1
|
Chabanol E, Gendrin M. Insects and microbes: best friends from the nursery. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101270. [PMID: 39293738 DOI: 10.1016/j.cois.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Insects host microbes and interact with them throughout their life cycle. This microbiota is an important, if not essential, partner participating in many aspects of insect physiology. Recent omics studies have contributed to considerable advances in the current understanding of the molecular implications of microbiota during insect development. In this review, we present an overview of the current knowledge about the mechanisms underlying interactions between developing insects and their microbial companions. The microbiota is implicated in nutrition, both via compensating for metabolic pathways lacking in the host and via regulating host metabolism. Furthermore, the microbiota plays a protective role, enhancing the insect's tolerance to, or resistance against, various environmental stresses.
Collapse
Affiliation(s)
- Estelle Chabanol
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana.
| |
Collapse
|
2
|
Ferrarini MG, Vallier A, Vincent-Monégat C, Dell'Aglio E, Gillet B, Hughes S, Hurtado O, Condemine G, Zaidman-Rémy A, Rebollo R, Parisot N, Heddi A. Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp. MICROBIOME 2023; 11:274. [PMID: 38087390 PMCID: PMC10717185 DOI: 10.1186/s40168-023-01714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development. RESULTS We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics. We unraveled a constant arms race in which different biological functions are intertwined and coregulated across both partners. These include immunity, metabolism, metal control, apoptosis, and bacterial stress response. CONCLUSIONS The study of these tightly regulated functions, which are at the center of symbiotic regulations, provides evidence on how hosts and bacteria finely tune their gene expression and respond to different physiological challenges constrained by insect development in a nutritionally limited ecological niche. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | | | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Ophélie Hurtado
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Guy Condemine
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Institut universitaire de France (IUF), Paris, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| |
Collapse
|
3
|
Kwak Y, Hansen AK. Unveiling metabolic integration in psyllids and their nutritional endosymbionts through comparative transcriptomics analysis. iScience 2023; 26:107930. [PMID: 37810228 PMCID: PMC10558732 DOI: 10.1016/j.isci.2023.107930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Psyllids, a group of insects that feed on plant sap, have a symbiotic relationship with an endosymbiont called Carsonella. Carsonella synthesizes essential amino acids and vitamins for its psyllid host, but lacks certain genes required for this process, suggesting a compensatory role of psyllid host genes. To investigate this, gene expression was compared between two psyllid species, Bactericera cockerelli and Diaphorina citri, in specialized cells where Carsonella resides (bacteriomes). Collaborative psyllid genes, including horizontally transferred genes, showed patterns of conserved gene expression; however, species-specific patterns were also observed, suggesting differences in the nutritional metabolism between psyllid species. Also, the recycling of nitrogen in bacteriomes may primarily rely on glutamate dehydrogenase (GDH). Additionally, lineage-specific gene clusters were differentially expressed in B. cockerelli and D. citri bacteriomes and are highlighted here. These findings shed light on potential host adaptations for the regulation of this symbiosis due to host, microbiome, and environmental differences.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, 5200 Lake Road, Merced, CA 95343, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Tian PP, Zhang YL, Huang JL, Li WY, Liu XD. Arsenophonus Interacts with Buchnera to Improve Growth Performance of Aphids under Amino Acid Stress. Microbiol Spectr 2023; 11:e0179223. [PMID: 37222634 PMCID: PMC10269474 DOI: 10.1128/spectrum.01792-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Amino acids play a crucial role in the growth and development of insects. Aphids cannot ingest enough amino acids in plant phloem to meet their requirements, and therefore, they are mainly dependent on the obligate symbiont Buchnera aphidicola to synthesize essential amino acids. Besides Buchnera, aphids may harbor another facultative symbiont, Arsenophonus, which alters the requirement of the cotton-melon aphid Aphis gossypii for amino acid. However, it is unclear how Arsenophonus regulates the requirement. Here, we found that Arsenophonus ameliorated growth performance of A. gossypii on an amino acid-deficient diet. A deficiency in lysine (Lys) or methionine (Met) led to changes in the abundance of Arsenophonus. Arsenophonus suppressed the abundance of Buchnera when aphids were fed a normal amino acid diet, but this suppression was eliminated or reversed when aphids were on a Lys- or Met-deficient diet. The relative abundance of Arsenophonus was positively correlated with that of Buchnera, but neither of them was correlated with the body weight of aphids. The relative expression levels of Lys and Met synthase genes of Buchnera were affected by the interaction between Arsenophonus infections and Buchnera abundance, especially in aphids reared on a Lys- or Met-deficient diet. Arsenophonus coexisted with Buchnera in bacteriocytes, which strengthens the interaction. IMPORTANCE The obligate symbiont Buchnera can synthesize amino acids for aphids. In this study, we found that a facultative symbiont, Arsenophonus, can help improve aphids' growth performance under amino acid deficiency stress by changing the relative abundance of Buchnera and the expression levels of amino acid synthase genes. This study highlights the interaction between Arsenophonus and Buchnera to ameliorate aphid growth under amino acid stress.
