1
|
Dong J, Li J, Zuo Y, Wang J, Chen Y, Tu W, Wang H, Li C, Shan Y, Wang Y, Song B, Cai X. Haplotype-resolved genome and mapping of freezing tolerance in the wild potato Solanum commersonii. HORTICULTURE RESEARCH 2024; 11:uhae181. [PMID: 39247882 PMCID: PMC11374536 DOI: 10.1093/hr/uhae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Solanum commersonii (2n = 2x = 24, 1EBN, Endosperm Balance Number), native to the southern regions of Brazil, Uruguay, and northeastern Argentina, is the first wild potato germplasm collected by botanists and exhibits a remarkable array of traits related to disease resistance and stress tolerance. In this study, we present a high-quality haplotype-resolved genome of S. commersonii. The two identified haplotypes demonstrate chromosome sizes of 706.48 and 711.55 Mb, respectively, with corresponding chromosome anchoring rates of 94.2 and 96.9%. Additionally, the contig N50 lengths are documented at 50.87 and 45.16 Mb. The gene annotation outcomes indicate that the haplotypes encompasses a gene count of 39 799 and 40 078, respectively. The genome contiguity, completeness, and accuracy assessments collectively indicate that the current assembly has produced a high-quality genome of S. commersonii. Evolutionary analysis revealed significant positive selection acting on certain disease resistance genes, stress response genes, and environmentally adaptive genes during the evolutionary process of S. commersonii. These genes may be related to the formation of diverse and superior germplasm resources in the wild potato species S. commersonii. Furthermore, we utilized a hybrid population of S. commersonii and S. verrucosum to conduct the mapping of potato freezing tolerance genes. By combining BSA-seq analysis with traditional QTL mapping, we successfully mapped the potato freezing tolerance genes to a specific region on Chr07, spanning 1.25 Mb, with a phenotypic contribution rate of 18.81%. In short, current research provides a haplotype-resolved reference genome of the diploid wild potato species S. commersonii and establishes a foundation for further cloning and unraveling the mechanisms underlying cold tolerance in potatoes.
Collapse
Affiliation(s)
- Jianke Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Yingtao Zuo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Ye Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Tu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Haibo Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Chenxi Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Yacheng Shan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs; Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Tuttle HK, Del Rio AH, Bamberg JB, Shannon LM. Potato soup: analysis of cultivated potato gene bank populations reveals high diversity and little structure. FRONTIERS IN PLANT SCIENCE 2024; 15:1429279. [PMID: 39091313 PMCID: PMC11291250 DOI: 10.3389/fpls.2024.1429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Cultivated potatoes are incredibly diverse, ranging from diploid to pentaploid and encompass four different species. They are adapted to disparate environments and conditions and carry unique alleles for resistance to pests and pathogens. Describing how diversity is partitioned within and among these populations is essential to understanding the potato genome and effectively utilizing landraces in breeding. This task is complicated by the difficulty of making comparisons across cytotypes and extensive admixture within section petota. We genotyped 730 accessions from the US Potato genebank including wild diploids and cultivated diploids and tetraploids using Genotype-by-sequencing. This data set allowed us to interrogate population structure and diversity as well as generate core subsets which will support breeders in efficiently screening genebank material for biotic and abiotic stress resistance alleles. We found that even controlling for ploidy, tetraploid material exhibited higher observed and expected heterozygosity than diploid accessions. In particular group chilotanum material was the most heterozygous and the only taxa not to exhibit any inbreeding. This may in part be because group chilotanum has a history of introgression not just from wild species, but landraces as well. All group chilotanum, exhibits introgression from group andigenum except clones from Southern South America near its origin, where the two groups are not highly differentiated. Moving north, we do not observe evidence for the same level of admixture back into group andigenum. This suggests that extensive history of admixture is a particular characteristic of chilotanum.
