1
|
Gao W, Chen X, He J, Sha A, Luo Y, Xiao W, Xiong Z, Li Q. Intraspecific and interspecific variations in the synonymous codon usage in mitochondrial genomes of 8 pleurotus strains. BMC Genomics 2024; 25:456. [PMID: 38730418 PMCID: PMC11084086 DOI: 10.1186/s12864-024-10374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
In this study, we investigated the codon bias of twelve mitochondrial core protein coding genes (PCGs) in eight Pleurotus strains, two of which are from the same species. The results revealed that the codons of all Pleurotus strains had a preference for ending in A/T. Furthermore, the correlation between codon base compositions and codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) indices was also detected, implying the influence of base composition on codon bias. The two P. ostreatus species were found to have differences in various base bias indicators. The average effective number of codons (ENC) of mitochondrial core PCGs of Pleurotus was found to be less than 35, indicating strong codon preference of mitochondrial core PCGs of Pleurotus. The neutrality plot analysis and PR2-Bias plot analysis further suggested that natural selection plays an important role in Pleurotus codon bias. Additionally, six to ten optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified in eight Pleurotus strains, with UGU and ACU being the most widely used optimal codons in Pleurotus. Finally, based on the combined mitochondrial sequence and RSCU value, the genetic relationship between different Pleurotus strains was deduced, showing large variations between them. This research has improved our understanding of synonymous codon usage characteristics and evolution of this important fungal group.
Collapse
Affiliation(s)
- Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, 2025 # Chengluo Avenue, Longquanyi District, Chengdu, Sichuan, 610106, China.
| |
Collapse
|
2
|
O'Connell LM, Buttimer C, Bottacini F, Coffey A, O'Mahony JM. Identification of novel genera and subcluster classifications for mycobacteriophages. MICROBIOME RESEARCH REPORTS 2023; 2:21. [PMID: 38046825 PMCID: PMC10688833 DOI: 10.20517/mrr.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 12/05/2023]
Abstract
Aim: To identify novel genera amongst mycobacteriophages (MP) and verify a hypothesised correlation between the taxonomy set by the International Committee on Taxonomy of Viruses (ICTV) and the National Centre for Biotechnology Information (NCBI) with that of the Actinobacteriophage Database, which may help formalise subcluster assignment. Methods: A dataset of 721 MP genomes was analysed using VIRIDIC, a nucleotide alignment-based software that predicts genus assignments. Potentially novel genera were analysed using Gegenees and VICTOR, respectively. These genera were then compared to the subclusters assigned by the Actinobacteriophage Database to verify a hypothesis that one genus can be assigned to one subcluster (i.e., the genus-subcluster hypothesis). Results: Initially, when comparing the current genus classifications of the 721 MP dataset to the Actinobacteriophage database subcluster assignments, 83.3% of subclusters supported the genus-subcluster hypothesis. Following the sequential VIRIDIC, Gegenees and VICTOR analyses, a total of 20 novel genera were identified based on a ≥ 70% and ~ 50% similarity threshold for VIRIDIC and Gegenees, respectively, and a monophyletic nature in the VICTOR output. Interestingly, these criteria also appear to support the creation of 13 novel subclusters, which would increase the support for the genus-subcluster hypothesis to 97.6%. Conclusion: The link between genus and subcluster classifications appears robust, as most subclusters can be assigned a single genus and vice versa. By relating the taxonomic and clustering classification systems, they can be easily kept up to date to best reflect MP diversity, which could aid the rapid selection of related (or diverse) phages for research, therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
| | - Colin Buttimer
- APC Microbiome Ireland, Biosciences Research Institute, University College, Cork T12 YT20, Ireland
| | | | - Aidan Coffey
- Munster Technological University, Cork T12 P928, Ireland
| | - Jim M O'Mahony
- Munster Technological University, Cork T12 P928, Ireland
| |
Collapse
|
3
|
Li Q, Luo Y, Sha A, Xiao W, Xiong Z, Chen X, He J, Peng L, Zou L. Analysis of synonymous codon usage patterns in mitochondrial genomes of nine Amanita species. Front Microbiol 2023; 14:1134228. [PMID: 36970689 PMCID: PMC10030801 DOI: 10.3389/fmicb.2023.1134228] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
