1
|
Li D, Hao A, Shao W, Zhang W, Jiao F, Zhang H, Dong X, Zhan Y, Liu X, Mu C, Ding Z, Xue D, Chen J, Wang M. Maize kernel nutritional quality-an old challenge for modern breeders. PLANTA 2025; 261:43. [PMID: 39856412 DOI: 10.1007/s00425-025-04627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
MAIN CONCLUSION This article offers a comprehensive overview of the starch, protein, oil, and carotenoids content in maize kernels, while also outlining future directions for research in this area. Maize is one of the most important cereal crops globally. Maize kernels serve as a vital source of feed and food, and their nutritional quality directly impacts the dietary intake of both animals and humans. Maize kernels contain starch, protein, oil, carotenoids, and a variety of vitamins and minerals, all of which are important for maintaining life and promoting health. This review presents the current understanding of the content of starch, protein, amino acids, oil, and carotenoids in maize kernels, while also highlighting knowledge gaps that need to be addressed.
Collapse
Affiliation(s)
- Decui Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Anqi Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen Shao
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Weiwei Zhang
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xueyan Dong
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xia Liu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Chunhua Mu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Zhaohua Ding
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - De Xue
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China.
| | - Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Filyushin MA, Shchennikova AV, Kochieva EZ. Circadian Regulation of Expression of Carotenoid Metabolism Genes (PSY2, LCYE, CrtRB1, and NCED1) in Leaves of Tomato Solanum lycopersicum L. DOKL BIOCHEM BIOPHYS 2024; 518:393-397. [PMID: 39196523 DOI: 10.1134/s1607672924600611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/29/2024]
Abstract
The circadian dynamics of the expression of key genes of carotenoid metabolism (PSY2, LCYE, CrtRB1, and NCED1) in the photosynthetic tissue of tomato Solanum lycopersicum L. (cultivar Korneevsky) plants was characterized. An in silico analysis of the gene expression pattern was carried out and a high level of their transcripts was detected in the leaf tissue. qRT-PCR analysis of gene expression was performed at six time points during the day and showed the highest levels of PSY2, LCYE, and NCED1 transcripts in the second half of the light phase and CrtRB1 at the end of the dark phase. The content and composition of carotenoids in leaf tissue in the middle of the day was determined; it was shown that the leaf accumulates 1.5 times more compounds of the ɛ/β-branch of carotenoid biosynthesis pathway than compounds of the β/β-branch.
Collapse
Affiliation(s)
- M A Filyushin
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russia.
| | - A V Shchennikova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
3
|
LaPorte MF, Suwarno WB, Hannok P, Koide A, Bradbury P, Crossa J, Palacios-Rojas N, Diepenbrock CH. Investigating genomic prediction strategies for grain carotenoid traits in a tropical/subtropical maize panel. G3 (BETHESDA, MD.) 2024; 14:jkae044. [PMID: 38427914 PMCID: PMC11075567 DOI: 10.1093/g3journal/jkae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Vitamin A deficiency remains prevalent on a global scale, including in regions where maize constitutes a high percentage of human diets. One solution for alleviating this deficiency has been to increase grain concentrations of provitamin A carotenoids in maize (Zea mays ssp. mays L.)-an example of biofortification. The International Maize and Wheat Improvement Center (CIMMYT) developed a Carotenoid Association Mapping panel of 380 inbred lines adapted to tropical and subtropical environments that have varying grain concentrations of provitamin A and other health-beneficial carotenoids. Several major genes have been identified for these traits, 2 of which have particularly been leveraged in marker-assisted selection. This project assesses the predictive ability of several genomic prediction strategies for maize grain carotenoid traits within and between 4 environments in Mexico. Ridge Regression-Best Linear Unbiased Prediction, Elastic Net, and Reproducing Kernel Hilbert Spaces had high predictive abilities for all tested traits (β-carotene, β-cryptoxanthin, provitamin A, lutein, and zeaxanthin) and outperformed Least Absolute Shrinkage and Selection Operator. Furthermore, predictive abilities were higher when using genome-wide markers rather than only the markers proximal to 2 or 13 genes. These findings suggest that genomic prediction models using genome-wide markers (and assuming equal variance of marker effects) are worthwhile for these traits even though key genes have already been identified, especially if breeding for additional grain carotenoid traits alongside β-carotene. Predictive ability was maintained for all traits except lutein in between-environment prediction. The TASSEL (Trait Analysis by aSSociation, Evolution, and Linkage) Genomic Selection plugin performed as well as other more computationally intensive methods for within-environment prediction. The findings observed herein indicate the utility of genomic prediction methods for these traits and could inform their resource-efficient implementation in biofortification breeding programs.
