1
|
Rigor J, Martins ME, Passos B, Oliveira R, Martins-Mendes D. Noninvasive tools for the assessment of fibrosis in metabolic dysfunction-associated steatotic liver disease. Minerva Med 2024; 115:660-670. [PMID: 39283245 DOI: 10.23736/s0026-4806.24.09290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously nonalcoholic fatty liver disease (NAFLD), is the number one chronic liver disorder worldwide. Progression to advanced fibrosis marks the emergence of a significant risk of liver-related negative outcomes. However, only a minority of patients will present at this stage. Since widespread liver biopsy in unfeasible at such high disease prevalence, there was a need to develop noninvasive tests (NITs) that could easily and reliably be applied to patients with MASLD, regardless of clinical setting. The NITs include simple scores, like the fibrosis-4 (FIB-4) Index, patented serum tests, like the Enhanced Liver Fibrosis test (ELF™), and imaging-based modalities, like the vibration-controlled transient elastography (VCTE). Guidelines suggests a stepwise approach that utilizes more than one NIT, with FIB-4 <1.30 being used as a first step to rule out patients that do not need further testing. Subsequent choice of NIT will be influenced by setting, cost, and local availability. While these NITs are accurate, they are not perfect. As such, research is ongoing. A promising avenue is that of omics, a group of technologies that provide concomitant results on a large number of molecules (and other variables). With the advance of artificial intelligence, new NITs may arise from large demographic, biochemical, and radiological data sets.
Collapse
Affiliation(s)
- Joana Rigor
- Internal Medicine Department, Unidade Local de Saúde de Póvia de Varzim/Vila do Conde, Vila do Conde, Portugal -
- RISE-UFP, Network of Health Investigation, Fernando Pessoa University, Porto, Portugal -
| | - Maria E Martins
- Internal Medicine Department, Unidade Local de Saúde de Póvia de Varzim/Vila do Conde, Vila do Conde, Portugal
| | - Beatriz Passos
- Internal Medicine Department, Unidade Local de Saúde de Póvia de Varzim/Vila do Conde, Vila do Conde, Portugal
| | - Raquel Oliveira
- Internal Medicine Department, Unidade Local de Saúde de Póvia de Varzim/Vila do Conde, Vila do Conde, Portugal
| | - Daniela Martins-Mendes
- RISE-UFP, Network of Health Investigation, Fernando Pessoa University, Porto, Portugal
- School of Medicine and Biomedical Sciences, Fernando Pessoa University, Porto, Portugal
- FP-I3ID, Fernando Pessoa University, Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Dimopoulos P, Mulita A, Antzoulas A, Bodard S, Leivaditis V, Akrida I, Benetatos N, Katsanos K, Anagnostopoulos CN, Mulita F. The role of artificial intelligence and image processing in the diagnosis, treatment, and prognosis of liver cancer: a narrative-review. PRZEGLAD GASTROENTEROLOGICZNY 2024; 19:221-230. [PMID: 39802971 PMCID: PMC11718495 DOI: 10.5114/pg.2024.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/29/2024] [Indexed: 12/09/2024]
Abstract
Artificial intelligence (AI) and image processing are revolutionising the diagnosis and management of liver cancer. Recent advancements showcase AI's ability to analyse medical imaging data, like computed tomography scans and magnetic resonance imaging, accurately detecting and classifying liver cancer lesions for early intervention. Predictive models aid prognosis estimation and recurrence pattern identification, facilitating personalised treatment planning. Image processing techniques enhance data analysis by precise segmentation of liver structures, fusion of information from multiple modalities, and feature extraction for informed decision-making. Despite progress, challenges persist, including the need for standardised datasets and regulatory considerations.
Collapse
Affiliation(s)
- Platon Dimopoulos
- Department of Interventional Radiology, General University Hospital of Patras, Patras, Greece
| | - Admir Mulita
- Medical Physics Department, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
- Intelligent Systems Lab, Department of Cultural Technology and Communication, University of the Aegean, Mytilene, Greece
| | - Andreas Antzoulas
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| | - Sylvain Bodard
- Department of Radiology, University of Paris Cite, Necker Hospital, Paris, France
| | - Vasileios Leivaditis
- Department of Cardiothoracic and Vascular Surgery, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Ioanna Akrida
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| | - Nikolaos Benetatos
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| | - Konstantinos Katsanos
- Department of Interventional Radiology, General University Hospital of Patras, Patras, Greece
| | | | - Francesk Mulita
- Department of Surgery, General University Hospital of Patras, Patras, Greece
| |
Collapse
|
3
|
Xia F, Wei W, Wang J, Duan Y, Wang K, Zhang C. Machine learning model for non-alcoholic steatohepatitis diagnosis based on ultrasound radiomics. BMC Med Imaging 2024; 24:221. [PMID: 39164667 PMCID: PMC11334577 DOI: 10.1186/s12880-024-01398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Non-Alcoholic Steatohepatitis (NASH) is a crucial stage in the progression of Non-Alcoholic Fatty Liver Disease(NAFLD). The purpose of this study is to explore the clinical value of ultrasound features and radiological analysis in predicting the diagnosis of Non-Alcoholic Steatohepatitis. METHOD An SD rat model of hepatic steatosis was established through a high-fat diet and subcutaneous injection of CCl4. Liver ultrasound images and elastography were acquired, along with serum data and histopathological results of rat livers.The Pyradiomics software was used to extract radiomic features from 2D ultrasound images of rat livers. The rats were then randomly divided into a training set and a validation set, and feature selection was performed through dimensionality reduction. Various machine learning (ML) algorithms were employed to build clinical diagnostic models, radiomic models, and combined diagnostic models. The efficiency of each diagnostic model for diagnosing NASH was evaluated using Receiver Operating Characteristic (ROC) curves, Clinical Decision Curve Analysis (DCA), and calibration curves. RESULTS In the machine learning radiomic model for predicting the diagnosis of NASH, the Area Under the Curve (AUC) of ROC curve for the clinical radiomic model in the training set and validation set were 0.989 and 0.885, respectively. The Decision Curve Analysis revealed that the clinical radiomic model had the highest net benefit within the probability threshold range of > 65%. The calibration curve in the validation set demonstrated that the clinical combined radiomic model is the optimal method for diagnosing Non-Alcoholic Steatohepatitis. CONCLUSION The combined diagnostic model constructed using machine learning algorithms based on ultrasound image radiomics has a high clinical predictive performance in diagnosing Non-Alcoholic Steatohepatitis.
