-14071 Córdoba, Spain
| | - John P Morrissey
- School of Microbiology, SUSFERM Fermentation Science Centre, University College Cork, Cork T12 K8AF, Ireland
| | - Jose Ramos
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, E-14071 Córdoba, Spain
| | - Hana Sychrova
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague 4, Czechia
| |
Collapse
|
4
|
Papoušková K, Gómez M, Kodedová M, Ramos J, Zimmermannová O, Sychrová H. Heterologous expression reveals unique properties of Trk K + importers from nonconventional biotechnologically relevant yeast species together with their potential to support Saccharomyces cerevisiae growth. Yeast 2023; 40:68-83. [PMID: 36539385 DOI: 10.1002/yea.3834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In the model yeast Saccharomyces cerevisiae, Trk1 is the main K+ importer. It is involved in many important physiological processes, such as the maintenance of ion homeostasis, cell volume, intracellular pH, and plasma-membrane potential. The ScTrk1 protein can be of great interest to industry, as it was shown that changes in its activity influence ethanol production and tolerance in S. cerevisiae and also cell performance in the presence of organic acids or high ammonium under low K+ conditions. Nonconventional yeast species are attracting attention due to their unique properties and as a potential source of genes that encode proteins with unusual characteristics. In this work, we aimed to study and compare Trk proteins from Debaryomyces hansenii, Hortaea werneckii, Kluyveromyces marxianus, and Yarrowia lipolytica, four biotechnologically relevant yeasts that tolerate various extreme environments. Heterologous expression in S. cerevisiae cells lacking the endogenous Trk importers revealed differences in the studied Trk proteins' abilities to support the growth of cells under various cultivation conditions such as low K+ or the presence of toxic cations, to reduce plasma-membrane potential or to take up Rb+ . Examination of the potential of Trks to support the stress resistance of S. cerevisiae wild-type strains showed that Y. lipolytica Trk1 is a promising tool for improving cell tolerance to both low K+ and high salt and that the overproduction of S. cerevisiae's own Trk1 was the most efficient at improving the growth of cells in the presence of highly toxic Li+ ions.
Collapse
Affiliation(s)
- Klára Papoušková
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Marcos Gómez
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Marie Kodedová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - José Ramos
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Córdoba, Córdoba, Spain
| | - Olga Zimmermannová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| | - Hana Sychrová
- Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic
| |
Collapse
|
5
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
6
|
The Potassium Transporter Hak1 in Candida Albicans, Regulation and Physiological Effects at Limiting Potassium and under Acidic Conditions. J Fungi (Basel) 2021; 7:jof7050362. [PMID: 34066565 PMCID: PMC8148600 DOI: 10.3390/jof7050362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
The three families of yeast plasma membrane potassium influx transporters are represented in Candida albicans: Trk, Acu, and Hak proteins. Hak transporters work as K+-H+ symporters, and the genes coding for Hak proteins are transcriptionally activated under potassium limitation. This work shows that C. albicans mutant cells lacking CaHAK1 display a severe growth impairment at limiting potassium concentrations under acidic conditions. This is the consequence of a defective capacity to transport K+, as indicated by potassium absorption experiments and by the kinetics parameters of Rb+ (K+) transport. Moreover, hak1- cells are more sensitive to the toxic cation lithium. All these phenotypes became much less robust or even disappeared at alkaline growth conditions. Finally, transcriptional studies demonstrate that the hak1- mutant, in comparison with HAK1+ cells, activates the expression of the K+/Na+ ATPase coded by CaACU1 in the presence of Na+ or in the absence of K+.
Collapse
|
7
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
8
|
Ruiz-Castilla FJ, Bieber J, Caro G, Michán C, Sychrova H, Ramos J. Regulation and activity of CaTrk1, CaAcu1 and CaHak1, the three plasma membrane potassium transporters in Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183486. [PMID: 33069635 DOI: 10.1016/j.bbamem.2020.183486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022]
Abstract
Wild-type cells of Candida albicans, the most common human fungal pathogen, are able to grow at very low micromolar concentrations of potassium in the external milieu. One of the reasons behind that behaviour is the existence of three different types of K+ transporters in their plasma membrane: Trk1, Acu1 and Hak1. This work shows that the transporters are very differently regulated at the transcriptional level upon exposure to saline stress, pH alterations or K+ starvation. We propose that different transporters take the lead in the diverse environmental conditions, Trk1 being the "house-keeping" one, and Acu1/Hak1 dominating upon K+ limiting conditions. Heterologous expression of the genes coding for the three transporters in a Saccharomyces cerevisiae strain lacking its endogenous potassium transporters showed that all of them mediated cation transport but with very different efficiencies. Moreover, expression of the transporters in S. cerevisiae also affected other physiological characteristics such as sodium and lithium tolerance, membrane potential or intracellular pH, being, in general, CaTrk1 the most effective in keeping these parameters close to the usual wild-type physiological levels.