Collapse
Affiliation(s)
- Mary-Francis LaPorte
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Willy Bayuardi Suwarno
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor 16680, Indonesia
| | - Pattama Hannok
- Division of Agronomy, Faculty of Agricultural Production, Maejo University, Chiang Mai 50200, Thailand
- Plant Breeding and Plant Genetics Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Akiyoshi Koide
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Peter Bradbury
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera Mexico-Veracruz, Texcoco 56130, Mexico
| | - Natalia Palacios-Rojas
- International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera Mexico-Veracruz, Texcoco 56130, Mexico
| | | |
Collapse
|
4
|
Chen W, Cui F, Zhu H, Zhang X, Lu S, Lu C, Chang H, Fan L, Lin H, Fang J, An Y, Li X, Qi Y. Genome-wide association study of kernel colour traits and mining of elite alleles from the major loci in maize. BMC PLANT BIOLOGY 2024; 24:25. [PMID: 38166633 PMCID: PMC10763400 DOI: 10.1186/s12870-023-04662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Maize kernel colour is an important index for evaluating maize quality and value and mainly entails two natural pigments, carotenoids and anthocyanins. To analyse the genetic mechanism of maize kernel colour and mine single nucleotide polymorphisms (SNPs) related to kernel colour traits, an association panel including 244 superior maize inbred lines was used to measure and analyse the six traits related to kernel colour in two environments and was then combined with the about 3 million SNPs covering the whole maize genome in this study. Two models (Q + K, PCA + K) were used for genome-wide association analysis (GWAS) of kernel colour traits. RESULTS We identified 1029QTLs, and two SNPs contained in those QTLs were located in coding regions of Y1 and R1 respectively, two known genes that regulate kernel colour. Fourteen QTLs which contain 19 SNPs were within 200 kb interval of the genes involved in the regulation of kernel colour. 13 high-confidence SNPs repeatedly detected for specific traits, and AA genotypes of rs1_40605594 and rs5_2392770 were the most popular alleles appeared in inbred lines with higher levels. By searching the confident interval of the 13 high-confidence SNPs, a total of 95 candidate genes were identified. CONCLUSIONS The genetic loci and candidate genes of maize kernel colour provided in this study will be useful for uncovering the genetic mechanism of maize kernel colour, gene cloning in the future. Furthermore, the identified elite alleles can be used to molecular marker-assisted selection of kernel colour traits.
Collapse
Affiliation(s)
- Weiwei Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Fangqing Cui
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Hang Zhu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiangbo Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Siqi Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Chuanli Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Hailong Chang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Lina Fan
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Huanzhang Lin
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Junteng Fang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
| | - Xuhui Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
| | - Yongwen Qi
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China.
| |
Collapse
|
5
|
Šimić D, Galić V, Jambrović A, Ledenčan T, Kljak K, Buhiniček I, Šarčević H. Genetic Variability in Carotenoid Contents in a Panel of Genebank Accessions of Temperate Maize from Southeast Europe. PLANTS (BASEL, SWITZERLAND) 2023; 12:3453. [PMID: 37836193 PMCID: PMC10575074 DOI: 10.3390/plants12193453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Carotenoids are an abundant group of lipid-soluble antioxidants in maize kernels. Maize is a key target crop for carotenoid biofortification focused on using conventional plant breeding in native germplasm of temperate areas traced back partially to traditional cultivars (landraces). In this study, the objectives were to determine the variability of lutein (LUT), zeaxanthin (ZEA), α-cryptoxanthin (αCX), β-cryptoxanthin (βCX), α-carotene (αC), and β-carotene (βC) contents in the grain of 88 accessions of temperate maize from the Croatian genebank, and to evaluate the relationships among the contents of different carotenoids as well as the relationships between kernel color and hardness and carotenoid content. Highly significant variability among the 88 accessions was detected for all carotenoids. On average, the most abundant carotenoid was LUT with 13.2 μg g-1 followed by ZEA with 6.8 μg g-1 dry matter. A Principal Component Analysis revealed a clear distinction between α- (LUT, αCX, and αC) and β-branch (ZEA; βCX, and βC) carotenoids. β-branch carotenoids were positively correlated with kernel color, and weakly positively associated with kernel hardness. Our results suggest that some genebank accessions with a certain percentage of native germplasm may be a good source of carotenoid biofortification in Southeast Europe. However, due to the lack of association between LUT and ZEA, the breeding process could be cumbersome.