Collapse
Affiliation(s)
- Pan-Pan Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yu-Lin Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Ling Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Wang-Yan Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Argandona JA, Kim D, Hansen AK. Comparative transcriptomics of aphid species that diverged > 22 MYA reveals genes that are important for the maintenance of their symbiosis. Sci Rep 2023; 13:5341. [PMID: 37005434 PMCID: PMC10067822 DOI: 10.1038/s41598-023-32291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Most plant-sap feeding insects have obligate relationships with maternally transmitted bacteria. Aphids require their nutritional endosymbiont, Buchnera aphidicola, for the production of essential amino acids. Such endosymbionts are harbored inside of specialized insect cells called bacteriocytes. Here, we use comparative transcriptomics of bacteriocytes between two recently diverged aphid species, Myzus persicae and Acyrthosiphon pisum, to identify key genes that are important for the maintenance of their nutritional mutualism. The majority of genes with conserved expression profiles in M. persicae and A. pisum are for orthologs previously identified in A. pisum to be important for the symbiosis. However, asparaginase which produces aspartate from asparagine was significantly up-regulated only in A. pisum bacteriocytes, potentially because Buchnera of M. persicae encodes its own asparaginase enzyme unlike Buchnera of A. pisum resulting in Buchnera of A. pisum to be dependent on its aphid host for aspartate. One-to-one orthologs that explained the most amount of variation for bacteriocyte specific mRNA expression for both species includes a collaborative gene for methionine biosynthesis, multiple transporters, a horizontally transmitted gene, and secreted proteins. Finally, we highlight species-specific gene clusters which may contribute to host adaptations and/or accommodations in gene regulation to changes in the symbiont or the symbiosis.
Collapse
Affiliation(s)
- Jacob A Argandona
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Dohyup Kim
- Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Li J, An Z, Luo J, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Cui J. Parasitization of Aphis gossypii Glover by Binodoxys communis Gahan Causes Shifts in the Ovarian Bacterial Microbiota. INSECTS 2023; 14:314. [PMID: 37103129 PMCID: PMC10142764 DOI: 10.3390/insects14040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Aphis gossypii Glover is an important agricultural pest distributed worldwide. Binodoxys communis Gahan is the main parasitoid wasp of A. gossypii. Previous studies have shown that parasitization causes reduced egg production in A. gossypii, but the effects of parasitism on the symbiotic bacteria in the host ovaries are unknown. RESULTS In this study, we analyzed the microbial communities in the ovaries of A. gossypii without and after parasitization. Whether parasitized or not, Buchnera was the dominant genus of symbiotic bacteria in the ovaries, followed by facultative symbionts including Arsenophonus, Pseudomonas, and Acinetobacter. The relative abundance of Buchnera in the aphid ovary increased after parasitization for 1 d in both third-instar nymph and adult stages, but decreased after parasitization for 3 d. The shifts in the relative abundance of Arsenophonus in both stages were the same as those observed for Buchnera. In addition, the relative abundance of Serratia remarkably decreased after parasitization for 1 d and increased after parasitization for 3 d. A functional predictive analysis of the control and parasitized ovary microbiomes revealed that pathways primarily enriched in parasitization were "amino acid transport and metabolism" and "energy production and conversion." Finally, RT-qPCR analysis was performed on Buchnera, Arsenophonus, and Serratia. The results of RT-qPCR were the same as the results of 16S rDNA sequencing. CONCLUSIONS These results provide a framework for investigating shifts in the microbial communities in host ovaries, which may be responsible for reduced egg production in aphids. These findings also broaden our understanding of the interactions among aphids, parasitoid wasps, and endosymbionts.
