1
|
Xu X, Fu Y, Luo D, Zhang L, Huang X, Chen Y, Lei C, Liu J, Li S, Yu Z, Lin Y, Zhang M. Therapeutic effects of tetrahedral framework nucleic acids and tFNAs-miR22 on retinal ischemia/reperfusion injury. Cell Prolif 2024; 57:e13695. [PMID: 39086110 PMCID: PMC11533083 DOI: 10.1111/cpr.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
Retinal ischemia/reperfusion injury (RI/R) is a common pathological process in ophthalmic diseases, which can cause severe visual impairment. The mechanisms underlying RI/R damage and repair are still unclear. Scholars are actively exploring effective intervention strategies to restore impaired visual function. With the development of nucleic acid nanomaterials, tetrahedral framework nucleic acids (tFNAs) have shown promising therapeutic potential in various fields such as stem cells, biosensors, and tumour treatment due to their excellent biological properties. Besides, miRNA-22-3p (miR-22), as an important regulatory factor in neural tissue, has been proven to have positive effects in various neurodegenerative diseases. By stably constructing a complex of tetrahedral framework nucleic acids miR22 (tFNAs-miR22), we observed that tFNAs-miR22 had a positive effect on the repair of RI/R injury in retinal neural tissue. Previous studies have shown that tFNAs can effectively deliver miR-22 into damaged retinal neurons, subsequently exerting neuroprotective effects. Interestingly, we found that there was a certain synergistic effect between tFNAs and miR-22. tFNAs-miR22 can selectively activated the ERK1/2 signalling pathway to reduce neuronal apoptosis, accelerate cell proliferation, and restore synaptic functional activity. In this study, we established a simple yet effective small molecule drug for RI/R treatment which may become a promising neuroprotectant for treating this type of vision impairment disease in the future.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China HospitalSichuan UniversityChengduChina
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yanyan Fu
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China HospitalSichuan UniversityChengduChina
| | - Delun Luo
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Lina Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical EngineeringSichuan UniversityChengduChina
| | - Xi Huang
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China HospitalSichuan UniversityChengduChina
| | - Yingying Chen
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China HospitalSichuan UniversityChengduChina
| | - Chunyan Lei
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China HospitalSichuan UniversityChengduChina
| | - Jinnan Liu
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Shiqi Li
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Zhouyuan Yu
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Department of Maxillofacial Surgery, West China Stomatological HospitalSichuan UniversityChengduChina
| | - Meixia Zhang
- Department of Ophthalmology, and Research Laboratory of Macular Disease, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Pilsova Z, Pilsova A, Zelenkova N, Klusackova B, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its potential as a possible therapeutic agent in male reproduction. Front Endocrinol (Lausanne) 2024; 15:1427069. [PMID: 39324123 PMCID: PMC11423738 DOI: 10.3389/fendo.2024.1427069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that belongs to the group of gasotransmitters along with nitric oxide (NO) and carbon monoxide (CO). H2S plays a pivotal role in male reproductive processes. It is produced in various tissues and cells of the male reproductive system, including testicular tissue, Leydig and Sertoli cells, epididymis, seminal plasma, prostate, penile tissues, and sperm cells. This review aims to summarize the knowledge about the presence and effects of H2S in male reproductive tissues and outline possible therapeutic strategies in pathological conditions related to male fertility, e. g. spermatogenetic disorders and erectile dysfunction (ED). For instance, H2S supports spermatogenesis by maintaining the integrity of the blood-testicular barrier (BTB), stimulating testosterone production, and providing cytoprotective effects. In spermatozoa, H2S modulates sperm motility, promotes sperm maturation, capacitation, and acrosome reaction, and has significant cytoprotective effects. Given its vasorelaxant effects, it supports the erection of penile tissue. These findings suggest the importance and therapeutic potential of H2S in male reproduction, paving the way for further research and potential clinical applications.
