1
|
Kertsch AL, Einicke J, Miedl J, Hellwig M, Henle T. Utilization of Free and Dipeptide-Bound Formyline and Pyrraline by Saccharomyces Yeasts. Chembiochem 2024:e202300854. [PMID: 38613434 DOI: 10.1002/cbic.202300854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The utilization of the glycated amino acids formyline and pyrraline as well as their peptide-bound derivatives by 14 Saccharomyces yeasts, including 6 beer yeasts (bottom and top fermenting), one wine yeast, 6 strains isolated from natural habitats and one laboratory reference yeast strain (wild type) was investigated. All yeasts were able to metabolize glycated amino acids via the Ehrlich pathway to the corresponding Ehrlich metabolites. While formyline and small amounts of pyrraline entered the yeast cells via passive diffusion, the amounts of dipeptide-bound MRPs, especially the dipeptides glycated at the C-terminus, decreased much faster, indicating an uptake into the yeast cells. Furthermore, the glycation-mediated hydrophobization in general leads to an faster degradation rate compared to the native lysine dipeptides. While the utilization of free formyline is yeast-specific, the amounts of (glycated) dipeptides decreased faster in the presence of brewer's yeasts, which also showed a higher formation rate of Ehrlich metabolites compared to naturally isolated strains. Due to rapid uptake of alanyl dipeptides, it can be assumed that the Ehrlich enzyme system of naturally isolated yeasts is overloaded and the intracellularly released MRP is primarily excreted from the cell. This indicates adaptation of technologically used yeasts to (glycated) dipeptides as a nitrogen source.
Collapse
Affiliation(s)
- Anna-Lena Kertsch
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Jana Einicke
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Julia Miedl
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| |
Collapse
|
2
|
El-Khatib S, Lambert MG, Reed MN, Goncalves MB, Boynton PJ. Leaf decomposing fungi influence Saccharomyces paradoxus growth across carbon environments. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000739. [PMID: 36926040 PMCID: PMC10011917 DOI: 10.17912/micropub.biology.000739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Saccharomyces paradoxus is a model organism in ecology and evolution. However, its metabolism in its native habitat remains mysterious: it is frequently found growing on leaf litter, a habitat with few carbon sources that S. paradoxus can metabolize. We hypothesized that leaf-decomposing fungi from the same habitat break down the cellulose in leaf litter extracellularly and release glucose, supporting S. paradoxus growth. We found that facilitation by leaf-decomposing fungi was possible on cellulose and inhibition was common on glucose, suggesting diverse interactions between S. paradoxus and other fungi that have the potential to support S. paradoxus in nature.
Collapse
Affiliation(s)
- Samer El-Khatib
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States
| | - Madeleine G Lambert
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States.,Georgetown University Medical Center, Washington D.C., Washington, D.C., United States
| | - Meghan N Reed
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States.,Lonza (United States), Portsmouth, New Hampshire, United States
| | - Melane Brito Goncalves
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States.,Rhode Island College, Providence, Rhode Island, United States
| | - Primrose J Boynton
- Biology, Wheaton College - Massachusetts, Norton, Massachusetts, United States
| |
Collapse
|
3
|
Metabolization of the glycation compounds 3-deoxyglucosone and 5-hydroxymethylfurfural by Saccharomyces yeasts. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe Maillard reaction products (MRPs) 3-deoxyglucosone (3-DG) and 5-hydroxymethylfurfural (HMF), which are formed during the thermal processing and storage of food, come into contact with technologically used yeasts during the fermentation of beer and wine. In order for the yeast cells to work efficiently, handling of the stress-inducing carbonyl compounds is essential. In the present study, the utilization of 3-DG and HMF by 13 Saccharomyces yeast strains (7 brewer’s yeast strains, 1 wine yeast strain, 6 yeast strains isolated from natural habitats) was investigated. All yeast strains studied were able to metabolize 3-DG and HMF. 3-DG is mainly reduced to 3-deoxyfructose (3-DF) and HMF is completely converted to 2,5-bishydroxymethylfuran (BHMF) and 5-formyl-2-furancarboxylic acid (FFCA). The ratio of conversion of HMF to BHMF and FFCA was found to be yeast strain-specific and no differences in the HMF stress tolerance of the yeast strains and species were observed. After incubation with 3-DG, varying amounts of intra- and extracellular 3-DF were found, pointing to a faster transport of 3-DG into the cells in the case of brewer’s yeast strains. Furthermore, the brewer’s yeast strains showed a significantly higher 3-DG stress resistance than the investigated yeast strains isolated from natural habitats. Thus, it can be shown for the first time that Saccharomyces yeast strains differ in their interaction of 3-DG induced carbonyl stress.