Collapse
Affiliation(s)
- Jinming Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhe An
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
7
|
Iwata M, Yoshinaga M, Mizutani K, Kikawada T, Kikuta S. Proton gradient mediates hemolymph trehalose influx into aphid bacteriocytes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21971. [PMID: 36205078 DOI: 10.1002/arch.21971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Aphids harbor proteobacterial endosymbionts such as Buchnera aphidicola housed in specialized bacteriocytes derived from host cells. The endosymbiont Buchnera supplies essential amino acids such as arginine to the host cells and, in turn, obtains sugars needed for its survival from the hemolymph. The mechanism of sugar supply in aphid bacteriocytes has been rarely studied. It also remains unclear how Buchnera acquires its carbon source. The hemolymph sugars in Acyrthosiphon pisum are composed of the disaccharide trehalose containing two glucose molecules. Here, we report for the first time that trehalose is transported and used as a potential carbon source by Buchnera across the bacteriocyte plasma membrane via trehalose transporters. The current study characterized the bacteriocyte trehalose transporter Ap_ST11 (LOC100159441) using the Xenopus oocyte expression system. The Ap_ST11 transporter was found to be proton-dependent with a Km value ≥700 mM. We re-examined the hemolymph trehalose at 217.8 mM using a fluorescent trehalose sensor. The bacteriocytes did not obtain trehalose by facilitated diffusion along the gradient across cellular membranes. These findings suggest that trehalose influx into the bacteriocytes depends on the extracellular proton-driven secondary electrochemical transporter.
Collapse
Affiliation(s)
- Mana Iwata
- College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, Japan
| | - Mayu Yoshinaga
- College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, Japan
| | - Kosuke Mizutani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Takahiro Kikawada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shingo Kikuta
- College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, Japan
| |
Collapse
|
8
|
Alarcón ME, Polo PG, Akyüz SN, Rafiqi AM. Evolution and ontogeny of bacteriocytes in insects. Front Physiol 2022; 13:1034066. [PMID: 36505058 PMCID: PMC9732443 DOI: 10.3389/fphys.2022.1034066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The ontogenetic origins of the bacteriocytes, which are cells that harbour bacterial intracellular endosymbionts in multicellular animals, are unknown. During embryonic development, a series of morphological and transcriptional changes determine the fate of distinct cell types. The ontogeny of bacteriocytes is intimately linked with the evolutionary transition of endosymbionts from an extracellular to an intracellular environment, which in turn is linked to the diet of the host insect. Here we review the evolution and development of bacteriocytes in insects. We first classify the endosymbiotic occupants of bacteriocytes, highlighting the complex challenges they pose to the host. Then, we recall the historical account of the discovery of bacteriocytes. We then summarize the molecular interactions between the endosymbiont and the host. In addition, we illustrate the genetic contexts in which the bacteriocytes develop, with examples of the genetic changes in the hosts and endosymbionts, during specific endosymbiotic associations. We finally address the evolutionary origin as well as the putative ontogenetic or developmental source of bacteriocytes in insects.