Collapse
Affiliation(s)
- Fei Xia
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Wei Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), NO.2 Zheshan West Road, Wuhu, 241000, China
| | - Junli Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Yayang Duan
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
| | - Kun Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
Baek J, Basavarajappa L, Margolis R, Arthur L, Li J, Hoyt K, Parker KJ. Multiparametric ultrasound imaging for early-stage steatosis: Comparison with magnetic resonance imaging-based proton density fat fraction. Med Phys 2024; 51:1313-1325. [PMID: 37503961 PMCID: PMC11238269 DOI: 10.1002/mp.16648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The prevalence of liver diseases, especially steatosis, requires a more convenient and noninvasive tool for liver diagnosis, which can be a surrogate for the gold standard biopsy. Magnetic resonance (MR) measurement offers potential, however ultrasound (US) has better accessibility than MR. PURPOSE This study aims to suggest a multiparametric US approach which demonstrates better quantification and imaging performance than MR imaging-based proton density fat fraction (MRI-PDFF) for hepatic steatosis assessment. METHODS We investigated early-stage steatosis to evaluate our approach. An in vivo (within the living) animal study was performed. Fat inclusions were accumulated in the animal livers by feeding a methionine and choline deficient (MCD) diet for 2 weeks. The animals (n = 19) underwent US and MR imaging, and then their livers were excised for histological staining. From the US, MR, and histology images, fat accumulation levels were measured and compared: multiple US parameters; MRI-PDFF; histology fat percentages. Seven individual US parameters were extracted using B-mode measurement, Burr distribution estimation, attenuation estimation, H-scan analysis, and shear wave elastography. Feature selection was performed, and the selected US features were combined, providing quantification of fat accumulation. The combined parameter was used for visualizing the localized probability of fat accumulation level in the liver; This procedure is known as disease-specific imaging (DSI). RESULTS The combined US parameter can sensitively assess fat accumulation levels, which is highly correlated with histology fat percentage (R = 0.93, p-value < 0.05) and outperforms the correlation between MRI-PDFF and histology (R = 0.89, p-value < 0.05). Although the seven individual US parameters showed lower correlation with histology compared to MRI-PDFF, the multiparametric analysis enabled US to outperform MR. Furthermore, this approach allowed DSI to detect and display gradual increases in fat accumulation. From the imaging output, we measured the color-highlighted area representing fatty tissues, and the fat fraction obtained from DSI and histology showed strong agreement (R = 0.93, p-value < 0.05). CONCLUSIONS We demonstrated that fat quantification utilizing a combination of multiple US parameters achieved higher performance than MRI-PDFF; therefore, our multiparametric analysis successfully combined selected features for hepatic steatosis characterization. We anticipate clinical use of our proposed multiparametric US analysis, which could be beneficial in assessing steatosis in humans.
Collapse
Affiliation(s)
- Jihye Baek
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Lokesh Basavarajappa
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Ryan Margolis
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Leroy Arthur
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Junjie Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Kevin J. Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
5
|
Abdullah AD, Amanpour-Gharaei B, Nassiri Toosi M, Delazar S, Saligheh Rad H, Arian A. Comparing Texture Analysis of Apparent Diffusion Coefficient MRI in Hepatocellular Adenoma and Hepatocellular Carcinoma. Cureus 2024; 16:e51443. [PMID: 38298321 PMCID: PMC10829059 DOI: 10.7759/cureus.51443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/19/2023] [Indexed: 02/02/2024] Open
Abstract
AIM This study aimed to assess the effectiveness of using MRI-apparent diffusion coefficient (ADC) map-driven radiomics to differentiate between hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) features. MATERIALS AND METHODS The study involved 55 patients with liver tumors (20 with HCA and 35 with HCC), featuring 106 lesions equally distributed between hepatic carcinoma and hepatic adenoma who underwent texture analysis on ADC map MR images. The analysis identified several imaging features that significantly differed between the HCA and HCC groups. Four classification models were compared for distinguishing HCA from HCC including linear support vector machine (linear-SVM), radial basis function SVM (RBF-SVM), random forest (RF), and k-nearest neighbor (KNN). RESULTS The k-nearest neighbor (KNN) classifier displayed the top accuracy (0.89) and specificity (0.90). Linear-SVM and KNN classifiers showcased the leading sensitivity (0.88) for both, with the KNN classifier achieving the highest precision (0.9). In comparison, the conventional interpretation had lower sensitivity (70.1%) and specificity (77.9%). CONCLUSION The study found that utilizing ADC maps for texture analysis in MR images is a viable method to differentiate HCA from HCC, yielding promising results in identified texture features.
