1
|
Weng M, Zhang D, Wang H, Yang C, Lin H, Pan Y, Lin Y. Long non-coding RNAs and their potential function in response to postharvest senescence of Sparassis latifolia during cold storage. Sci Rep 2024; 14:747. [PMID: 38185662 PMCID: PMC10772075 DOI: 10.1038/s41598-023-46744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/04/2023] [Indexed: 01/09/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play crucial roles in response to aging processes. However, how lncRNAs regulate postharvest senescence of Sparassis latifolia (S. latifolia) with oriented polypropylene (OPP) film packing during cold storage remains unclear. In this study, we performed RNA-seq using the fruiting bodies of S. latifolia stored at 4 ℃ for 0, 8, 16 and 24 days after harvest, and profiled the lncRNA and mRNA transcriptome, respectively. In total, 1003 putative lncRNAs were identified, and there were 495, 483 and 162 differentially expressed (DE) lncRNAs, and 3680, 3941 and 1870 differentially expressed mRNAs after 8, 16 and 24 days of storage, respectively, compared to 0 day of storage. Target genes of differentially expressed lncRNAs were found to significantly associate with carbon and energy metabolism, response to abiotic stimulus, amino acid biosynthesis and metabolism, and protein synthesis and transcription. In addition, DE-lncRNA-mRNA co-expression networks in response to aging stress were also constructed. Taken together, these results confirm the regulatory role of lncRNAs in postharvest senescence of S. latifolia and will facilitate for improving preservation method.
Collapse
Affiliation(s)
- Mengting Weng
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Di Zhang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Hongyu Wang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Chi Yang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Hongyi Lin
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China
| | - Yanfang Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yanquan Lin
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China.
- National and Local Joint Engineering Research Center for Breeding & Cultivation of Featured Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou, 350014, China.
| |
Collapse
|
2
|
Ma L, Yang C, Xiao D, Liu X, Jiang X, Lin H, Ying Z, Lin Y. Chromosome-level assembly of Dictyophora rubrovolvata genome using third-generation DNA sequencing and Hi-C analysis. G3 (BETHESDA, MD.) 2023; 13:jkad102. [PMID: 37178144 PMCID: PMC10411574 DOI: 10.1093/g3journal/jkad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/15/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Dictyophora rubrovolvata, a rare edible mushroom with both nutritional and medicinal values, was regarded as the "queen of the mushroom" for its attractive appearance. Dictyophora rubrovolvata has been widely cultivated in China in recent years, and many researchers were focusing on its nutrition, culture condition, and artificial cultivation. Due to a lack of genomic information, research on bioactive substances, cross breeding, lignocellulose degradation, and molecular biology is limited. In this study, we report a chromosome-level reference genome of D. rubrovolvata using the PacBio single-molecule real-time-sequencing technique and high-throughput chromosome conformation capture (Hi-C) technologies. A total of 1.83 Gb circular consensus sequencing reads representing ∼983.34 coverage of the D. rubrovolvata genome were generated. The final genome was assembled into 136 contigs with a total length of 32.89 Mb. The scaffold and contig N50 length were 2.71 and 2.48 Mb, respectively. After chromosome-level scaffolding, 11 chromosomes with a total length of 28.24 Mb were constructed. Genome annotation further revealed that 9.86% of the genome was composed of repetitive sequences, and a total of 508 noncoding RNA (rRNA: 329, tRNA: 150, ncRNA: 29) were annotated. In addition, 9,725 protein-coding genes were predicted, among which 8,830 (90.79%) genes were predicted using homology or RNA-seq. Benchmarking Universal Single-Copy Orthologs results further revealed that there were 80.34% complete single-copy fungal orthologs. In this study, a total of 360 genes were annotated as belonging to the carbohydrate-active enzymes family. Further analysis also predicted 425 cytochromes P450 genes, which can be classified into 41 families. This highly accurate, chromosome-level reference genome of D. rubrovolvata will provide essential genomic information for understanding the molecular mechanism in its fruiting body formation during morphological development and facilitate the exploitation of medicinal compounds produced by this mushroom.
Collapse
Affiliation(s)
- Lu Ma
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
- National and Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Muhsroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Chi Yang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
- National and Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Muhsroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Donglai Xiao
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
- National and Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Muhsroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Xiaoyu Liu
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
- National and Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Muhsroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Xiaoling Jiang
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
- National and Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Muhsroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Hui Lin
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
- National and Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Muhsroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Zhenghe Ying
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
- National and Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Muhsroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Yanquan Lin
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
- National and Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Muhsroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| |
Collapse
|
3
|
Liu D, Xie X, Tong B, Zhou C, Qu K, Guo H, Zhao Z, El-Kassaby YA, Li W, Li W. A high -quality genome assembly and annotation of Quercus acutissima Carruth. FRONTIERS IN PLANT SCIENCE 2022; 13:1068802. [PMID: 36507419 PMCID: PMC9729791 DOI: 10.3389/fpls.2022.1068802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Quercus acutissima is an economic and ecological tree species often used for afforestation of arid and semi-arid lands and is considered as an excellent tree for soil and water conservation. METHODS Here, we combined PacBio long reads, Hi-C, and Illumina short reads to assemble Q. acutissima genome. RESULTS We generated a 957.1 Mb genome with a contig N50 of 1.2 Mb and scaffold N50 of 77.0 Mb. The repetitive sequences constituted 55.63% of the genome, among which long terminal repeats were the majority and accounted for 23.07% of the genome. Ab initio, homology-based and RNA sequence-based gene prediction identified 29,889 protein-coding genes, of which 82.6% could be functionally annotated. Phylogenetic analysis showed that Q. acutissima and Q. variabilis were differentiated around 3.6 million years ago, and showed no evidence of species-specific whole genome duplication. CONCLUSION The assembled and annotated high-quality Q. acutissima genome not only promises to accelerate the species molecular biology studies and breeding, but also promotes genome level evolutionary studies.
Collapse
Affiliation(s)
- Dan Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Chengcheng Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai Qu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haili Guo
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Zhiheng Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Wei Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenqing Li
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| |
Collapse
|
4
|
Comparative transcriptomics reveals unique pine wood decay strategies in the Sparassis latifolia. Sci Rep 2022; 12:19875. [PMID: 36400936 PMCID: PMC9674834 DOI: 10.1038/s41598-022-24171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Sparassis latifolia is a valuable edible mushroom, growing on fresh pine wood sawdust substrate. However, the mechanistic bases are poorly understood. The gene expression profiles of S. latifolia were analyzed from submerged cultures with fresh pine wood sawdust substrate for different time (0 h, 1 h, 6 h, 1 day, 5 days, and 10 days, respectively). The total number of differentially expressed genes (DEGs) identified under pine sawdust inducing was 2,659 compared to 0 h (CK). And 1,073, 520, 385, 424, and 257 DEGs were identified at the five time points, respectively. There were 34 genes in common at all inoculated time points, including FAD/NAD(P)-binding domain-containing protein, glucose methanol choline (GMC) oxidoreductase, flavin-containing monooxygenase, and taurine catabolism dioxygenase. Weighted gene co-expression analysis (WGCNA) was then used to compare the molecular characteristics among the groups and identified that the blue module had the highest correlation with the time induced by pine wood sawdust. There were 102 DEGs out of 125 genes in the blue model, which were most enriched in nitronate monooxygenase activity, dioxygenase activity, and oxidation-reduction process GO terms (p < 0.05), and peroxisome in KEGG pathway. This may provide clues into mechanisms that S. latifolia can grow on fresh pine wood sawdust substrate.
Collapse
|