Collapse
|
9
|
Ribeiro Lopes M, Gaget K, Renoz F, Duport G, Balmand S, Charles H, Callaerts P, Calevro F. Bacteriocyte plasticity in pea aphids facing amino acid stress or starvation during development. Front Physiol 2022; 13:982920. [PMID: 36439244 PMCID: PMC9685537 DOI: 10.3389/fphys.2022.982920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2023] Open
Abstract
An important contributing factor to the evolutionary success of insects is nutritional association with microbial symbionts, which provide the host insects with nutrients lacking in their unbalanced diets. These symbionts are often compartmentalized in specialized cells of the host, the bacteriocytes. Even though bacteriocytes were first described more than a century ago, few studies have explored their dynamics throughout the insect life cycle and in response to environmental stressors. Here, we use the Buchnera aphidicola/pea aphid symbiotic system to study how bacteriocytes are regulated in response to nutritional stress throughout aphid development. Using artificial diets, we analyzed the effects of depletion or excess of phenylalanine or leucine, two amino acids essential for aphid growth and whose biosynthetic pathways are shared between the host and the symbiont. Bacteriocytes responded dynamically to those treatments, while other tissues showed no obvious morphological change. Amino acid depletion resulted in an increase in bacteriocyte numbers, with the extent of the increase depending on the amino acid, while excess either caused a decrease (for leucine) or an increase (for phenylalanine). Only a limited impact on survival and fecundity was observed, suggesting that the adjustment in bacteriocyte (and symbiont) numbers is sufficient to withstand these nutritional challenges. We also studied the impact of more extreme conditions by exposing aphids to a 24 h starvation period at the beginning of nymphal development. This led to a dramatic drop in aphid survival and fecundity and a significant developmental delay. Again, bacteriocytes responded dynamically, with a considerable decrease in number and size, correlated with a decrease in the number of symbionts, which were prematurely degraded by the lysosomal system. This study shows how bacteriocyte dynamics is integrated in the physiology of insects and highlights the high plasticity of these cells.
Collapse
Affiliation(s)
| | - Karen Gaget
- Université de Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - François Renoz
- Université de Lyon, INSA Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
- UCLouvain, Biodiversity Research Centre, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Gabrielle Duport
- Université de Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Séverine Balmand
- Université de Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Hubert Charles
- Université de Lyon, INSA Lyon, INRAE, BF2I, UMR 203, Villeurbanne, France
| | - Patrick Callaerts
- KU Leuven, Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, Leuven, Belgium
| | - Federica Calevro
- Université de Lyon, INRAE, INSA Lyon, BF2I, UMR 203, Villeurbanne, France
| |
Collapse
|
10
|
Kwak Y, Argandona JA, Degnan PH, Hansen AK. Chromosomal-level assembly of Bactericera cockerelli reveals rampant gene family expansions impacting genome structure, function and insect-microbe-plant-interactions. Mol Ecol Resour 2022; 23:233-252. [PMID: 35925827 PMCID: PMC10087415 DOI: 10.1111/1755-0998.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Lineage specific expansions and gene duplications are some of the most important sources of evolutionary novelty in eukaryotes. Although not as prevalent in eukaryotes compared to bacteria, horizontal gene transfer events can also result in key adaptations for insects, especially for those involved in insect-microbe interactions. In this study we assemble the first chromosomal assembly of the psyllid Bactericera cockerelli and reveal that the B. cockerelli genome has experienced significantly more gene expansion events compared to other Hemipteran representatives with fully sequenced genomes. We also reveal that B. cockerelli's genome is the largest psyllid genome (567 Mb) sequenced to date and is ~15% larger than the other two psyllid species genomes sequenced (Pachypsylla venusta and Diaphorina citri). Structurally, B. cockerelli appears to have an additional chromosome compared to the distantly related psyllid species P. venusta due to a previous chromosomal fission or fusion event. The increase in genome size and dynamic nature of the B. cockerelli genome may largely be contributed to the widespread expansion of type I and type II repeat elements that are rampant across all of B. cockerelli's. chromosomes. These repeat elements are distributed near equally in both euchromatic and heterochromatic regions. Furthermore, significant gene family expansions and gene duplications were uncovered for genes that are expected to be important in its adaptation to insect-plant and microbe interactions, which include transcription factors, proteases, odorant receptors, and horizontally transferred genes that are involved in the nutritional symbioses with their long-term nutritional endosymbiont Carsonella.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Entomology, University of California, CA, USA
| | | | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, CA, USA
| | | |
Collapse
|
11
|
Nozaki T, Shigenobu S. Ploidy dynamics in aphid host cells harboring bacterial symbionts. Sci Rep 2022; 12:9111. [PMID: 35650254 PMCID: PMC9159990 DOI: 10.1038/s41598-022-12836-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Aphids have evolved bacteriocytes or symbiotic host cells that harbor the obligate mutualistic bacterium Buchnera aphidicola. Because of the large cell size (approximately 100 μm in diameter) of bacteriocytes and their pivotal role in nutritional symbiosis, researchers have considered that these cells are highly polyploid and assumed that bacteriocyte polyploidy may be essential for the symbiotic relationship between the aphid and the bacterium. However, little is known about the ploidy levels and dynamics of aphid bacteriocytes. Here, we quantitatively analyzed the ploidy levels in the bacteriocytes of the pea-aphid Acyrthosiphon pisum. Image-based fluorometry revealed the hyper polyploidy of the bacteriocytes ranging from 16- to 256-ploidy throughout the lifecycle. Bacteriocytes of adult parthenogenetic viviparous females were ranged between 64 and 128C DNA levels, while those of sexual morphs (oviparous females and males) were comprised of 64C, and 32–64C cells, respectively. During post-embryonic development of viviparous females, the ploidy level of bacteriocytes increased substantially, from 16 to 32C at birth to 128–256C in actively reproducing adults. These results suggest that the ploidy levels are dynamically regulated among phenotypes and during development. Our comprehensive and quantitative data provides a foundation for future studies to understand the functional roles and biological significance of the polyploidy of insect bacteriocytes.