Collapse
Affiliation(s)
- Ayoob Dinar Abdullah
- Technology of Radiology and Radiotherapy, Tehran University of Medical Sciences, Tehran, IRN
| | - Behzad Amanpour-Gharaei
- Cancer Biology Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, IRN
| | | | - Sina Delazar
- Advanced Diagnostic and Interventional Radiology Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, IRN
| | - Hamidraza Saligheh Rad
- Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, IRN
| | - Arvin Arian
- Radiology, Cancer Institute, Tehran University of Medical Sciences, Tehran, IRN
| |
Collapse
|
6
|
Zhang H, Meng Z, Ru J, Meng Y, Wang K. Application and prospects of AI-based radiomics in ultrasound diagnosis. Vis Comput Ind Biomed Art 2023; 6:20. [PMID: 37828411 PMCID: PMC10570254 DOI: 10.1186/s42492-023-00147-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Artificial intelligence (AI)-based radiomics has attracted considerable research attention in the field of medical imaging, including ultrasound diagnosis. Ultrasound imaging has unique advantages such as high temporal resolution, low cost, and no radiation exposure. This renders it a preferred imaging modality for several clinical scenarios. This review includes a detailed introduction to imaging modalities, including Brightness-mode ultrasound, color Doppler flow imaging, ultrasound elastography, contrast-enhanced ultrasound, and multi-modal fusion analysis. It provides an overview of the current status and prospects of AI-based radiomics in ultrasound diagnosis, highlighting the application of AI-based radiomics to static ultrasound images, dynamic ultrasound videos, and multi-modal ultrasound fusion analysis.
Collapse
Affiliation(s)
- Haoyan Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zheling Meng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinyu Ru
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yaqing Meng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
7
|
Huang XH, Peng HW, Huang JR, Yu R, Hu ZJ, Peng XE. Association of food intake with a risk of metabolic dysfunction-associated fatty liver disease: a cross-sectional study. Gastroenterol Rep (Oxf) 2023; 11:goad054. [PMID: 37705510 PMCID: PMC10495696 DOI: 10.1093/gastro/goad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Background Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common liver disease, the risk of which can be increased by poor diet. The objective of this study was to evaluate the associations between food items and MAFLD, and to propose reasonable dietary recommendations for the prevention of MAFLD. Methods Physical examination data were collected from April 2015 through August 2017 at Nanping First Hospital (n = 3,563). Dietary intakes were assessed using a semi-quantitative food frequency questionnaire. The association between food intake and the risk of MAFLD was assessed by using the inverse probability weighted propensity score. Results Beverages (soft drinks and sugar-sweetened beverages) and instant noodles were positively associated with MAFLD risk, adjusting for smoking, drinking, tea intake, and weekly hours of physical activity [adjusted odds ratio (ORadjusted): 1.568; P = 0.044; ORadjusted: 4.363; P = 0.001]. Milk, tubers, and vegetables were negatively associated with MAFLD risk (ORadjusted: 0.912; P = 0.002; ORadjusted: 0.633; P = 0.007; ORadjusted: 0.962; P = 0.028). In subgroup analysis, the results showed that women [odds ratio (OR): 0.341, 95% confidence interval (CI): 0.172-0.676] had a significantly lower risk of MAFLD through consuming more tubers than men (OR: 0.732, 95% CI: 0.564-0.951). Conclusions These findings suggest that reducing consumption of beverages (soft drinks and sugar-sweetened beverages) and instant noodles, and consuming more milk, vegetables, and tubers may reduce the risk of MAFLD.
Collapse
Affiliation(s)
- Xian-Hua Huang
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - He-Wei Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Jing-Ru Huang
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P. R. China
| | - Rong Yu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Zhi-Jian Hu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Xian-E Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian, P. R. China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
8
|
Saber R, Henault D, Messaoudi N, Rebolledo R, Montagnon E, Soucy G, Stagg J, Tang A, Turcotte S, Kadoury S. Radiomics using computed tomography to predict CD73 expression and prognosis of colorectal cancer liver metastases. J Transl Med 2023; 21:507. [PMID: 37501197 PMCID: PMC10375693 DOI: 10.1186/s12967-023-04175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/30/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Finding a noninvasive radiomic surrogate of tumor immune features could help identify patients more likely to respond to novel immune checkpoint inhibitors. Particularly, CD73 is an ectonucleotidase that catalyzes the breakdown of extracellular AMP into immunosuppressive adenosine, which can be blocked by therapeutic antibodies. High CD73 expression in colorectal cancer liver metastasis (CRLM) resected with curative intent is associated with early recurrence and shorter patient survival. The aim of this study was hence to evaluate whether machine learning analysis of preoperative liver CT-scan could estimate high vs low CD73 expression in CRLM and whether such radiomic score would have a prognostic significance. METHODS We trained an Attentive Interpretable Tabular Learning (TabNet) model to predict, from preoperative CT images, stratified expression levels of CD73 (CD73High vs. CD73Low) assessed by immunofluorescence (IF) on tissue microarrays. Radiomic features were extracted from 160 segmented CRLM of 122 patients with matched IF data, preprocessed and used to train the predictive model. We applied a five-fold cross-validation and validated the performance on a hold-out test set. RESULTS TabNet provided areas under the receiver operating characteristic curve of 0.95 (95% CI 0.87 to 1.0) and 0.79 (0.65 to 0.92) on the training and hold-out test sets respectively, and outperformed other machine learning models. The TabNet-derived score, termed rad-CD73, was positively correlated with CD73 histological expression in matched CRLM (Spearman's ρ = 0.6004; P < 0.0001). The median time to recurrence (TTR) and disease-specific survival (DSS) after CRLM resection in rad-CD73High vs rad-CD73Low patients was 13.0 vs 23.6 months (P = 0.0098) and 53.4 vs 126.0 months (P = 0.0222), respectively. The prognostic value of rad-CD73 was independent of the standard clinical risk score, for both TTR (HR = 2.11, 95% CI 1.30 to 3.45, P < 0.005) and DSS (HR = 1.88, 95% CI 1.11 to 3.18, P = 0.020). CONCLUSIONS Our findings reveal promising results for non-invasive CT-scan-based prediction of CD73 expression in CRLM and warrant further validation as to whether rad-CD73 could assist oncologists as a biomarker of prognosis and response to immunotherapies targeting the adenosine pathway.
