1
|
Ardell SM, Martsul A, Johnson MS, Kryazhimskiy S. Environment-independent distribution of mutational effects emerges from microscopic epistasis. Science 2024; 386:87-92. [PMID: 39361740 DOI: 10.1126/science.adn0753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
Predicting how new mutations alter phenotypes is difficult because mutational effects vary across genotypes and environments. Recently discovered global epistasis, in which the fitness effects of mutations scale with the fitness of the background genotype, can improve predictions, but how the environment modulates this scaling is unknown. We measured the fitness effects of ~100 insertion mutations in 42 strains of Saccharomyces cerevisiae in six laboratory environments and found that the global epistasis scaling is nearly invariant across environments. Instead, the environment tunes one global parameter, the background fitness at which most mutations switch sign. As a consequence, the distribution of mutational effects is predictable across genotypes and environments. Our results suggest that the effective dimensionality of genotype-to-phenotype maps across environments is surprisingly low.
Collapse
Affiliation(s)
- Sarah M Ardell
- Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA, USA
| | - Alena Martsul
- Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA, USA
| | - Milo S Johnson
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Ghiaci P, Jouhten P, Martyushenko N, Roca-Mesa H, Vázquez J, Konstantinidis D, Stenberg S, Andrejev S, Grkovska K, Mas A, Beltran G, Almaas E, Patil KR, Warringer J. Highly parallelized laboratory evolution of wine yeasts for enhanced metabolic phenotypes. Mol Syst Biol 2024; 20:1109-1133. [PMID: 39174863 PMCID: PMC11450223 DOI: 10.1038/s44320-024-00059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Adaptive Laboratory Evolution (ALE) of microorganisms can improve the efficiency of sustainable industrial processes important to the global economy. However, stochasticity and genetic background effects often lead to suboptimal outcomes during laboratory evolution. Here we report an ALE platform to circumvent these shortcomings through parallelized clonal evolution at an unprecedented scale. Using this platform, we evolved 104 yeast populations in parallel from many strains for eight desired wine fermentation-related traits. Expansions of both ALE replicates and lineage numbers broadened the evolutionary search spectrum leading to improved wine yeasts unencumbered by unwanted side effects. At the genomic level, evolutionary gains in metabolic characteristics often coincided with distinct chromosome amplifications and the emergence of side-effect syndromes that were characteristic of each selection niche. Several high-performing ALE strains exhibited desired wine fermentation kinetics when tested in larger liquid cultures, supporting their suitability for application. More broadly, our high-throughput ALE platform opens opportunities for rapid optimization of microbes which otherwise could take many years to accomplish.
Collapse
Affiliation(s)
- Payam Ghiaci
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, Gothenburg, 40530, Sweden
- Department of Biorefinery and Energy, High-throughput Centre, Research Institutes of Sweden, Örnsköldsvik, 89250, Sweden
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Paula Jouhten
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
- VTT Technical Research Centre of Finland Ltd, Espoo, 02044 VTT, Finland
- Aalto University, Department of Bioproducts and Biosystems, Espoo, 02150, Finland
| | - Nikolay Martyushenko
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Helena Roca-Mesa
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
| | - Jennifer Vázquez
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
- Centro Tecnológico del Vino-VITEC, Carretera de Porrera Km. 1, Falset, 43730, Spain
| | | | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, Gothenburg, 40530, Sweden
| | - Sergej Andrejev
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | | | - Albert Mas
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
| | - Gemma Beltran
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Kiran R Patil
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany.
- Medical Research Council (MRC) Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK.
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, Gothenburg, 40530, Sweden.
| |
Collapse
|
3
|
Ardell S, Martsul A, Johnson MS, Kryazhimskiy S. Environment-independent distribution of mutational effects emerges from microscopic epistasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.18.567655. [PMID: 38014325 PMCID: PMC10680819 DOI: 10.1101/2023.11.18.567655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Predicting how new mutations alter phenotypes is difficult because mutational effects vary across genotypes and environments. Recently discovered global epistasis, where the fitness effects of mutations scale with the fitness of the background genotype, can improve predictions, but how the environment modulates this scaling is unknown. We measured the fitness effects of ~100 insertion mutations in 42 strains of Saccharomyces cerevisiae in six laboratory environments and found that the global-epistasis scaling is nearly invariant across environments. Instead, the environment tunes one global parameter, the background fitness at which most mutations switch sign. As a consequence, the distribution of mutational effects is predictable across genotypes and environments. Our results suggest that the effective dimensionality of genotype-to-phenotype maps across environments is surprisingly low.
