1
|
Wang H, Wen Z, Amenyogbe E, Jin J, Lu Y, Wang Z, Huang J. Comparative Transcriptome Analysis of Sexual Differentiation in Male and Female Gonads of Nao-Zhou Stock Large Yellow Croaker ( Larimichthys crocea). Animals (Basel) 2024; 14:3261. [PMID: 39595312 PMCID: PMC11591422 DOI: 10.3390/ani14223261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The Nao-zhou stock large yellow croaker (Larimichthys crocea) is a unique economic seawater fish species in China and exhibits significant dimorphism in both male and female phenotypes. Cultivating all-female seedlings can significantly improve breeding efficiency. To accelerate the cultivation process of all female seedlings of this species, it is necessary to deeply understand the regulatory mechanisms of sexual differentiation and gonadal development. This study used Illumina high-throughput sequencing to sequence the transcriptome of the testes and ovaries of Nao-zhou stock large yellow croaker to identify genes and molecular functions related to sex determination. A total of 10,536 differentially expressed genes were identified between males and females, including 5682 upregulated and 4854 downregulated genes. Functional annotation screened out 70 important candidate genes related to sex, including 34 genes highly expressed in the testis (including dmrt1, foxm1, and amh) and 36 genes highly expressed in the ovary (including gdf9, hsd3b1, and sox19b). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis found that differentially expressed genes were significantly enriched in nine signaling pathways related to sex determination and gonadal development, including steroid hormone biosynthesis, MAPK signaling pathway, and the TGF-beta signaling pathway. By screening sex-related differentially expressed genes and mapping protein-protein interaction networks, hub genes such as dmrt1, amh, and cyp19a1a were found to be highly connected. The expression levels of 15 sex-related genes, including amh, dmrt1, dmrt2a, foxl1, and zp3b, were determined by qRT-PCR and RNA sequencing. This study screened for differentially expressed genes related to sex determination and differentiation of Nao-zhou stock large yellow croaker and revealed the signaling pathways involved in gonad development of male and female individuals. The results provide important data for future research on sex determination and differentiation mechanisms, thereby providing a scientific basis for the cultivation of all-female seedlings.
Collapse
Affiliation(s)
- Haojie Wang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Zirui Wen
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana;
| | - Jinghui Jin
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Yi Lu
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
| | - Zhongliang Wang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Guangdong Marine Fish Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Jiansheng Huang
- Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; (H.W.); (Z.W.); (J.J.); (Y.L.); (Z.W.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
- Guangdong Marine Fish Science and Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
2
|
Yan Y, Ahmed HMM, Wimmer EA, Schetelig MF. Biotechnology-enhanced genetic controls of the global pest Drosophila suzukii. Trends Biotechnol 2024:S0167-7799(24)00249-X. [PMID: 39327106 DOI: 10.1016/j.tibtech.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Spotted wing Drosophila (Drosophila suzukii Matsumura, or SWD), an insect pest of soft-skinned fruits native to East Asia, has rapidly spread worldwide in the past 15 years. Genetic controls such as sterile insect technique (SIT) have been considered for the environmentally friendly and cost-effective management of this pest. In this review, we provide the latest developments for the genetic control strategies of SWD, including sperm-marking strains, CRISPR-based sex-ratio distortion, neoclassical genetic sexing strains, transgenic sexing strains, a sex-sorting incompatible male system, precision-guided SIT, and gene drives based on synthetic Maternal effect dominant embryonic arrest (Medea) or homing CRISPR systems. These strategies could either enhance the efficacy of traditional SIT or serve as standalone methods for the sustainable control of SWD.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany.
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; Department of Crop Protection, Faculty of Agriculture - University of Khartoum, Postal code 13314 Khartoum North, Sudan
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany
| |
Collapse
|
3
|
De Groef S, Ribeiro Lopes M, Winant M, Rosschaert E, Wilms T, Bolckmans L, Calevro F, Callaerts P. Reference genes to study the sex-biased expression of genes regulating Drosophila metabolism. Sci Rep 2024; 14:9518. [PMID: 38664539 PMCID: PMC11045863 DOI: 10.1038/s41598-024-58863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Sex is an important variable in biology. Notable differences have been observed between male and female Drosophila in regulation of metabolism, in response to nutritional challenges, and in phenotypes relevant for obesity and metabolic disorders. The differences between males and females can be expected to result from differences in gene expression. We observed that expression levels of reference genes commonly used for normalization of qRT-PCR results such as GAPDH, β-actin, and 18SrRNA, show prominent sexual dimorphism. Since this will impact relative expression and conclusions related to that, we performed a systematic analysis of candidate reference genes with the objective of identifying reference genes with stable expression in male and female Drosophila. These reference genes (LamCa, βTub60D and βTub97EF) were then used to assess sex-specific differences in expression of metabolism associated genes. Additionally, we evaluated the utility of these reference genes following a nutritional challenge and showed that LamCa and βtub97EF are stably expressed between sexes and under different nutritional conditions and are thus suitable as reference genes. Our results highlight the importance of evaluating the stability of reference genes when sex-specific differences in gene expression are studied, and identify structural genes as a category worth exploring as reference genes in other species. Finally, we also uncovered hitherto unknown sexually dimorphic expression of a number of metabolism-associated genes, information of interest to others working in the field of metabolic disorders.