Collapse
Affiliation(s)
- Zuzana Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Natalie Zelenkova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Barbora Klusackova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eva Chmelikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Marketa Sedmikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
3
|
Liu TT, Qiu CY, Li XM, Hu WP. CXCL10 Enhances Acid-Sensing Ion Channel Currents in Rat Dorsal Root. Mol Neurobiol 2024:10.1007/s12035-024-04390-3. [PMID: 39046700 DOI: 10.1007/s12035-024-04390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/21/2024] [Indexed: 07/25/2024]
Abstract
Both CXCL10/CXCR3 and acid-sensing ion channels (ASICs) are expressed in nociceptive sensory neurons and participate in various pain processes, but it is still unclear whether there is a link between them. Herein, we report that CXCL10 enhances the electrophysiological activity of ASICs in rat dorsal root ganglia (DRG) neurons. A brief (10 min) application of CXCL10 increased acid-evoked ASIC currents in a concentration-dependent manner. CXCL10 increased the maximum response of ASICs to acidic stimuli without changing their sensitivity. CXCL10 enhanced ASIC currents in DRG cells through CXCR3, as this enhancement was completely blocked by AMG487, a selective CXCR3 antagonist. CXCL10 also increased ASIC3 currents in CHO cells coexpressing ASIC3 and CXCR3 but not in cells expressing ASIC3 alone. The CXCL10-mediated increase in ASIC currents was prevented by the application of either the G protein inhibitor GDP-β-S or the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 but not by the ERK inhibitor U0126 or the JNK inhibitor SP600125. Moreover, CXCL10 increased the number of action potentials triggered by acidic stimuli via CXCR3. CXCL10 dose-dependently exacerbated acid-induced nociceptive behavior in rats through peripheral CXCR3. These results indicated that CXCL10/CXCR3 signaling enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats via a p38 MAPK-dependent pathway, revealing a novel mechanism underlying pain. CXCL10/CXCR3 signaling may be an effective target in the treatment of pain associated with tissue acidification.
Collapse
Affiliation(s)
- Ting-Ting Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Chun-Yu Qiu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Xue-Mei Li
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China
| | - Wang-Ping Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, People's Republic of China.
- Hubei College of Chinese Medicine, 87 Xueyuan Road, Jingzhou, 434020, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter. Antioxidants (Basel) 2022; 11:antiox11091788. [PMID: 36139861 PMCID: PMC9495975 DOI: 10.3390/antiox11091788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide has been recently identified as the third biological gasotransmitter, along with the more well studied nitric oxide (NO) and carbon monoxide (CO). Intensive studies on its potential as a therapeutic agent for cardiovascular, inflammatory, infectious and neuropathological diseases have been undertaken. Here we review the possible direct targets of H2S in mammals. H2S directly interacts with reactive oxygen/nitrogen species and is involved in redox signaling. H2S also reacts with hemeproteins and modulates metal-containing complexes. Once being oxidized, H2S can persulfidate proteins by adding -SSH to the amino acid cysteine. These direct modifications by H2S have significant impact on cell structure and many cellular functions, such as tight junctions, autophagy, apoptosis, vesicle trafficking, cell signaling, epigenetics and inflammasomes. Therefore, we conclude that H2S is involved in many important cellular and physiological processes. Compounds that donate H2S to biological systems can be developed as therapeutics for different diseases.
Collapse
|
5
|
Shah S, Sun A, Chu XP. Modulation of ASIC1a by reactive oxygen species through JFK signaling. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2022; 14:276-280. [PMID: 36161255 PMCID: PMC9490213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Sareena Shah
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine Kansas, Missouri 64108, USA
| | - Amber Sun
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine Kansas, Missouri 64108, USA
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine Kansas, Missouri 64108, USA
| |
Collapse
|
6
|
Salinas Castellanos LC, Uchitel OD, Weissmann C. Signaling Pathways in Proton and Non-proton ASIC1a Activation. Front Cell Neurosci 2021; 15:735414. [PMID: 34675777 PMCID: PMC8523820 DOI: 10.3389/fncel.2021.735414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases as well as pain conditions. Classically, ASICs are described as transiently activated by a reduced pH, followed by desensitization; the activation allows sodium influx, and in the case of ASIC1a-composed channels, also calcium to some degree. Several factors are emerging and extensively analyzed as modulators, activating, inhibiting, and potentiating specific channel subunits. However, the signaling pathways triggered by channel activation are only starting to be revealed.The channel has been recently shown to be activated through a mechanism other than proton-mediated. Indeed, the large extracellular loop of these channels opens the possibility that other non-proton ligands might exist. One such molecule discovered was a toxin present in the Texas coral snake venom. The finding was associated with the activation of the channel at neutral pH via the toxin and causing intense and unremitting pain.By using different pharmacological tools, we analyzed the downstream signaling pathway triggered either by the proton and non-proton activation for human, mouse, and rat ASIC1a-composed channels in in vitro models. We show that for all species analyzed, the non-protonic mode of activation determines the activation of the ERK signaling cascade at a higher level and duration compared to the proton mode.This study adds to the growing evidence of the important role ASIC1a channels play in different physiological and pathological conditions and also hints at a possible pathological mechanism for a sustained effect.
Collapse
Affiliation(s)
| | | | - Carina Weissmann
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE—UBA CONICET), Facultad de Ciencias, Exactas y Naturales de la Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|