Collapse
Affiliation(s)
- Ralph Saber
- MedICAL Laboratory, Polytechnique Montréal, Montréal, H3T 1J4, Canada
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
| | - David Henault
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - Nouredin Messaoudi
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
- Department of Surgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel) and Europe Hospitals, Brussels, Belgium
| | - Rolando Rebolledo
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - Emmanuel Montagnon
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
| | - Geneviève Soucy
- Pahology Department, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada
| | - John Stagg
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada
| | - An Tang
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, H3T 1J4, Canada
| | - Simon Turcotte
- Cancer Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis, Room R10.430, Montréal, QC, H2X 0A9, Canada.
- Hepato-Pancreato-Biliary Surgery and Liver Transplantation Service, Centre hospitalier de l'Université de Montréal, 1000, rue Saint-Denis, Montréal, QC, H2X 0C1, Canada.
| | - Samuel Kadoury
- MedICAL Laboratory, Polytechnique Montréal, Montréal, H3T 1J4, Canada.
- Imaging and Engineering Axis, Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 900 rue Saint-Denis R10.430, Montréal, QC, H2X 0A9, Canada.
- Department of Computer and Software Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, H3T 1J4, Canada.
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, H3T 1J4, Canada.
| |
Collapse
|
9
|
Berbís MA, Paulano Godino F, Royuela del Val J, Alcalá Mata L, Luna A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J Gastroenterol 2023; 29:1427-1445. [PMID: 36998424 PMCID: PMC10044858 DOI: 10.3748/wjg.v29.i9.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Artificial intelligence (AI) has experienced substantial progress over the last ten years in many fields of application, including healthcare. In hepatology and pancreatology, major attention to date has been paid to its application to the assisted or even automated interpretation of radiological images, where AI can generate accurate and reproducible imaging diagnosis, reducing the physicians’ workload. AI can provide automatic or semi-automatic segmentation and registration of the liver and pancreatic glands and lesions. Furthermore, using radiomics, AI can introduce new quantitative information which is not visible to the human eye to radiological reports. AI has been applied in the detection and characterization of focal lesions and diffuse diseases of the liver and pancreas, such as neoplasms, chronic hepatic disease, or acute or chronic pancreatitis, among others. These solutions have been applied to different imaging techniques commonly used to diagnose liver and pancreatic diseases, such as ultrasound, endoscopic ultrasonography, computerized tomography (CT), magnetic resonance imaging, and positron emission tomography/CT. However, AI is also applied in this context to many other relevant steps involved in a comprehensive clinical scenario to manage a gastroenterological patient. AI can also be applied to choose the most convenient test prescription, to improve image quality or accelerate its acquisition, and to predict patient prognosis and treatment response. In this review, we summarize the current evidence on the application of AI to hepatic and pancreatic radiology, not only in regard to the interpretation of images, but also to all the steps involved in the radiological workflow in a broader sense. Lastly, we discuss the challenges and future directions of the clinical application of AI methods.
Collapse
Affiliation(s)
- M Alvaro Berbís
- Department of Radiology, HT Médica, San Juan de Dios Hospital, Córdoba 14960, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid 28049, Spain
| | | | | | - Lidia Alcalá Mata
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| | - Antonio Luna
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| |
Collapse
|
10
|
Kalapala R, Rughwani H, Reddy DN. Artificial Intelligence in Hepatology- Ready for the Primetime. J Clin Exp Hepatol 2023; 13:149-161. [PMID: 36647407 PMCID: PMC9840075 DOI: 10.1016/j.jceh.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Artificial Intelligence (AI) is a mathematical process of computer mediating designing of algorithms to support human intelligence. AI in hepatology has shown tremendous promise to plan appropriate management and hence improve treatment outcomes. The field of AI is in a very early phase with limited clinical use. AI tools such as machine learning, deep learning, and 'big data' are in a continuous phase of evolution, presently being applied for clinical and basic research. In this review, we have summarized various AI applications in hepatology, the pitfalls and AI's future implications. Different AI models and algorithms are under study using clinical, laboratory, endoscopic and imaging parameters to diagnose and manage liver diseases and mass lesions. AI has helped to reduce human errors and improve treatment protocols. Further research and validation are required for future use of AI in hepatology.