IntroductionCodon basis is a common and complex natural phenomenon observed in many kinds of organisms.MethodsIn the present study, we analyzed the base bias of 12 mitochondrial core protein-coding genes (PCGs) shared by nine Amanita species.ResultsThe results showed that the codons of all Amanita species tended to end in A/T, demonstrating the preference of mitochondrial codons of Amanita species for a preference for this codon. In addition, we detected the correlation between codon base composition and the codon adaptation index (CAI), codon bias index (CBI), and frequency of optimal codons (FOP) indices, indicating the influence of base composition on codon bias. The average effective number of codons (ENC) of mitochondrial core PCGs of Amanita is 30.81, which is <35, demonstrating the strong codon preference of mitochondrial core PCGs of Amanita. The neutrality plot analysis and PR2-Bias plot analysis further demonstrated that natural selection plays an important role in Amanita codon bias. In addition, we obtained 5–10 optimal codons (ΔRSCU > 0.08 and RSCU > 1) in nine Amanita species, and GCA and AUU were the most widely used optimal codons. Based on the combined mitochondrial sequence and RSCU value, we deduced the genetic relationship between different Amanita species and found large variations between them.DiscussionThis study promoted the understanding of synonymous codon usage characteristics and evolution of this important fungal group.
Collapse
|
4
|
Wu P, Xiao W, Luo Y, Xiong Z, Chen X, He J, Sha A, Gui M, Li Q. Comprehensive analysis of codon bias in 13 Ganoderma mitochondrial genomes. Front Microbiol 2023; 14:1170790. [PMID: 37213503 PMCID: PMC10192751 DOI: 10.3389/fmicb.2023.1170790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Codon usage bias is a prevalent phenomenon observed across various species and genes. However, the specific attributes of codon usage in the mitochondrial genome of Ganoderma species remain unknown. Methods In this study, we investigated the codon bias of 12 mitochondrial core protein-coding genes (PCGs) in 9 Ganoderma species, including 13 Ganoderma strains. Results The codons of all Ganoderma strains showed a preference for ending in A/T. Additionally, correlations between codon base composition and the codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) were identified, demonstrating the impact of base composition on codon bias. Various base bias indicators were found to vary between or within Ganoderma strains, including GC3s, the CAI, the CBI, and the FOP. The results also revealed that the mitochondrial core PCGs of Ganoderma have an average effective number of codons (ENC) lower than 35, indicating strong bias toward certain codons. Evidence from neutrality plot and PR2-bias plot analysis indicates that natural selection is a major factor affecting codon bias in Ganoderma. Additionally, 11 to 22 optimal codons (ΔRSCU>0.08 and RSCU>1) were identified in 13 Ganoderma strains, with GCA, AUC, and UUC being the most widely used optimal codons in Ganoderma. By analyzing the combined mitochondrial sequences and relative synonymous codon usage (RSCU) values, the genetic relationships between or within Ganoderma strains were determined, indicating variations between them. Nevertheless, RSCU-based analysis illustrated the intra- and interspecies relationships of certain Ganoderma species. Discussion This study deepens our insight into the synonymous codon usage characteristics, genetics, and evolution of this important fungal group.
Collapse
Affiliation(s)
- Peng Wu
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Mingying Gui
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- *Correspondence: Mingying Gui,
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- Qiang Li,
| |
Collapse
|
5
|
Howell AA, Versoza CJ, Cerna G, Johnston T, Kakde S, Karuku K, Kowal M, Monahan J, Murray J, Nguyen T, Sanchez Carreon A, Streiff A, Su B, Youkhana F, Munig S, Patel Z, So M, Sy M, Weiss S, Pfeifer SP. Phylogenomic analyses and host range prediction of cluster P mycobacteriophages. G3 (BETHESDA, MD.) 2022; 12:jkac244. [PMID: 36094333 PMCID: PMC9635641 DOI: 10.1093/g3journal/jkac244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages, infecting bacterial hosts in every environment on our planet, are a driver of adaptive evolution in bacterial communities. At the same time, the host range of many bacteriophages-and thus one of the selective pressures acting on complex microbial systems in nature-remains poorly characterized. Here, we computationally inferred the putative host ranges of 40 cluster P mycobacteriophages, including members from 6 subclusters (P1-P6). A series of comparative genomic analyses revealed that mycobacteriophages of subcluster P1 are restricted to the Mycobacterium genus, whereas mycobacteriophages of subclusters P2-P6 are likely also able to infect other genera, several of which are commonly associated with human disease. Further genomic analysis highlighted that the majority of cluster P mycobacteriophages harbor a conserved integration-dependent immunity system, hypothesized to be the ancestral state of a genetic switch that controls the shift between lytic and lysogenic life cycles-a temperate characteristic that impedes their usage in antibacterial applications.
