1
|
Todhanakasem T, Van Tai N, Pornpukdeewattana S, Charoenrat T, Young BM, Wattanachaisaereekul S. The Relationship between Microbial Communities in Coffee Fermentation and Aroma with Metabolite Attributes of Finished Products. Foods 2024; 13:2332. [PMID: 39123524 PMCID: PMC11312110 DOI: 10.3390/foods13152332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Coffee is a critical agricultural commodity and is used to produce premium beverages enjoyed by people worldwide. The microbiome of coffee beans has proven to be an essential tool that improves the flavor profile of coffee by creating aromatic flavor compounds through natural fermentation. This study investigated the natural microbial consortium during the wet process fermentation of coffee onsite in Thailand in order to identify the correlation between microbial diversity and biochemical characteristics including flavor, aroma, and metabolic attributes. Our study found 64 genera of bacteria and 59 genera of yeast/fungi present during the fermentation process. Group of microbes, mainly yeast and lactic acid bacteria, that predominated in the process were significantly correlated with preferable flavor and aroma compounds, including linalyl formate, linalool, cis-isoeugenol, trans-geraniol, and (-)-isopulegol. Some of the detected metabolites were found to be active compounds which could play a role in health.
Collapse
Affiliation(s)
- Tatsaporn Todhanakasem
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.V.T.); (S.P.); (S.W.)
| | - Ngo Van Tai
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.V.T.); (S.P.); (S.W.)
| | - Soisuda Pornpukdeewattana
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.V.T.); (S.P.); (S.W.)
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Centre), Bangkok 10200, Thailand;
| | - Briana M. Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Songsak Wattanachaisaereekul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (N.V.T.); (S.P.); (S.W.)
| |
Collapse
|
2
|
Makopa TP, Ncube T, Alwasel S, Boekhout T, Zhou N. Yeast-insect interactions in southern Africa: Tapping the diversity of yeasts for modern bioprocessing. Yeast 2024; 41:330-348. [PMID: 38450792 DOI: 10.1002/yea.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Yeast-insect interactions are one of the most interesting long-standing relationships whose research has contributed to our understanding of yeast biodiversity and their industrial applications. Although insect-derived yeast strains are exploited for industrial fermentations, only a limited number of such applications has been documented. The search for novel yeasts from insects is attractive to augment the currently domesticated and commercialized production strains. More specifically, there is potential in tapping the insects native to southern Africa. Southern Africa is home to a disproportionately high fraction of global biodiversity with a cluster of biomes and a broad climate range. This review presents arguments on the roles of the mutualistic relationship between yeasts and insects, the presence of diverse pristine environments and a long history of spontaneous food and beverage fermentations as the potential source of novelty. The review further discusses the recent advances in novelty of industrial strains of insect origin, as well as various ancient and modern-day industries that could be improved by use yeasts from insect origin. The major focus of the review is on the relationship between insects and yeasts in southern African ecosystems as a potential source of novel industrial yeast strains for modern bioprocesses.
Collapse
Affiliation(s)
- Tawanda P Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Department of Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Teun Boekhout
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
3
|
Qiao YZ, Chen X, Hui FL. Barnettozyma menglunensis f.a., sp. nov., a novel yeast species isolated from rotting wood. Int J Syst Evol Microbiol 2023; 73. [PMID: 36790429 DOI: 10.1099/ijsem.0.005711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A novel yeast species is described based on three strains isolated from rotting wood samples from Xishuangbanna Tropical Rainforest in Yunnan Province, PR China. Strain NYNU 1811121 was isolated in Menglun, Mengla, while strains NYNU 18982 and NYNU 181096 were recovered in Mengyang, Jinghong. Analysis of the sequences of the D1/D2 domain of the large subunit rRNA gene and the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) revealed that the novel strains were closely related to the type strain of [Candida] sanyiensis, but with 6.9 % nucleotide substitutions in the D1/D2 domain and 8.2 % substitutions in the ITS region. The three novel strains can also be distinguished from C. sanyiensis in terms of the ability to assimilate trehalose and d-gluconate and to grow at 35 °C, as well as the inability to ferment glucose. Based on molecular analyses and phenotypic characteristics, the name Barnettozyma menglunensis f.a., sp. nov. is proposed with the holotype CBS 16011T (MycoBank 845375).