Collapse
Key Words
- ACLF, acute on chronic liver failure
- AI, artificial intelligence
- ALD, alcoholic liver disease
- ALT, alanine transaminase
- ANN, artificial neural network
- AST, aspartate aminotransferase
- AUD, alcohol use disorder
- CHB, chronic hepatitis B
- CHC, chronic hepatitis C
- CLD, chronic liver disease
- CNN, convolutional neural network
- DL, deep learning
- FIB-4, fibrosis-4 score
- GGTP, gamma glutamyl transferase
- HCC, hepatocellular carcinoma
- HDL, high density lipoprotein
- ML, machine learning
- MLR, multi-nomial logistic regressions
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NLP, natural language processing
- RF, random forest
- RTE, real-time tissue elastography
- SOLs, space-occupying lesions
- SVM, support vector machine
- artificial intelligence
- deep learning
- hepatology
- machine learning
Collapse
Affiliation(s)
- Rakesh Kalapala
- Department of Gastroenterology, Asian Institute of Gastroenterology and AIG Hospitals, Hyderabad, India
| | - Hardik Rughwani
- Department of Gastroenterology, Asian Institute of Gastroenterology and AIG Hospitals, Hyderabad, India
| | | |
Collapse
|
11
|
Tang S, Wu J, Xu S, Li Q, He J. Clinical-radiomic analysis for non-invasive prediction of liver steatosis on non-contrast CT: A pilot study. Front Genet 2023; 14:1071085. [PMID: 37021007 PMCID: PMC10069650 DOI: 10.3389/fgene.2023.1071085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Purpose: Our aim is to build and validate a clinical-radiomic model for non-invasive liver steatosis prediction based on non-contrast computed tomography (CT). Methods: We retrospectively reviewed 342 patients with suspected NAFLD diagnoses between January 2019 and July 2020 who underwent non-contrast CT and liver biopsy. Radiomics features from hepatic and splenic regions-of-interests (ROIs) were extracted based on abdominal non-contrast CT imaging. The radiomics signature was constructed based on reproducible features by adopting the least absolute shrinkage and selection operator (LASSO) regression. Then, multivariate logistic regression analysis was applied to develop a combined clinical-radiomic nomogram integrating radiomics signature with several independent clinical predictors in a training cohort of 124 patients between January 2019 and December 2019. The performance of models was determined by the area under the receiver operating characteristic curves and calibration curves. We conducted an internal validation during 103 consecutive patients between January 2020 and July 2020. Results: The radiomics signature was composed of four steatosis-related features and positively correlated with pathologic liver steatosis grade (p < 0.01). In both subgroups (Group One, none vs. steatosis; Group Two, none/mild vs. moderate/severe steatosis), the clinical-radiomic model performed best within the validation cohort with an AUC of 0.734 and 0.930, respectively. The calibration curve confirmed the concordance of excellent models. Conclusion: We developed a robust clinical-radiomic model for accurate liver steatosis stage prediction in a non-invasive way, which may improve the clinical decision-making ability.
Collapse
Affiliation(s)
- Shengnan Tang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jin Wu
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shanshan Xu
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi Li
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Jian He,
| |
Collapse
|
12
|
Nittas V, Daniore P, Landers C, Gille F, Amann J, Hubbs S, Puhan MA, Vayena E, Blasimme A. Beyond high hopes: A scoping review of the 2019-2021 scientific discourse on machine learning in medical imaging. PLOS DIGITAL HEALTH 2023; 2:e0000189. [PMID: 36812620 PMCID: PMC9931290 DOI: 10.1371/journal.pdig.0000189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023]
Abstract
Machine learning has become a key driver of the digital health revolution. That comes with a fair share of high hopes and hype. We conducted a scoping review on machine learning in medical imaging, providing a comprehensive outlook of the field's potential, limitations, and future directions. Most reported strengths and promises included: improved (a) analytic power, (b) efficiency (c) decision making, and (d) equity. Most reported challenges included: (a) structural barriers and imaging heterogeneity, (b) scarcity of well-annotated, representative and interconnected imaging datasets (c) validity and performance limitations, including bias and equity issues, and (d) the still missing clinical integration. The boundaries between strengths and challenges, with cross-cutting ethical and regulatory implications, remain blurred. The literature emphasizes explainability and trustworthiness, with a largely missing discussion about the specific technical and regulatory challenges surrounding these concepts. Future trends are expected to shift towards multi-source models, combining imaging with an array of other data, in a more open access, and explainable manner.
Collapse
Affiliation(s)
- Vasileios Nittas
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, Faculty of Medicine, Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Paola Daniore
- Institute for Implementation Science in Health Care, Faculty of Medicine, University of Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Switzerland
| | - Constantin Landers
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Felix Gille
- Institute for Implementation Science in Health Care, Faculty of Medicine, University of Zurich, Switzerland
- Digital Society Initiative, University of Zurich, Switzerland
| | - Julia Amann
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Shannon Hubbs
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Milo Alan Puhan
- Epidemiology, Biostatistics and Prevention Institute, Faculty of Medicine, Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Effy Vayena
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Alessandro Blasimme
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
13
|
Jiang ZY, Qi LS, Li JT, Cui N, Li W, Liu W, Wang KZ. Radiomics: Status quo and future challenges. Artif Intell Med Imaging 2022; 3:87-96. [DOI: 10.35711/aimi.v3.i4.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Noninvasive imaging (computed tomography, magnetic resonance imaging, endoscopic ultrasonography, and positron emission tomography) as an important part of the clinical workflow in the clinic, but it still provides limited information for diagnosis, treatment effect evaluation and prognosis prediction. In addition, judgment and diagnoses made by experts are usually based on multiple years of experience and subjective impression which lead to variable results in the same case. With accumulation of medical imaging data, radiomics emerges as a relatively new approach for analysis. Via artificial intelligence techniques, high-throughput quantitative data which is invisible to the naked eyes extracted from original images can be used in the process of patients’ management. Several studies have evaluated radiomics combined with clinical factors, pathological, or genetic information would assist in the diagnosis, particularly in the prediction of biological characteristics, risk of recurrence, and survival with encouraging results. In various clinical settings, there are limitations and challenges needing to be overcome before transformation. Therefore, we summarize the concepts and method of radiomics including image acquisition, region of interest segmentation, feature extraction and model development. We also set forth the current applications of radiomics in clinical routine. At last, the limitations and related deficiencies of radiomics are pointed out to direct the future opportunities and development.