Graphical abstract
Collapse
|
4
|
Volatiles of antagonistic soil yeasts inhibit growth and aflatoxin production of Aspergillus flavus. Microbiol Res 2022; 263:127150. [DOI: 10.1016/j.micres.2022.127150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022]
|
5
|
Brysch-Herzberg M, Jia GS, Seidel M, Assali I, Du LL. Insights into the ecology of Schizosaccharomyces species in natural and artificial habitats. Antonie van Leeuwenhoek 2022; 115:661-695. [PMID: 35359202 PMCID: PMC9007792 DOI: 10.1007/s10482-022-01720-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The fission yeast genus Schizosaccharomyces contains important model organisms for biological research. In particular, S. pombe is a widely used model eukaryote. So far little is known about the natural and artificial habitats of species in this genus. Finding out where S. pombe and other fission yeast species occur and how they live in their habitats can promote better understanding of their biology. Here we investigate in which substrates S. pombe, S. octosporus, S. osmophilus and S. japonicus are present. To this end about 2100 samples consisting of soil, tree sap fluxes, fresh fruit, dried fruit, honey, cacao beans, molasses and other substrates were analyzed. Effective isolation methods that allow efficient isolation of the above mentioned species were developed. Based on the frequency of isolating different fission yeast species in various substrates and on extensive literature survey, conclusions are drawn on their ecology. The results suggest that the primary habitat of S. pombe and S. octosporus is honeybee honey. Both species were also frequently detected on certain dried fruit like raisins, mango or pineapple to which they could be brought by the honey bees during ripening or during drying. While S. pombe was regularly isolated from grape mash and from fermented raw cacao beans S. octosporus was never isolated from fresh fruit. The main habitat of S. osmophilus seems to be solitary bee beebread. It was rarely isolated from raisins. S. japonicus was mainly found in forest substrates although it occurs on fruit and in fruit fermentations, too.
Collapse
Affiliation(s)
- Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing, 102206 China
| | - Martin Seidel
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Imen Assali
- Department of Bioengineering, National Engineering School of Sfax, University of Sfax, Soukra, km 4, 3038 Sfax, Tunisia
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206 China
| |
Collapse
|
6
|
Brysch-Herzberg M, Dlauchy D, Seidel M, Péter G. Cyberlindnera sylvatica sp. nov., a yeast species isolated from forest habitats. Int J Syst Evol Microbiol 2021; 71. [PMID: 33507858 DOI: 10.1099/ijsem.0.004477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five yeast strains isolated from forest habitats in Hungary and Germany were characterized phenotypically and by sequencing of the D1/D2 domain of the large subunit rRNA gene and the ITS1-5.8S-ITS2 (ITS) region of the rRNA gene. The strains have identical D1/D2 domain and ITS region sequences. By sequence comparisons, Candida mycetangii and Candida maritima were identified as the closest relatives among the currently recognized yeast species. The DNA sequences of the investigated strains differ by 1.2 % (six substitutions) in the D1/D2 domain and by 3.5 % (12 substitutions and eight indels) in the ITS region from the type strain of C. mycetangii (CBS 8675T) while by 1.2 % (six substitutions and one indel) in the D1/D2 domain and by 7 % (32 substitutions and seven indels) in the ITS region from the type strain of C. maritima (CBS 5107T). Because the intraspecies heterogeneity seems to be very low and the distance to the most closely related species is above the commonly expected level for intraspecies variability Cyberlindnera sylvatica sp. nov. (holotype, CBS 16335T; isotype, NCAIM Y.02233T; MycoBank no., MB 835268) is proposed to accommodate the above-noted five yeast strains. Phenotypically the novel species can be distinguished from C. mycetangii and C. maritima by the formation of ascospores. Cyberlindnera sylvatica forms one or two hat-shaped ascospores per ascus on many different media as well as well-developed pseudohyphae and true hyphae. Additionally, we propose the transfer of three anamorphic members of the Cyberlindnera americana sub-clade to the genus Cyberlindnera as the following new taxonomic combinations Cyberlindnera maritima f.a., comb. nov., Cyberlindnera mycetangii f.a., comb. nov. and Cyberlindnera nakhonratchasimensis f.a., comb. nov.