Collapse
Affiliation(s)
| | - Jan Bieber
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Gabriel Caro
- Department of Microbiology, University of Córdoba, 14071 Córdoba, Spain
| | - Carmen Michán
- Department of Biochemistry and Molecular Biology, Campus de Excelencia Internacional Agroalimentario CeiA3, University of Córdoba, 14071 Córdoba, Spain
| | - Hana Sychrova
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - José Ramos
- Department of Microbiology, University of Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
9
|
Trk1, the sole potassium-specific transporter in Candida glabrata, contributes to the proper functioning of various cell processes. World J Microbiol Biotechnol 2019; 35:124. [DOI: 10.1007/s11274-019-2698-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
|
10
|
Elicharova H, Herynkova P, Zimmermannova O, Sychrova H. Potassium uptake systems of
Candida krusei. Yeast 2019; 36:439-448. [DOI: 10.1002/yea.3396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 01/15/2023] Open
Affiliation(s)
- Hana Elicharova
- Department of Membrane TransportInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Pavla Herynkova
- Department of Membrane TransportInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Olga Zimmermannova
- Department of Membrane TransportInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Hana Sychrova
- Department of Membrane TransportInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
11
|
Llopis-Torregrosa V, Vaz C, Monteoliva L, Ryman K, Engstrom Y, Gacser A, Gil C, Ljungdahl PO, Sychrová H. Trk1-mediated potassium uptake contributes to cell-surface properties and virulence of Candida glabrata. Sci Rep 2019; 9:7529. [PMID: 31101845 PMCID: PMC6525180 DOI: 10.1038/s41598-019-43912-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022] Open
Abstract
The absence of high-affinity potassium uptake in Candida glabrata, the consequence of the deletion of the TRK1 gene encoding the sole potassium-specific transporter, has a pleiotropic effect. Here, we show that in addition to changes in basic physiological parameters (e.g., membrane potential and intracellular pH) and decreased tolerance to various cell stresses, the loss of high affinity potassium uptake also alters cell-surface properties, such as an increased hydrophobicity and adherence capacity. The loss of an efficient potassium uptake system results in diminished virulence as assessed by two insect host models, Drosophila melanogaster and Galleria mellonella, and experiments with macrophages. Macrophages kill trk1Δ cells more effectively than wild type cells. Consistently, macrophages accrue less damage when co-cultured with trk1Δ mutant cells compared to wild-type cells. We further show that low levels of potassium in the environment increase the adherence of C. glabrata cells to polystyrene and the propensity of C. glabrata cells to form biofilms.
Collapse
Affiliation(s)
- Vicent Llopis-Torregrosa
- Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Catarina Vaz
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid and IRYCIS, Madrid, Spain
| | - Lucia Monteoliva
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid and IRYCIS, Madrid, Spain
| | - Kicki Ryman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ylva Engstrom
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Attila Gacser
- Department of Microbiology, University of Szeged Interdisciplinary Excellence Centre, Szeged, Hungary.,MTA-SZTE "Lendület" "Mycobiome" Research Group, University of Szeged, Szeged, Hungary
| | - Concha Gil
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid and IRYCIS, Madrid, Spain
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, 14220, Prague 4, Czech Republic.
| |
Collapse
|
12
|
Hameed S, Hans S, Singh S, Fatima Z. Harnessing Metal Homeostasis Offers Novel and Promising Targets Against Candida albicans. Curr Drug Discov Technol 2019; 17:415-429. [PMID: 30827249 DOI: 10.2174/1570163816666190227231437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
Abstract
Fungal infections, particularly of Candida species, which are the commensal organisms of human, are one of the major debilitating diseases in immunocompromised patients. The limited number of antifungal drugs available to treat Candida infections, with the concomitant increasing incidence of multidrug-resistant (MDR) strains, further worsens the therapeutic options. Thus, there is an urgent need for the better understanding of MDR mechanisms, and their reversal, by employing new strategies to increase the efficacy and safety profiles of currently used therapies against the most prevalent human fungal pathogen, Candida albicans. Micronutrient availability during C. albicans infection is regarded as a critical factor that influences the progression and magnitude of the disease. Intracellular pathogens colonize a variety of anatomical locations that are likely to be scarce in micronutrients, as a defense strategy adopted by the host, known as nutritional immunity. Indispensable critical micronutrients are required both by the host and by C. albicans, especially as a cofactor in important metabolic functions. Since these micronutrients are not freely available, C. albicans need to exploit host reservoirs to adapt within the host for survival. The ability of pathogenic organisms, including C. albicans, to sense and adapt to limited micronutrients in the hostile environment is essential for survival and confers the basis of its success as a pathogen. This review describes that micronutrients availability to C. albicans is a key attribute that may be exploited when one considers designing strategies aimed at disrupting MDR in this pathogenic fungi. Here, we discuss recent advances that have been made in our understanding of fungal micronutrient acquisition and explore the probable pathways that may be utilized as targets.
Collapse
Affiliation(s)
- Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|