Collapse
Affiliation(s)
- Zhi-Yun Jiang
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Li-Shuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Jia-Tong Li
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Nan Cui
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Wei Li
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
- Department of Interventional Vascular Surgery, The 4th Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Liu
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Ke-Zheng Wang
- Department of Positron Emission Tomography-Computed Tomography/Magnetic Resonance Imaging, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
14
|
Ma L, Wang R, He Q, Huang L, Wei X, Lu X, Du Y, Luo J, Liao H. Artificial intelligence-based ultrasound imaging technologies for hepatic diseases. ILIVER 2022; 1:252-264. [DOI: 10.1016/j.iliver.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Quantitative Analysis of Liver Disease Using MRI-Based Radiomic Features of the Liver and Spleen. J Imaging 2022; 8:jimaging8100277. [PMID: 36286371 PMCID: PMC9605113 DOI: 10.3390/jimaging8100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Radiomics extracts quantitative image features to identify biomarkers for characterizing disease. Our aim was to characterize the ability of radiomic features extracted from magnetic resonance (MR) imaging of the liver and spleen to detect cirrhosis by comparing features from patients with cirrhosis to those without cirrhosis. Methods: This retrospective study compared MR-derived radiomic features between patients with cirrhosis undergoing hepatocellular carcinoma screening and patients without cirrhosis undergoing intraductal papillary mucinous neoplasm surveillance between 2015 and 2018 using the same imaging protocol. Secondary analyses stratified the cirrhosis cohort by liver disease severity using clinical compensation/decompensation and Model for End-Stage Liver Disease (MELD). Results: Of 167 patients, 90 had cirrhosis with 68.9% compensated and median MELD 8. Combined liver and spleen radiomic features generated an AUC 0.94 for detecting cirrhosis, with shape and texture components contributing more than size. Discrimination of cirrhosis remained high after stratification by liver disease severity. Conclusions: MR-based liver and spleen radiomic features had high accuracy in identifying cirrhosis, after stratification by clinical compensation/decompensation and MELD. Shape and texture features performed better than size features. These findings will inform radiomic-based applications for cirrhosis diagnosis and severity.
Collapse
|
16
|
Lafata KJ, Wang Y, Konkel B, Yin FF, Bashir MR. Radiomics: a primer on high-throughput image phenotyping. Abdom Radiol (NY) 2022; 47:2986-3002. [PMID: 34435228 DOI: 10.1007/s00261-021-03254-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023]
Abstract
Radiomics is a high-throughput approach to image phenotyping. It uses computer algorithms to extract and analyze a large number of quantitative features from radiological images. These radiomic features collectively describe unique patterns that can serve as digital fingerprints of disease. They may also capture imaging characteristics that are difficult or impossible to characterize by the human eye. The rapid development of this field is motivated by systems biology, facilitated by data analytics, and powered by artificial intelligence. Here, as part of Abdominal Radiology's special issue on Quantitative Imaging, we provide an introduction to the field of radiomics. The technique is formally introduced as an advanced application of data analytics, with illustrating examples in abdominal radiology. Artificial intelligence is then presented as the main driving force of radiomics, and common techniques are defined and briefly compared. The complete step-by-step process of radiomic phenotyping is then broken down into five key phases. Potential pitfalls of each phase are highlighted, and recommendations are provided to reduce sources of variation, non-reproducibility, and error associated with radiomics.
Collapse
Affiliation(s)
- Kyle J Lafata
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA. .,Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA. .,Department of Electrical & Computer Engineering, Duke University Pratt School of Engineering, Durham, NC, USA.
| | - Yuqi Wang
- Department of Electrical & Computer Engineering, Duke University Pratt School of Engineering, Durham, NC, USA
| | - Brandon Konkel
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Gastroenterology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
17
|
Kupffer Phase Radiomics Signature in Sonazoid-Enhanced Ultrasound is an Independent and Effective Predictor of the Pathologic Grade of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:6123242. [PMID: 35794982 PMCID: PMC9252702 DOI: 10.1155/2022/6123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
Abstract
We conduct this study to investigate the value of Kupffer phase radiomics signature of Sonazoid-enhanced ultrasound images (SEUS) for the preoperative prediction of hepatocellular carcinoma (HCC) grade. From November 2019 to October 2021, 68 pathologically confirmed HCC nodules from 54 patients were included. Quantitative radiomic features were extracted from grayscale images and arterial and Kupffer phases of SEUS of HCC lesions. Univariate logistic regression and the maximum relevance minimum redundancy (MRMR) method were applied to select radiomic features best corresponding to pathological results. Prediction radiomic signature was calculated using each of the image types. A predictive model was validated using internal leave-one-out cross validation (LOOCV). For discrimination between poorly differentiated HCC (p-HCC) and well-differentiated HCC/moderately differentiated HCC (w/m-HCC), the Kupffer phase radiomic score (KPRS) achieved an excellent area under the curve (AUC = 0.937), significantly higher than the other two radiomic signatures. KPRS was the best radiomic score based on the highest AUC (AUC = 0.878), which is prior to gray and arterial RS for differentiation between w-HCC and m/p-HCC. Univariate and multivariate analysis incorporating all radiomic signatures and serological variables showed that KPRS was the only independent predictor in both predictions of HCC lesions (p-HCC vs. w/m-HCC, log OR 15.869, P < 0.001, m/p-HCC vs. w-HCC, log OR 12.520, P < 0.05). We conclude that radiomics signature based on the Kupffer phase imaging may be useful for identifying the histological grade of HCC. The Kupffer phase radiomic signature may be an independent and effective predictor in discriminating w-HCC and p-HCC.