Collapse
Affiliation(s)
- Domagoj Šimić
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (V.G.); (A.J.); (T.L.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Vlatko Galić
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (V.G.); (A.J.); (T.L.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Antun Jambrović
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (V.G.); (A.J.); (T.L.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Tatjana Ledenčan
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (V.G.); (A.J.); (T.L.)
| | - Kristina Kljak
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Ivica Buhiniček
- Bc Institute for Breeding and Production of Field Crops, Rugvica, Dugoselska 7, 10370 Dugo Selo, Croatia;
| | - Hrvoje Šarčević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| |
Collapse
|
6
|
Arkhestova DK, Shomakhov BR, Shchennikova AV, Kochieva EZ. 5'-UTR allelic variants and expression of the lycopene-ɛ-cyclase LCYE gene in maize (Zea mays L.) inbred lines of Russian selection. Vavilovskii Zhurnal Genet Selektsii 2023; 27:440-446. [PMID: 37808214 PMCID: PMC10556851 DOI: 10.18699/vjgb-23-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 10/10/2023] Open
Abstract
In breeding, biofortification is aimed at enriching the edible parts of the plant with micronutrients. Within the framework of this strategy, molecular screening of collections of various crops makes it possible to determine allelic variants of genes, new alleles, and the linkage of allelic variants with morphophysiological traits. The maize (Zea mays L.) is an important cereal and silage crop, as well as a source of the main precursor of vitamin A - β-carotene, a derivative of the β,β-branch of the carotenoid biosynthesis pathway. The parallel β,ε-branch is triggered by lycopene-ε-cyclase LCYE, a low expression of which leads to an increase in provitamin A content and is associated with the variability of the 5'-UTR gene regulatory sequence. In this study, we screened a collection of 165 maize inbred lines of Russian selection for 5'- UTR LCYE allelic variants, as well as searched for the dependence of LCYE expression levels on the 5'-UTR allelic variant in the leaves of 14 collection lines. 165 lines analyzed were divided into three groups carrying alleles A2 (64 lines), A5 (31) and A6 (70), respectively. Compared to A2, allele A5 contained two deletions (at positions -267- 260 and -296-290 from the ATG codon) and a G251→T substitution, while allele A6 contained one deletion (-290-296) and two SNPs (G251→T, G265→T). Analysis of LCYE expression in the leaf tissue of seedlings from accessions of 14 lines differing in allelic variants showed no associations of the 5'-UTR LCYE allele type with the level of gene expression. Four lines carrying alleles A2 (6178-1, 6709-2, 2289-3) and A5 (5677) had a significantly higher level of LCYE gene expression (~0.018-0.037) than the other 10 analyzed lines (~0.0001-0.004), among which all three allelic variants were present.
Collapse
Affiliation(s)
- D Kh Arkhestova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia Institute of Agriculture - Branch of the Federal Scientific Center "Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences", Nalchik, Russia
| | - B R Shomakhov
- Institute of Agriculture - Branch of the Federal Scientific Center "Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences", Nalchik, Russia
| | - A V Shchennikova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
He L, Cheng L, Wang J, Liu J, Cheng J, Yang Z, Cao R, Han Y, Li H, Zhang B. Carotenoid Cleavage Dioxygenase 1 Catalyzes Lutein Degradation To Influence Carotenoid Accumulation and Color Development in Foxtail Millet Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9283-9294. [PMID: 35876162 DOI: 10.1021/acs.jafc.2c01951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Foxtail millet is a minor but economically important crop in certain regions of the world. Millet color is often used to judge grain quality, yet the molecular determinants of millet coloration remain unclear. Here, we explored the relationship between SiCCD1 and millet coloration in yellow and white millet varieties. Carotenoid levels declined with grain maturation and were negatively correlated with SiCCD1 expression, which was significantly higher in white millet as compared to yellow millet during the color development stage. Cloning of the SiCCD1 promoter and CDS sequences from these different millet varieties revealed the presence of two additional cis-regulatory elements within the SiCCD1 promoter in white millet varieties, including an enhancer-like GC motif element associated with anoxic specific inducibility and a GCN4-motif element associated with endosperm expression. Dual-luciferase reporter assays confirmed that SiCCD1 promoter fragments containing these additional cis-acting elements derived from white millet varieties were significantly more active than those from yellow millet varieties, consistent with the observed SiCCD1 expression patterns. Further in vitro enzyme detection assays confirmed that SiCCD1 primarily targets and degrades lutein. Together, these data suggest that SiCCD1 promoter variation was a key factor associated with the observed differences in SiCCD1 expression, which in turn led to the difference in millet coloration.
Collapse
Affiliation(s)
- Lu He
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
- Maize Research Institute, Shanxi Agricultural University, Xinzhou 034000, China
| | - Lu Cheng
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Junjie Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Jing Liu
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Jinjin Cheng
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhirong Yang
- Department of Foundation, Shanxi Agricultural University, Taigu 030801, China
| | - Rui Cao
- Shanxi Biological Research Institute Co., Ltd, Taiyuan 030000, China
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu 030801, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Taigu 030801, China
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu 030801, China
| | - Bin Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu 030801, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|