1
|
Kalebina TS, Rekstina VV, Pogarskaia EE, Kulakovskaya T. Importance of Non-Covalent Interactions in Yeast Cell Wall Molecular Organization. Int J Mol Sci 2024; 25:2496. [PMID: 38473742 DOI: 10.3390/ijms25052496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This review covers a group of non-covalently associated molecules, particularly proteins (NCAp), incorporated in the yeast cell wall (CW) with neither disulfide bridges with proteins covalently attached to polysaccharides nor other covalent bonds. Most NCAp, particularly Bgl2, are polysaccharide-remodeling enzymes. Either directly contacting their substrate or appearing as CW lipid-associated molecules, such as in vesicles, they represent the most movable enzymes and may play a central role in CW biogenesis. The absence of the covalent anchoring of NCAp allows them to be there where and when it is necessary. Another group of non-covalently attached to CW molecules are polyphosphates (polyP), the universal regulators of the activity of many enzymes. These anionic polymers are able to form complexes with metal ions and increase the diversity of non-covalent interactions through charged functional groups with both proteins and polysaccharides. The mechanism of regulation of polysaccharide-remodeling enzyme activity in the CW is unknown. We hypothesize that polyP content in the CW is regulated by another NCAp of the CW-acid phosphatase-which, along with post-translational modifications, may thus affect the activity, conformation and compartmentalization of Bgl2 and, possibly, some other polysaccharide-remodeling enzymes.
Collapse
Affiliation(s)
- Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valentina V Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta E Pogarskaia
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino 142290, Russia
| |
Collapse
|
2
|
Fang Y, Xiao H. The Aspartic Protease Yps3p and Cell Wall Glucanase Scw10p Are Novel Determinants That Enhance the Secretion of the Antitumor Triterpenoid GA-HLDOA in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:2917-2926. [PMID: 35969118 DOI: 10.1021/acssynbio.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Efficient bioproduction of triterpenoids is gaining increasing interest because of their significant biological applications; however, the secretion and bioproduction of triterpenoids are hindered by untapped genetic determinants. In our previous study, we observed that different engineered Saccharomyces cerevisiae strains exhibit different abilities for secreting the antitumor triterpenoid ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid (GA-HLDOA). In the present study, we performed comparative proteomics analyses of the engineered strains and identified two genes, encoding an aspartic protease, YPS3, and a cell wall glucanase, SCW10, as the most effective determinants that enhance the secretion of GA-HLDOA. Compared with this control strain, strain BJ5464-r demonstrated an overexpression of YPS3 and SCW10 resulting in 3.9-fold and 4.7-fold higher secretion of GA-HLDOA, respectively, and these increases were accompanied by an increase in cell permeability. Moreover, compared with the YPS3-overexpressing strain, the SCW10-overexpressing strain had a thinner outer mannan layer. Our findings offer valuable insights into designing microbial cell factories for the efficient secretion of triterpenoids.
Collapse
Affiliation(s)
- Yubo Fang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and Laboratory of Molecular Biochemical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai, 200240, China
| |
Collapse
|
3
|
Changes in cell wall structure and protein set in Candida maltosa grown on hexadecane. Folia Microbiol (Praha) 2020; 66:247-253. [PMID: 33247329 DOI: 10.1007/s12223-020-00840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
The yeast Candida maltosa is a model organism for studying adaptive changes in the structure and function of the cell wall when consuming water-insoluble nutrient sources. The cells of C. maltosa that utilize hydrocarbons contain supramolecular structures, so-called "canals" in the cell wall. Differences in protein profiles of culture liquids and cell wall extracts of C. maltosa grown on glucose and hexadecane were analyzed. Three proteins specific of cells grown on hexadecane were revealed using mass spectrometry: glycosyl hydrolase EPD2 in the culture liquid; a protein belonging to the cytochrome C family in the 0.5 mol/L NaCl extract; and PPIA_CANAL protein known as chaperone, in the 0.1% SDS extract. The possible role of these proteins in cell wall structures responsible for adaptation to hexadecane utilization is discussed.