Collapse
|
18
|
Chen ZW, Xiao HM, Ye X, Liu K, Rios RS, Zheng KI, Jin Y, Targher G, Byrne CD, Shi J, Yan Z, Chi XL, Zheng MH. A novel radiomics signature based on T2-weighted imaging accurately predicts hepatic inflammation in individuals with biopsy-proven nonalcoholic fatty liver disease: a derivation and independent validation study. Hepatobiliary Surg Nutr 2022; 11:212-226. [PMID: 35464279 DOI: 10.21037/hbsn-21-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Background Currently, there are no effective methods for assessing hepatic inflammation without resorting to histological examination of liver tissue obtained by biopsy. T2-weighted images (T2WI) are routinely obtained from liver magnetic resonance imaging (MRI) scan sequences. We aimed to establish a radiomics signature based on T2WI (T2-RS) for assessment of hepatic inflammation in people with nonalcoholic fatty liver disease (NAFLD). Methods A total of 203 individuals with biopsy-confirmed NAFLD from two independent Chinese cohorts with liver MRI examination were enrolled in this study. The hepatic inflammatory activity score (IAS) was calculated by the unweighted sum of the histologic scores for lobular inflammation and ballooning. One thousand and thirty-two radiomics features were extracted from the localized region of interest (ROI) in the right liver lobe of T2WI and, subsequently, selected by minimum redundancy maximum relevance and least absolute shrinkage and selection operator (LASSO) methods. The T2-RS was calculated by adding the selected features weighted by their coefficients. Results Eighteen radiomics features from Laplacian of Gaussian, wavelet, and original images were selected for establishing T2-RS. The T2-RS value differed significantly between groups with increasing grades of hepatic inflammation (P<0.01). The T2-RS yielded an area under the receiver operating characteristic (ROC) curve (AUROC) of 0.80 [95% confidence interval (CI): 0.71-0.89] for predicting hepatic inflammation in the training cohort with excellent calibration. The AUROCs of T2-RS in the internal cohort and external validation cohorts were 0.77 (0.61-0.93) and 0.75 (0.63-0.84), respectively. Conclusions The T2-RS derived from radiomics analysis of T2WI shows promising utility for predicting hepatic inflammation in individuals with NAFLD.
Collapse
Affiliation(s)
- Zhong-Wei Chen
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan-Ming Xiao
- Department of Hepatology, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinjian Ye
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Liu
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rafael S Rios
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kenneth I Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Jin
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Junping Shi
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhihan Yan
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ling Chi
- Department of Hepatology, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
19
|
Taha A, Ochs V, Kayhan LN, Enodien B, Frey DM, Krähenbühl L, Taha-Mehlitz S. Advancements of Artificial Intelligence in Liver-Associated Diseases and Surgery. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040459. [PMID: 35454298 PMCID: PMC9029673 DOI: 10.3390/medicina58040459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Background and Objectives: The advancement of artificial intelligence (AI) based technologies in medicine is progressing rapidly, but the majority of its real-world applications has not been implemented. The establishment of an accurate diagnosis with treatment has now transitioned into an artificial intelligence era, which has continued to provide an amplified understanding of liver cancer as a disease and helped to proceed better with the method of procurement. This article focuses on reviewing the AI in liver-associated diseases and surgical procedures, highlighting its development, use, and related counterparts. Materials and Methods: We searched for articles regarding AI in liver-related ailments and surgery, using the keywords (mentioned below) on PubMed, Google Scholar, Scopus, MEDLINE, and Cochrane Library. Choosing only the common studies suggested by these libraries, we segregated the matter based on disease. Finally, we compiled the essence of these articles under the various sub-headings. Results: After thorough review of articles, it was observed that there was a surge in the occurrence of liver-related surgeries, diagnoses, and treatments. Parallelly, advanced computer technologies governed by AI continue to prove their efficacy in the accurate screening, analysis, prediction, treatment, and recuperation of liver-related cases. Conclusions: The continual developments and high-order precision of AI is expanding its roots in all directions of applications. Despite being novel and lacking research, AI has shown its intrinsic worth for procedures in liver surgery while providing enhanced healing opportunities and personalized treatment for liver surgery patients.
Collapse
Affiliation(s)
- Anas Taha
- Department of Biomedical Engineering, Faculty of Medicine, University of Basel, 4123 Allschwil, Switzerland
- Correspondence:
| | - Vincent Ochs
- Roche Innovation Center Basel, Department of Pharma Research & Early Development, 4070 Basel, Switzerland;
| | - Leos N. Kayhan
- Department of Surgery, Canntonal Hospital Luzern, 6004 Luzern, Switzerland;
| | - Bassey Enodien
- Department of Surgery, Wetzikon Hospital, 8620 Wetzikon, Switzerland; (B.E.); (D.M.F.)
| | - Daniel M. Frey
- Department of Surgery, Wetzikon Hospital, 8620 Wetzikon, Switzerland; (B.E.); (D.M.F.)