Collapse
Affiliation(s)
- Ya-Zhuo Qiao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Xue Chen
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | | |
Collapse
|
4
|
Bizarria R, de Castro Pietrobon T, Rodrigues A. Uncovering the Yeast Communities in Fungus-Growing Ant Colonies. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02099-1. [PMID: 35962280 DOI: 10.1007/s00248-022-02099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Yeast-insect interactions are compelling models to study the evolution, ecology, and diversification of yeasts. Fungus-growing (attine) ants are prominent insects in the Neotropics that evolved an ancient fungiculture of basidiomycete fungi over 55-65 million years, supplying an environment for a hidden yeast diversity. Here we assessed the yeast diversity in the attine ant environment by thoroughly sampling fungus gardens across four out of five ant fungiculture systems: Acromyrmex coronatus and Mycetomoellerius tucumanus standing for leaf-cutting and higher-attine fungicultures, respectively; Apterostigma sp., Mycetophylax sp., and Mycocepurus goeldii as ants from the lower-attine fungiculture. Among the fungus gardens of all fungus-growing ants examined, we found taxonomically unique and diverse microbial yeast communities across the different fungicultures. Ascomycete yeasts were the core taxa in fungus garden samples, with Saccharomycetales as the most frequent order. The genera Aureobasidium, Candida, Papiliotrema, Starmerella, and Sugiyamaella had the highest incidence in fungus gardens. Despite the expected similarity within the same fungiculture system, colonies of the same ant species differed in community structure. Among Saccharomycotina yeasts, few were distinguishable as killer yeasts, with a classical inhibition pattern for the killer phenotype, differing from earlier observations in this environment, which should be further investigated. Yeast mycobiome in fungus gardens is distinct between colonies of the same fungiculture and each ant colony harbors a distinguished and unique yeast community. Fungus gardens of attine ants are emergent environments to study the diversity and ecology of yeasts associated with insects.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Tatiane de Castro Pietrobon
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil.
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
5
|
Chang CF, Hsu IM, Liu CH, Lee CF. Wickerhamomyces sinyiensis f.a., sp. nov., a new ascomycetous yeast species in the Wickerhamomyces clade isolated in Taiwan. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study describes Wickerhamomyces sinyiensis, a new anamorphic ascomycetous yeast species, four strains of which were isolated from soil and the fruiting body of a mushroom in Taiwan between 2006 and 2007. Analysis of the sequences of the large-subunit rRNA, small-subunit rRNA and elongation factor-1α identified this species as a member of the Wickerhamomyces clade. The yeast strains of W. sinyiensis exhibited a 0–3 nucleotide difference in the sequences of the D1/D2 domain of the large subunit rRNA when compared to one another and a 10 and 11 nucleotide difference when compared to Candida sp. BG99-11-14-10-4-1 and NRRL Y-7574, the closest undescribed species, respectively. The yeast strains differed by 77 and 78 nucleotides from W. orientalis and W. bispora, the close Wickerhamomyces species, respectively. The internal transcribed spacer sequences of the four isolates exhibited a divergence of 106–108 substitutions from the recognized species W. xylosivorus. No sexual reproduction was observed. The strains differed from those of related species in terms of their carbon and nitrogen assimilation patterns. Therefore, this study proposes W. sinyiensis f.a., sp. nov. to accommodate these four strains, with W. sinyiensis BCRC 23185T (isotype CBS 11432T; MycoBank number MB563484) as the holotype.
Collapse
Affiliation(s)
- Chin-Feng Chang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan, ROC
| | - I-Min Hsu
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
| | - Chun-Hao Liu
- Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, 30014, Taiwan, ROC
| | - Ching-Fu Lee
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC
- Department of Applied Science, National Tsing Hua University, Nanda Campus, Hsinchu, 30014, Taiwan, ROC
| |
Collapse
|
6
|
Cavalieri D, Valentini B, Stefanini I. Going wild: ecology and genomics are crucial to understand yeast evolution. Curr Opin Genet Dev 2022; 75:101922. [PMID: 35691146 DOI: 10.1016/j.gde.2022.101922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Improved and more accessible genome-sequencing approaches have allowed the analysis of large sets of natural yeast isolates. As a consequence, this unprecedented level of description of yeast-genome characteristics and variations in natural environments has provided crucial insights on yeast ecology and evolution. Here, we review some of the most relevant and intriguing aspects of yeast evolution pointed out, thanks to the combination of yeast ecology and genomics, and critically examine the resulting improvement of our knowledge on this field. Only integrated approaches, taking into consideration not only the characteristics of the microbe but also those of the hosting environment, will significantly move forward the exploration of yeast diversity, ecology, and evolution.
Collapse
Affiliation(s)
| | - Beatrice Valentini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|