Collapse
Affiliation(s)
- Heather K. Tuttle
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| | - Alfonso H. Del Rio
- U.S. Department of Agriculture (USDA)/Agricultural Research Service, Potato Genebank, Sturgeon Bay, WI, United States
| | - John B. Bamberg
- U.S. Department of Agriculture (USDA)/Agricultural Research Service, Potato Genebank, Sturgeon Bay, WI, United States
| | - Laura M. Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
3
|
Hosaka AJ, Sanetomo R, Hosaka K. A de novo genome assembly of Solanum bulbocastanum Dun., a Mexican diploid species reproductively isolated from the A-genome species, including cultivated potatoes. G3 (BETHESDA, MD.) 2024; 14:jkae080. [PMID: 38608140 DOI: 10.1093/g3journal/jkae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Potato and its wild relatives are distributed mainly in the Mexican highlands and central Andes of South America. The South American A-genome species, including cultivated potatoes, are reproductively isolated from Mexican diploid species. Whole-genome sequencing has disclosed genome structure and similarity, mostly in cultivated potatoes and their closely related species. In this study, we generated a chromosome-scale assembly of the genome of a Mexican diploid species, Solanum bulbocastanum Dun., using PacBio long-read sequencing, optical mapping, and Hi-C scaffolding technologies. The final sequence assembly consisted of 737.9 Mb, among which 647.0 Mb were anchored to the 12 chromosomes. Compared with chromosome-scale assemblies of S. lycopersicum (tomato), S. etuberosum (non-tuber-bearing species with E-genome), S. verrucosum, S. chacoense, S. multidissectum, and S. phureja (all four are A-genome species), the S. bulbocastnum genome was the shortest. It contained fewer transposable elements (56.2%) than A-genome species. A cluster analysis was performed based on pairwise ratios of syntenic regions among the seven chromosome-scale assemblies, showing that the A-genome species were first clustered as a distinct group. Then, this group was clustered with S. bulbocastanum. Sequence similarity in 1,624 single-copy orthologous gene groups among 36 Solanum species and clones separated S. bulbocastanum as a specific group, including other Mexican diploid species, from the A-genome species. Therefore, the S. bulbocastanum genome differs in genome structure and gene sequences from the A-genome species. These findings provide important insights into understanding and utilizing the genetic diversity of S. bulbocastanum and the other Mexican diploid species in potato breeding.
Collapse
Affiliation(s)
- Awie J Hosaka
- Nihon BioData Corporation, Takatsu, Kawasaki, Kanagawa 213-0012, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
| | - Rena Sanetomo
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kazuyoshi Hosaka
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
4
|
Hojsgaard D, Nagel M, Feingold SE, Massa GA, Bradshaw JE. New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis. Biomolecules 2024; 14:614. [PMID: 38927018 PMCID: PMC11202281 DOI: 10.3390/biom14060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Potato is the most important non-cereal crop worldwide, and, yet, genetic gains in potato have been traditionally delayed by the crop's biology, mostly the genetic heterozygosity of autotetraploid cultivars and the intricacies of the reproductive system. Novel site-directed genetic modification techniques provide opportunities for designing climate-smart cultivars, but they also pose new possibilities (and challenges) for breeding potato. As potato species show a remarkable reproductive diversity, and their ovules have a propensity to develop apomixis-like phenotypes, tinkering with reproductive genes in potato is opening new frontiers in potato breeding. Developing diploid varieties instead of tetraploid ones has been proposed as an alternative way to fill the gap in genetic gain, that is being achieved by using gene-edited self-compatible genotypes and inbred lines to exploit hybrid seed technology. In a similar way, modulating the formation of unreduced gametes and synthesizing apomixis in diploid or tetraploid potatoes may help to reinforce the transition to a diploid hybrid crop or enhance introgression schemes and fix highly heterozygous genotypes in tetraploid varieties. In any case, the induction of apomixis-like phenotypes will shorten the time and costs of developing new varieties by allowing the multi-generational propagation through true seeds. In this review, we summarize the current knowledge on potato reproductive phenotypes and underlying genes, discuss the advantages and disadvantages of using potato's natural variability to modulate reproductive steps during seed formation, and consider strategies to synthesize apomixis. However, before we can fully modulate the reproductive phenotypes, we need to understand the genetic basis of such diversity. Finally, we visualize an active, central role for genebanks in this endeavor by phenotyping properly genotyped genebank accessions and new introductions to provide scientists and breeders with reliable data and resources for developing innovations to exploit market opportunities.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany;
| | - Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany;
| | - Sergio E. Feingold
- Laboratorio de Agrobiotecnología, EEA Balcarce-IPADS (UEDD INTA–CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce B7620, Argentina; (S.E.F.); (G.A.M.)
