1
|
Metzger DCH, Earhart ML, Schulte PM. Genomic and Epigenomic Influences on Resilience across Scales: Lessons from the Responses of Fish to Environmental Stressors. Integr Comp Biol 2024; 64:853-866. [PMID: 38632046 PMCID: PMC11445785 DOI: 10.1093/icb/icae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding the factors that influence the resilience of biological systems to environmental change is a pressing concern in the face of increasing human impacts on ecosystems and the organisms that inhabit them. However, most considerations of biological resilience have focused at the community and ecosystem levels, whereas here we discuss how including consideration of processes occurring at lower levels of biological organization may provide insights into factors that influence resilience at higher levels. Specifically, we explore how processes at the genomic and epigenomic levels may cascade up to influence resilience at higher levels. We ask how the concepts of "resistance," or the capacity of a system to minimize change in response to a disturbance, and "recovery," or the ability of a system to return to its original state following a disturbance and avoid tipping points and resulting regime shifts, map to these lower levels of biological organization. Overall, we suggest that substantial changes at these lower levels may be required to support resilience at higher levels, using selected examples of genomic and epigenomic responses of fish to climate-change-related stressors such as high temperature and hypoxia at the levels of the genome, epigenome, and organism.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Madison L Earhart
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
Guo C, Zhang X, Li Y, Xie J, Gao P, Hao P, Han L, Zhang J, Wang W, Liu P, Ding J, Chang Y. Whole-genome resequencing reveals genetic differences and the genetic basis of parapodium number in Russian and Chinese Apostichopus japonicus. BMC Genomics 2023; 24:25. [PMID: 36647018 PMCID: PMC9843871 DOI: 10.1186/s12864-023-09113-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Apostichopus japonicus is an economically important species in the global aquaculture industry. Russian A. japonicus, mainly harvested in the Vladivostok region, exhibits significant phenotypic differentiation, including in many economically important traits, compared with Chinese A. japonicus owing to differences in their habitat. However, both the genetic basis for the phenotypic divergence and the population genetic structure of Russian and Chinese A. japonicus are unknown. RESULT In this study, 210 individuals from seven Russian and Chinese A. japonicus populations were sampled for whole-genome resequencing. The genetic structure analysis differentiated the Russian and Chinese A. japonicus into two groups. Population genetic analyses indicated that the Russian population showed a high degree of allelic linkage and had undergone stronger positive selection compared with the Chinese populations. Gene ontology terms enriched among candidate genes with group selection analysis were mainly involved in immunity, such as inflammatory response, antimicrobial peptides, humoral immunity, and apoptosis. Genome-wide association analysis yielded eight single-nucleotide polymorphism loci significantly associated with parapodium number, and these loci are located in regions with a high degree of genomic differentiation between the Chinese and Russia populations. These SNPs were associated with five genes. Gene expression validation revealed that three of these genes were significantly differentially expressed in individuals differing in parapodium number. AJAP08772 and AJAP08773 may directly affect parapodium production by promoting endothelial cell proliferation and metabolism, whereas AJAP07248 indirectly affects parapodium production by participating in immune responses. CONCLUSIONS This study, we performed population genetic structure and GWAS analysis on Chinese and Russian A. japonicus, and found three candidate genes related to the number of parapodium. The results provide an in-depth understanding of the differences in the genetic structure of A. japonicus populations in China and Russia, and provide important information for subsequent genetic analysis and breeding of this species.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Pingping Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Lingshu Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
- Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Jinyuan Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Wenpei Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Peng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China.
| |
Collapse
|
3
|
Chong GLW, Böhmert B, Lee LEJ, Bols NC, Dowd GC. A continuous myofibroblast precursor cell line from the tail muscle of Australasian snapper (Chrysophrys auratus) that responds to transforming growth factor beta and fibroblast growth factor. In Vitro Cell Dev Biol Anim 2022; 58:922-935. [PMID: 36378268 PMCID: PMC9780137 DOI: 10.1007/s11626-022-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Chrysophrys auratus (Australasian snapper) is one of the largest and most valuable finfish from capture fisheries in New Zealand, yet no cell lines from this species are reported in the scientific literature. Here, we describe a muscle-derived cell line initiated from the tail of a juvenile snapper which has been designated CAtmus1PFR (Chrysophrys auratus, tail muscle, Plant & Food Research). The cell line has been passaged over 100 times in 3 years and is considered immortal. Cells are reliant on serum supplementation for proliferation and exhibit a broad thermal profile comparable to the eurythermic nature of C. auratus in vivo. The impact of exogenous growth factors, including insulin-like growth factors I and II (IGF-I and IGF-II), basic fibroblast growth factor (bFGF), and transforming growth factor beta (TGFβ), on cell morphology and proliferation was investigated. Insulin-like growth factors acted as mitogens and had minimal effect on cell morphology. TGFβ exposure resulted in CAtmus1PFR exhibiting a myofibroblast morphology becoming enlarged with actin bundling. This differentiation was confirmed through the expression of smooth muscle actin (sma), an increase in type 1 collagen (col1a) expression, and a loss of motility. Expression of col1a and sma was decreased when cells were exposed to bFGF, and no actin bundling was observed. These data indicate that CAtmus1PFR may be myofibroblastic precursor cells descending from mesenchymal progenitor cells present in the tail muscle myosepta.
Collapse
Affiliation(s)
- Gavril L. W. Chong
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Björn Böhmert
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Lucy E. J. Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8 Canada
| | - Niels C. Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Georgina C. Dowd
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| |
Collapse
|