Collapse
|
4
|
Rekstina VV, Sabirzyanova TA, Sabirzyanov FA, Adzhubei AA, Tkachev YV, Kudryashova IB, Snalina NE, Bykova AA, Alessenko AV, Ziganshin RH, Kuznetsov SA, Kalebina TS. The Post-Translational Modifications, Localization, and Mode of Attachment of Non-Covalently Bound Glucanosyltransglycosylases of Yeast Cell Wall as a Key to Understanding their Functioning. Int J Mol Sci 2020; 21:ijms21218304. [PMID: 33167499 PMCID: PMC7663962 DOI: 10.3390/ijms21218304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 01/27/2023] Open
Abstract
Glucan linked to proteins is a natural mega-glycoconjugate (mGC) playing the central role as a structural component of a yeast cell wall (CW). Regulation of functioning of non-covalently bound glucanosyltransglycosylases (ncGTGs) that have to remodel mGC to provide CW extension is poorly understood. We demonstrate that the main ncGTGs Bgl2 and Scw4 have phosphorylated and glutathionylated residues and are represented in CW as different pools of molecules having various firmness of attachment. Identified pools contain Bgl2 molecules with unmodified peptides, but differ from each other in the presence and combination of modified ones, as well as in the presence or absence of other CW proteins. Correlation of Bgl2 distribution among pools and its N-glycosylation was not found. Glutathione affects Bgl2 conformation, probably resulting in the mode of its attachment and enzymatic activity. Bgl2 from the pool of unmodified and monophosphorylated molecules demonstrates the ability to fibrillate after isolation from CW. Revealing of Bgl2 microcompartments and their mosaic arrangement summarized with the results obtained give the evidence that the functioning of ncGTGs in CW can be controlled by reversible post-translational modifications and facilitated due to their compact localization. The hypothetical scheme of distribution of Bgl2 inside CW is represented.
Collapse
Affiliation(s)
- Valentina V. Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Tatyana A. Sabirzyanova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Fanis A. Sabirzyanov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.A.A.); (Y.V.T.)
| | - Yaroslav V. Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.A.A.); (Y.V.T.)
| | - Irina B. Kudryashova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Natalia E. Snalina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia; (N.E.S.); (A.V.A.)
| | - Anastasia A. Bykova
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
| | - Alice V. Alessenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia; (N.E.S.); (A.V.A.)
| | - Rustam H. Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia;
| | - Sergei A. Kuznetsov
- Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany;
| | - Tatyana S. Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.R.); (T.A.S.); (F.A.S.); (I.B.K.); (A.A.B.)
- Correspondence: ; Tel.: +7-(495)-939-50-75
| |
Collapse
|
5
|
Rekstina VV, Bykova AA, Ziganshin RH, Kalebina TS. GPI-Modified Proteins Non-covalently Attached to Saccharomyces cerevisiae Yeast Cell Wall. BIOCHEMISTRY (MOSCOW) 2019; 84:1513-1520. [PMID: 31870255 DOI: 10.1134/s0006297919120101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Yeast cell wall GPI-anchored proteins lack the lipid part of the anchor and are covalently bound to the high-molecular-weight polysaccharides glucan and/or chitin through the mannose residues. They perform many functions, including participation in the cell wall molecular ensemble formation and providing cell resistance to stress. In this work, we identified a pool of GPI-modified proteins firmly bound to the cell wall by non-covalent interactions with the high-molecular-weight structural polysaccharides. We believe that the detected proteins are intermediate forms in the processing of the cell wall GPI-proteins, since they had already lost the lipid part of the GPI anchor and are absent in the lipoprotein fraction extracted according to Folch, but were not yet incorporated into the cell wall by the covalent binding to high-molecular-weight polysaccharides because they could be extracted into water by heating of delipidized cell walls. This group of previously unknown proteins might be present in the cell wall in a form of lipid-associated microcompartments represented by transport vesicles recently found in yeast. GPI-modified proteins non-covalently attached to the high-molecular-weight polysaccharides were found in the cell walls of both the parent strain and yeast devoid of glucanosyltransglycosylase Bgl2, which indicates that the pathway of their incorporation into the cell wall is independent on this enzyme.
Collapse
Affiliation(s)
- V V Rekstina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A A Bykova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - R H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - T S Kalebina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| |
Collapse
|
6
|
|