Collapse
Affiliation(s)
- Tomonari Nozaki
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Shuji Shigenobu
- Laboratory of Evolutionary Genomics, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
12
|
Yang Y, Liu X, Xu H, Liu Y, Lu Z. Effects of Host Plant and Insect Generation on Shaping of the Gut Microbiota in the Rice Leaffolder, Cnaphalocrocis medinalis. Front Microbiol 2022; 13:824224. [PMID: 35479615 PMCID: PMC9037797 DOI: 10.3389/fmicb.2022.824224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbes in insects may play an important role in the digestion, immunity and protection, detoxification of toxins, development, and reproduction. The rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae) is a notorious insect pest that can damage rice, maize, and other gramineous plants. To determine the effects of host plants and generations on the gut microbiota of C. medinalis, we deciphered the bacterial configuration of this insect pest fed rice or maize for three generations by Illumina MiSeq technology. A total of 16 bacterial phyla, 34 classes, 50 orders, 101 families, 158 genera, and 44 species were identified in C. medinalis fed rice or maize for three generations. Host plants, insect generation, and their interaction did not influence the alpha diversity indices of the gut microbiota of C. medinalis. The dominant bacterial taxa were Proteobacteria and Firmicutes at the phylum level and Enterococcus and unclassified Enterobacteriaceae at the genus level. A number of twenty genera coexisted in the guts of C. medinalis fed rice or maize for three generations, and their relative abundances occupied more than 90% of the gut microbiota of C. medinalis. A number of two genera were stably found in the gut of rice-feeding C. medinalis but unstably found in the gut microbiota of maize-feeding C. medinalis, and seven genera were stably found in the gut of maize-feeding C. medinalis but unstably found in the gut of rice-feeding C. medinalis. In addition, many kinds of microbes were found in some but not all samples of the gut of C. medinalis fed on a particular host plant. PerMANOVA indicated that the gut bacteria of C. medinalis could be significantly affected by the host plant and host plant × generation. We identified 47 taxa as the biomarkers for the gut microbiota of C. medinalis fed different host plants by LEfSe. Functional prediction suggested that the most dominant role of the gut microbiota in C. medinalis is metabolism, followed by environmental information processing, cellular processes, and genetic information processing. Our findings will enrich the understanding of gut bacteria in C. medinalis and reveal the differences in gut microbiota in C. medinalis fed on different host plants for three generations.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogai Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghong Liu
- College of Plant Protection, Southwest University, Chongqing, China
- *Correspondence: Yinghong Liu,
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Zhongxian Lu,
| |
Collapse
|
13
|
Potato leafroll virus reduces Buchnera aphidocola titer and alters vector transcriptome responses. Sci Rep 2021; 11:23931. [PMID: 34907187 PMCID: PMC8671517 DOI: 10.1038/s41598-021-02673-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Viruses in the Luteoviridae family, such as Potato leafroll virus (PLRV), are transmitted by aphids in a circulative and nonpropagative mode. This means the virions enter the aphid body through the gut when they feed from infected plants and then the virions circulate through the hemolymph to enter the salivary glands before being released into the saliva. Although these viruses do not replicate in their insect vectors, previous studies have demonstrated viruliferous aphid behavior is altered and the obligate symbiont of aphids, Buchnera aphidocola, may be involved in transmission. Here we provide the transcriptome of green peach aphids (Myzus persicae) carrying PLRV and virus-free control aphids using Illumina sequencing. Over 150 million paired-end reads were obtained through Illumina sequencing, with an average of 19 million reads per library. The comparative analysis identified 134 differentially expressed genes (DEGs) between the M. persicae transcriptomes, including 64 and 70 genes that were up- and down-regulated in aphids carrying PLRV, respectively. Using functional classification in the GO databases, 80 of the DEGs were assigned to 391 functional subcategories at category level 2. The most highly up-regulated genes in aphids carrying PLRV were cytochrome p450s, genes related to cuticle production, and genes related to development, while genes related to heat shock proteins, histones, and histone modification were the most down-regulated. PLRV aphids had reduced Buchnera titer and lower abundance of several Buchnera transcripts related to stress responses and metabolism. These results suggest carrying PLRV may reduce both aphid and Buchnera genes in response to stress. This work provides valuable basis for further investigation into the complicated mechanisms of circulative and nonpropagative transmission.