Collapse
Affiliation(s)
- Abigail A Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Gabriella Cerna
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Tyler Johnston
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Shriya Kakde
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Keith Karuku
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Maria Kowal
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jasmine Monahan
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jillian Murray
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Teresa Nguyen
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Aurely Sanchez Carreon
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Abigail Streiff
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Blake Su
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School of Politics and Global Studies, Arizona State University, Tempe, AZ 85281, USA
| | - Faith Youkhana
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Saige Munig
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Zeel Patel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Minerva So
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Makena Sy
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Sarah Weiss
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
6
|
Hosseiniporgham S, Sechi LA. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022; 11:777. [PMID: 35890022 PMCID: PMC9317374 DOI: 10.3390/pathogens11070777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterial infections are a group of life-threatening conditions triggered by fast- or slow-growing mycobacteria. Some mycobacteria, such as Mycobacterium tuberculosis, promote the deaths of millions of lives throughout the world annually. The control of mycobacterial infections is influenced by the challenges faced in the diagnosis of these bacteria and the capability of these pathogens to develop resistance against common antibiotics. Detection of mycobacterial infections is always demanding due to the intracellular nature of these pathogens that, along with the lipid-enriched structure of the cell wall, complicates the access to the internal contents of mycobacterial cells. Moreover, recent studies depicted that more than 20% of M. tuberculosis (Mtb) infections are multi-drug resistant (MDR), and only 50% of positive MDR-Mtb cases are responsive to standard treatments. Similarly, the susceptibility of nontuberculosis mycobacteria (NTM) to first-line tuberculosis antibiotics has also declined in recent years. Exploiting mycobacteriophages as viruses that infect mycobacteria has significantly accelerated the diagnosis and treatment of mycobacterial infections. This is because mycobacteriophages, regardless of their cycle type (temperate/lytic), can tackle barriers in the mycobacterial cell wall and make the infected bacteria replicate phage DNA along with their DNA. Although the infectivity of the majority of discovered mycobacteriophages has been evaluated in non-pathogenic M. smegmatis, more research is still ongoing to find mycobacteriophages specific to pathogenic mycobacteria, such as phage DS6A, which has been shown to be able to infect members of the M. tuberculosis complex. Accordingly, this review aimed to introduce some potential mycobacteriophages in the research, specifically those that are infective to the three troublesome mycobacteria, M. tuberculosis, M. avium subsp. paratuberculosis (MAP), and M. abscessus, highlighting their theranostic applications in medicine.
Collapse
Affiliation(s)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Microbiology and Virology, Azienda Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Versoza CJ, Pfeifer SP. Computational Prediction of Bacteriophage Host Ranges. Microorganisms 2022; 10:149. [PMID: 35056598 PMCID: PMC8778386 DOI: 10.3390/microorganisms10010149] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Increased antibiotic resistance has prompted the development of bacteriophage agents for a multitude of applications in agriculture, biotechnology, and medicine. A key factor in the choice of agents for these applications is the host range of a bacteriophage, i.e., the bacterial genera, species, and strains a bacteriophage is able to infect. Although experimental explorations of host ranges remain the gold standard, such investigations are inherently limited to a small number of viruses and bacteria amendable to cultivation. Here, we review recently developed bioinformatic tools that offer a promising and high-throughput alternative by computationally predicting the putative host ranges of bacteriophages, including those challenging to grow in laboratory environments.
Collapse
Affiliation(s)
- Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Susanne P. Pfeifer
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|