Collapse
Affiliation(s)
- Sarah Ardell
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093
| | - Alena Martsul
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093
| | - Milo S. Johnson
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
4
|
Chen P, Zhang J. The loci of environmental adaptation in a model eukaryote. Nat Commun 2024; 15:5672. [PMID: 38971805 PMCID: PMC11227561 DOI: 10.1038/s41467-024-50002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
While the underlying genetic changes have been uncovered in some cases of adaptive evolution, the lack of a systematic study prevents a general understanding of the genomic basis of adaptation. For example, it is unclear whether protein-coding or noncoding mutations are more important to adaptive evolution and whether adaptations to different environments are brought by genetic changes distributed in diverse genes and biological processes or concentrated in a core set. We here perform laboratory evolution of 3360 Saccharomyces cerevisiae populations in 252 environments of varying levels of stress. We find the yeast adaptations to be primarily fueled by large-effect coding mutations overrepresented in a relatively small gene set, despite prevalent antagonistic pleiotropy across environments. Populations generally adapt faster in more stressful environments, partly because of greater benefits of the same mutations in more stressful environments. These and other findings from this model eukaryote help unravel the genomic principles of environmental adaptation.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
5
|
Tarkington J, Zufall RA. Correlated responses to selection across diverse environments during experimental evolution of Tetrahymena thermophila. Ecol Evol 2024; 14:e11395. [PMID: 39045496 PMCID: PMC11264346 DOI: 10.1002/ece3.11395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 07/25/2024] Open
Abstract
Correlated responses to selection have long been observed and studied; however, it remains unclear when they will arise, and in what direction. To contribute to a growing understanding of correlated responses to selection, we used experimental evolution of the ciliate Tetrahymena thermophila to study direct and correlated responses in a variety of different environmental conditions. One experiment focused on adaptation to two different temperatures and the correlated responses across temperatures. Another experiment used inhibitory concentrations of a variety of compounds to test direct and correlated responses to selection. We found that all populations adapted to the environments in which they evolved. We also found many cases of correlated evolution across environments; few conditions resulted in trade-offs and many resulted in a positive correlated response. Surprisingly, in many instances, the correlated response was of a larger magnitude than the direct response. We find that ancestral fitness predicts the extent of adaptation, consistent with diminishing returns epistasis. Unexpectedly, we also find that this pattern of diminishing returns holds across environments regardless of the environment in which evolution occurs. We also found that the correlated response is asymmetric across environments, that is, the fitness of a population evolved in one environment and assayed in a second was inversely related to the fitness of a population evolved in the second environment and assayed in the first. These results support the notion that positive correlated responses to selection across environments are frequent, and worth further study.
Collapse
Affiliation(s)
- Jason Tarkington
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Rebecca A. Zufall
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| |
Collapse
|
6
|
Johnson MS, Reddy G, Desai MM. Epistasis and evolution: recent advances and an outlook for prediction. BMC Biol 2023; 21:120. [PMID: 37226182 PMCID: PMC10206586 DOI: 10.1186/s12915-023-01585-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 05/26/2023] Open
Abstract
As organisms evolve, the effects of mutations change as a result of epistatic interactions with other mutations accumulated along the line of descent. This can lead to shifts in adaptability or robustness that ultimately shape subsequent evolution. Here, we review recent advances in measuring, modeling, and predicting epistasis along evolutionary trajectories, both in microbial cells and single proteins. We focus on simple patterns of global epistasis that emerge in this data, in which the effects of mutations can be predicted by a small number of variables. The emergence of these patterns offers promise for efforts to model epistasis and predict evolution.
Collapse
Affiliation(s)
- Milo S Johnson
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gautam Reddy
- Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology and Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|