Collapse
Affiliation(s)
- Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Dénes Dlauchy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Martin Seidel
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Gábor Péter
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary
| |
Collapse
|
7
|
The forgotten sugar: A review on multifarious applications of melezitose. Carbohydr Res 2021; 500:108248. [PMID: 33529787 DOI: 10.1016/j.carres.2021.108248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
Although, 187 years elapsed after the discovery of melezitose, it is a high time to deduce some solid applications as there are only 13 more years left to celebrate a double century of this sugar. The forgotten sugar has multifarious applications; it is used as a metabolic marker to differentiate melezitose fermenting microorganisms, as a carbon source to culture specific microorganisms, as a potential surfactant and excipient to stabilize pharmaceuticals, as a lyoprotectant or cryoprotectant for several industrial applications, as an edibility enhancer in food industry, as a hair smoothening agent in cosmetic industry, and provide protective & nourishing effects in fisheries and aquaculture industries. In entomological research, it is used to study niche differentiation, increased longevity of insects and also as a biocontrol agent. This review brings out the best possible applications of melezitose and present in the form of a mnemonic to remember this forgotten sugar.
Collapse
|
8
|
Yurkov AM. Yeasts of the soil - obscure but precious. Yeast 2018; 35:369-378. [PMID: 29365211 PMCID: PMC5969094 DOI: 10.1002/yea.3310] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 11/11/2022] Open
Abstract
Pioneering studies performed in the nineteenth century demonstrated that yeasts are present in below-ground sources. Soils were regarded more as a reservoir for yeasts that reside in habitats above it. Later studies showed that yeast communities in soils are taxonomically diverse and different from those above-ground. Soil yeasts possess extraordinary adaptations that allow them to survive in a wide range of environmental conditions. A few species are promising sources of yeast oils and have been used in agriculture as potential antagonists of soil-borne plant pathogens or as plant growth promoters. Yeasts have been studied mainly in managed soils such as vineyards, orchards and agricultural fields, and to a lesser extent under forests and grasslands. Our knowledge of soil yeasts is further biased towards temperate and boreal forests, whereas data from Africa, the Americas and Asia are scarce. Although soil yeast communities are often species-poor in a single sample, they are more diverse on the biotope level. Soil yeasts display pronounced endemism along with a surprisingly high proportion of currently unidentified species. However, like other soil inhabitants, yeasts are threatened by habitat alterations owing to anthropogenic activities such as agriculture, deforestation and urbanization. In view of the rapid decline of many natural habitats, the study of soil yeasts in undisturbed or low-managed biotopes is extremely valuable. The purpose of this review is to encourage researchers, both biologists and soil scientists, to include soil yeasts in future studies.
Collapse
Affiliation(s)
- Andrey M. Yurkov
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesInhoffenstraße 7B38124BrunswickGermany
| |
Collapse
|
9
|
Nikulin J, Krogerus K, Gibson B. Alternative Saccharomyces interspecies hybrid combinations and their potential for low-temperature wort fermentation. Yeast 2017; 35:113-127. [PMID: 28755430 PMCID: PMC5811906 DOI: 10.1002/yea.3246] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022] Open
Abstract
The lager yeast hybrid (Saccharomyces cerevisiae × Saccharomyces eubayanus) possesses two key characteristics that are essential for lager brewing: efficient sugar utilization and cold tolerance. Here we explore the possibility that the lager yeast phenotype can be recreated by hybridizing S. cerevisiae ale yeast with a number of cold‐tolerant Saccharomyces species including Saccharomyces arboricola, Saccharomyces eubayanus, Saccharomyces mikatae and Saccharomyces uvarum. Interspecies hybrids performed better than parental strains in lager brewing conditions (12°C and 12°P wort), with the S. mikatae hybrid performing as well as the S. eubayanus hybrid. Where the S. cerevisiae parent was capable of utilizing maltotriose, this trait was inherited by the hybrids. A greater production of higher alcohols and esters by the hybrids resulted in the production of more aromatic beers relative to the parents. Strong fermentation performance relative to the parents was dependent on ploidy, with polyploid hybrids (3n, 4n) performing better than diploid hybrids. All hybrids produced 4‐vinyl guaiacol, a smoke/clove aroma generally considered an off flavour in lager beer. This characteristic could however be eliminated by isolating spore clones from a fertile hybrid of S. cerevisiae and S. mikatae. The results suggest that S. eubayanus is dispensable when constructing yeast hybrids that express the typical lager yeast phenotype. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jarkko Nikulin
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland.,Chemical Process Engineering, Faculty of Technology, University of Oulu, PO Box 8000, FI-90014, Oulun Yliopisto, Finland
| | - Kristoffer Krogerus
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Kemistintie 1, Aalto, PO Box 16100, FI-00076, Espoo, Finland
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, PO Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|