Collapse
Affiliation(s)
- Sofie De Groef
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | | | - Mattias Winant
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | - Emily Rosschaert
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | - Tom Wilms
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | - Lenz Bolckmans
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium
| | | | - Patrick Callaerts
- KU Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, Campus Gasthuisberg O&N1, Herestraat 49 Box 610, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Li J, Zhou T, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J, Gao X. Comparative transcriptome and proteome reveal the unique genes and proteins of female parasitic wasps, Lysiphlebia japonica Ashmead. PEST MANAGEMENT SCIENCE 2024; 80:1266-1278. [PMID: 37889654 DOI: 10.1002/ps.7856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Lysiphlebia japonica Ashmead (Hymenoptera, Braconidae) is an endophagous parasitoid wasp and its host, Aphis gossypii Glover (Hemiptera, Aphididae) is a major cotton pest. L. japonica affects the growth and fatty acid metabolism of cotton aphids after parasitization and has been widely used as a biocontrol agent. However, there are currently few reports about the molecular characteristics of L. japonica, especially the differences between male and female. RESULTS In this study, using transcriptome and proteome analysis of the abdomen of female and male parasitic wasps, respectively, we obtained a total of 27,169 DEGs and 1,194 DEPs, then a total of 909 positively correlated high-expression proteins and genes were obtained by combined omics analysis. Subsequently, 20 differentially expressed abdomen specific proteins were selected for validation by RT-qPCR and Multiple Reaction Monitoring (MRM) protein verification. The result of RT-qPCR demonstrated that all 20 genes were highly expressed in the abdomen of females, and five target proteins with unique peptide fragments and identification profiles were identified by MRM, which were venom protease, tropomyosin, lipase member I, venom serine carboxypeptidase and calreticulin, respectively. CONCLUSION Overall, these results provided molecular resources for the differences between males and females in L. japonica and the screened 20 abdomen specific proteins were verified to demonstrate the validity of the data, which offered important molecular data resources for further studies on the related functional genes of parasitic wasps and the mechanism of parasitoids regulating the growth of aphids. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinming Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Tingting Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- College of Life Sciences, Tarim University, Alar, 843300, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Yoon JS, Ahn SJ, Choi MY. Selection and Comparative Gene Expression of Midgut-Specific Targets for Drosophila suzukii. INSECTS 2023; 14:76. [PMID: 36662004 PMCID: PMC9864236 DOI: 10.3390/insects14010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Spotted-wing drosophila (SWD), Drosophila suzukii, is a destructive and invasive pest that attacks most small fruits and cherries. The current management for SWD involves the use of conventional insecticides. In an effort to develop a biologically based control option, the application of RNA interference (RNAi) has been investigated. To develop an RNAi approach, suitable targets must be identified, and an efficient delivery method must be developed for introducing the double-stranded RNA (dsRNA) in the midgut. In D. suzukii, we previously found that dsRNA nucleases actively degrade dsRNA molecules in the midgut. In this study, we focused on identifying biological targets focused on the midgut membrane. The profile of midgut-specific genes was analyzed and compared with the genes expressed in the whole-body using transcriptome analysis. Differential gene expression analysis revealed that 1921 contigs were upregulated and 1834 contigs were downregulated in the midgut when compared to genes from other body tissues. We chose ten midgut-specifically upregulated genes and empirically confirmed their expressions. We are particularly interested in the midgut membrane proteins, including G protein-coupled receptors (GPCRs) such as diuretic hormone 31 (DH31) receptor, neuropeptide F (NPF) recepror, toll-9, adhesion receptors, methuselah (mth), and gustatory receptor, because insect GPCRs have been offered great potential for next-generation pest management.
Collapse
Affiliation(s)
- June-Sun Yoon
- USDA Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97331, USA
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Republic of Korea
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Man-Yeon Choi
- USDA Agricultural Research Service, Horticultural Crops Research Unit, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Xing S, Deng D, wen W, Peng W. Functional transcriptome analyses of Drosophila suzukii midgut reveal mating-dependent reproductive plasticity in females. BMC Genomics 2022; 23:726. [PMID: 36284272 PMCID: PMC9598023 DOI: 10.1186/s12864-022-08962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insect females undergo a huge transition in energy homeostasis after mating to compensate for nutrient investment during reproduction. To manage with this shift in metabolism, mated females experience extensive morphological, behavioral and physiological changes, including increased food intake and altered digestive processes. However, the mechanisms by which the digestive system responds to mating in females remain barely characterized. Here we performed transcriptomic analysis of the main digestive organ, the midgut, to investigate how gene expression varies with female mating status in Drosophila suzukii, a destructive and invasive soft fruit pest. RESULTS We sequenced 15,275 unique genes with an average length of 1,467 bp. In total, 652 differentially expressed genes (DEGs) were detected between virgin and mated D. suzukii female midgut libraries. The DEGs were functionally annotated utilizing the GO and KEGG pathway annotation methods. Our results showed that the major GO terms associated with the DEGs from the virgin versus mated female midgut were largely appointed to the metabolic process, response to stimulus and immune system process. We obtained a mass of protein and lipid metabolism genes which were up-regulated and carbohydrate metabolism and immune-related genes which were down-regulated at different time points after mating in female midgut by qRT-PCR. These changes in metabolism and immunity may help supply the female with the nutrients and energy required to sustain egg production. CONCLUSION Our study characterizes the transcriptional mechanisms driven by mating in the D. suzukii female midgut. Identification and characterization of the DEGs between virgin and mated females midgut will not only be crucial to better understand molecular research related to intestine plasticity during reproduction, but may also provide abundant target genes for the development of effective and ecofriendly pest control strategies against this economically important species.
Collapse
Affiliation(s)
- Shisi Xing
- grid.411427.50000 0001 0089 3695Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, HunanInternational Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 China
| | - Dan Deng
- grid.411427.50000 0001 0089 3695Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, HunanInternational Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 China
| | - Wen wen
- grid.411427.50000 0001 0089 3695Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, HunanInternational Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 China
| | - Wei Peng
- grid.411427.50000 0001 0089 3695Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, State Key Laboratory of Developmental Biology of Freshwater Fish, HunanInternational Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, 410081 China
| |
Collapse
|