| | - Gabriela A. Massa
- Laboratorio de Agrobiotecnología, EEA Balcarce-IPADS (UEDD INTA–CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce B7620, Argentina; (S.E.F.); (G.A.M.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce B7620, Argentina
| | | |
Collapse
|
5
|
Rogozina EV, Gurina AA, Chalaya NA, Zoteyeva NM, Kuznetsova MA, Beketova MP, Muratova OA, Sokolova EA, Drobyazina PE, Khavkin EE. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:273. [PMID: 36678985 PMCID: PMC9862067 DOI: 10.3390/plants12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de Bary is the greatest threat to potato production worldwide. Current potato breeding for LB resistance heavily depends on the introduction of new genes for resistance to P. infestans (Rpi genes). Such genes have been discovered in highly diverse wild, primitive, and cultivated species of tuber-bearing potatoes (Solanum L. section Petota Dumort.) and introgressed into the elite potato cultivars by hybridization and transgenic complementation. Unfortunately, even the most resistant potato varieties have been overcome by LB due to the arrival of new pathogen strains and their rapid evolution. Therefore, novel sources for germplasm enhancement comprising the broad-spectrum Rpi genes are in high demand with breeders who aim to provide durable LB resistance. The Genbank of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in St. Petersburg harbors one of the world's largest collections of potato and potato relatives. In this study, LB resistance was evaluated in a core selection representing 20 species of seven Petota series according to the Hawkes (1990) classification: Bulbocastana (Rydb.) Hawkes, Demissa Buk., Longipedicellata Buk., Maglia Bitt., Pinnatisecta (Rydb.) Hawkes, Tuberosa (Rydb.) Hawkes (wild and cultivated species), and Yungasensa Corr. LB resistance was assessed in 96 accessions representing 18 species in the laboratory test with detached leaves using a highly virulent and aggressive isolate of P. infestans. The Petota species notably differed in their LB resistance: S. bulbocastanum Dun., S. demissum Lindl., S. cardiophyllum Lindl., and S. berthaultii Hawkes stood out at a high frequency of resistant accessions (7-9 points on a 9-point scale). Well-established specific SCAR markers of ten Rpi genes-Rpi-R1, Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8, Rpi-blb1/Rpi-sto1, Rpi-blb2, and Rpi-vnt1-were used to mine 117 accessions representing 20 species from seven Petota series. In particular, our evidence confirmed the diverse Rpi gene location in two American continents. The structural homologs of the Rpi-R2, Rpi-R3a, Rpi-R3b, and Rpi-R8 genes were found in the North American species other than S. demissum, the species that was the original source of these genes for early potato breeding, and in some cases, in the South American Tuberosa species. The Rpi-blb1/Rpi-sto1 orthologs from S. bulbocastanum and S. stoloniferum Schlechtd et Bché were restricted to genome B in the Mesoamerican series Bulbocastana, Pinnatisecta, and Longipedicellata. The structural homologs of the Rpi-vnt1 gene that were initially identified in the South American species S. venturii Hawkes and Hjert. were reported, for the first time, in the North American series of Petota species.
Collapse
Affiliation(s)
- Elena V. Rogozina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Alyona A. Gurina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda M. Zoteyeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | | | | | | | | | | | - Emil E. Khavkin
- Institute of Agricultural Biotechnology, Moscow 127550, Russia
| |
Collapse
|