Collapse
|
14
|
Parker BJ. Mechanisms and Evolution of Heritable Microbial Density in Insect Hosts. mSystems 2021; 6:e0072821. [PMID: 34463570 PMCID: PMC8441989 DOI: 10.1128/msystems.00728-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within-host density is a critically important aspect of vertically transmitted symbioses that influences the fitness of both hosts and microbes. I review recent studies of symbiont density in insects, including my laboratory's work on pea aphids and maternally transmitted bacteria. These studies used systems approaches to uncover the molecular mechanisms of how both hosts and microbes influence symbiont density, and they shed light on whether optimal density is different from the perspective of host and microbial fitness. Mounting empirical evidence suggests that antagonistic coevolution shapes vertically transmitted symbioses even when microbes provide clear benefits to hosts. This is potentially because of differing selective pressures at the host and within-host levels. Considering these contrasting evolutionary pressures will be critically important in efforts to use vertically transmitted symbionts for biocontrol and as lessons from model systems are applied to the study of more complex microbiomes.
Collapse
Affiliation(s)
- Benjamin J. Parker
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
15
|
Thairu MW, Meduri VRS, Degnan PH, Hansen AK. Natural selection shapes maintenance of orthologous sRNAs in divergent host-restricted bacterial genomes. Mol Biol Evol 2021; 38:4778-4791. [PMID: 34213555 PMCID: PMC8557413 DOI: 10.1093/molbev/msab202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Historically it has been difficult to study the evolution of bacterial small RNAs (sRNAs) across distantly related species. For example, identifying homologs of sRNAs is often difficult in genomes that have undergone multiple structural rearrangements. Also, some types of regulatory sRNAs evolve at rapid rates. The high degree of genomic synteny among divergent host-restricted bacterial lineages, including intracellular symbionts, is conducive to sRNA maintenance and homolog identification. In turn, symbiont genomes can provide us with novel insights into sRNA evolution. Here, we examine the sRNA expression profile of the obligate symbiont of psyllids, Carsonella ruddii, which has one of the smallest cellular genomes described. Using RNA-seq, we identified 36 and 32 antisense sRNAs (asRNAs) expressed by Carsonella from the psyllids Bactericera cockerelli (Carsonella-BC) and Diaphorina citri (Carsonella-DC), respectively. The majority of these asRNAs were associated with genes that are involved in essential amino acid biosynthetic pathways. Eleven of the asRNAs were conserved in both Carsonella lineages and the majority were maintained by selection. Notably, five of the corresponding coding sequences are also the targets of conserved asRNAs in a distantly related insect symbiont, Buchnera. We detected differential expression of two asRNAs for genes involved in arginine and leucine biosynthesis occurring between two distinct Carsonella-BC life stages. Using asRNAs identified in Carsonella, Buchnera, and Profftella which are all endosymbionts, and Escherichia coli, we determined that regions upstream of these asRNAs encode unique conserved patterns of AT/GC richness, GC skew, and sequence motifs which may be involved in asRNA regulation.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA.,Department of Bacteriology, University of Wisconsin, Madison, Madison, WI
| | | | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA
| |
Collapse
|