| | | | - Stephanie Taha-Mehlitz
- Clarunis, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, 4002 Basel, Switzerland;
| |
Collapse
|
20
|
Lee YS, Lee JE, Yi HS, Jung YK, Jun DW, Kim JH, Seo YS, Yim HJ, Kim BH, Kim JW, Lee CH, Yeon JE, Lee J, Um SH, Byun KS. MRE-based NASH score for diagnosis of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease. Hepatol Int 2022; 16:316-324. [PMID: 35254642 DOI: 10.1007/s12072-022-10300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIMS As the prevalence of nonalcoholic fatty liver disease (NAFLD) is approximately 30% in the general population, it is important to develop a non-invasive biomarker for the diagnosis of nonalcoholic steatohepatitis (NASH). This prospective cross-sectional study aimed to develop a scoring system for NASH diagnosis through multiparametric magnetic resonance (MR) and clinical indicators. METHODS Medical history, laboratory tests, and MR parameters of patients with NAFLD were assessed. A scoring system was developed using a logistic regression model. In total, 127 patients (58 with nonalcoholic fatty liver [NAFL] and 69 with NASH) were enrolled. After evaluating 23 clinical characteristics of the patients (4 categorical and 19 numeric variables) for the NASH diagnostic model, an equation for MR elastography (MRE)-based NASH score was obtained using 3 demographic factors, 2 laboratory variables, and MRE. RESULTS The MRE-based NASH score showed a satisfactory accuracy for NASH diagnosis (c-statistics, 0.841; 95% CI 0.772-0.910). At a cut-off MRE-based NASH score of 0.68 for NASH diagnosis, its sensitivity was 0.68 and specificity was 0.91. When an MRE-based NASH score of 0.37 was used as a cut-off for NASH exclusion, the sensitivity was 0.91 and specificity was 0.55. Overall, 35% (44/127) of patients were in the gray zone (between 0.37 and 0.68). Internal validation via bootstrapping also indicated the satisfactory accuracy of NASH diagnosis (optimism-corrected statistics, 0.811). CONCLUSION MRE-based NASH score is a useful and accurate non-invasive biomarker for diagnosis of NASH in patients with NAFLD.
Collapse
Affiliation(s)
- Young-Sun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Ji Eun Lee
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Young Kul Jung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University School of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Yeon Seok Seo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Hyung Joon Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Baek-Hui Kim
- Department of Pathology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong Woo Kim
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chang Hee Lee
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong Eun Yeon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| | - Juneyoung Lee
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Soon Ho Um
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Kwan Soo Byun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| |
Collapse
|
21
|
Mingkai L, Sizhe W, Xiaoying W, Ying L, Wu B. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac005. [PMID: 35186298 PMCID: PMC8849285 DOI: 10.1093/gastro/goac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/24/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background This study aimed to assess the performance of transient elastography (TE), two-dimensional shear wave elastography (2D-SWE), and magnetic resonance elastography (MRE) for staging significant fibrosis and cirrhosis in untreated chronic hepatitis B (CHB) patients. Methods Pubmed, Embase, Web of Science, and Cochrane Library were searched for terms involving CHB, TE, 2D-SWE, and MRE. Other etiologies of chronic liver disease, previous treatment in patients, or articles not published in SCI journals were excluded. Hierarchical non-linear models were used to evaluate the diagnostic accuracy of TE, 2D-SWE, and MRE. Heterogeneity was explored via analysis of threshold effect and meta-regression. Results Twenty-eight articles with a total of 4,540 untreated CHB patients were included. The summary areas under the receiver-operating characteristic curves (AUROCs) using TE, 2D-SWE, and MRE for predicting significant fibrosis (SF) were 0.84, 0.89, and 0.99, respectively. The AUROC values of TE, 2D-SWE, and MRE for staging cirrhosis were 0.9, 0.94, and 0.99, respectively. Based on the meta-analysis of studies with head-to-head comparison, 2D-SWE is superior to TE (0.92 vs 0.85, P < 0.01) in staging significant fibrosis. Conclusion TE, 2D-SWE, and MRE express acceptable diagnostic accuracies in staging significant fibrosis and cirrhosis in untreated CHB patients. 2D-SWE outperforms TE in detecting significant fibrosis in treatment-naive people with hepatitis B virus.
Collapse
Affiliation(s)
- Li Mingkai
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| | - Wan Sizhe
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| | - Wu Xiaoying
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
| | - Lin Ying
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Bin Wu
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong, P. R. China
- Corresponding author. Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, P. R. China. Tel: +86-20-85253333; Fax: +86-20-85253336;
| |
Collapse
|
22
|
Veerankutty FH, Jayan G, Yadav MK, Manoj KS, Yadav A, Nair SRS, Shabeerali TU, Yeldho V, Sasidharan M, Rather SA. Artificial Intelligence in hepatology, liver surgery and transplantation: Emerging applications and frontiers of research. World J Hepatol 2021; 13:1977-1990. [PMID: 35070002 PMCID: PMC8727218 DOI: 10.4254/wjh.v13.i12.1977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
The integration of artificial intelligence (AI) and augmented realities into the medical field is being attempted by various researchers across the globe. As a matter of fact, most of the advanced technologies utilized by medical providers today have been borrowed and extrapolated from other industries. The introduction of AI into the field of hepatology and liver surgery is relatively a recent phenomenon. The purpose of this narrative review is to highlight the different AI concepts which are currently being tried to improve the care of patients with liver diseases. We end with summarizing emerging trends and major challenges in the future development of AI in hepatology and liver surgery.
Collapse
Affiliation(s)
- Fadl H Veerankutty
- Comprehensive Liver Care, VPS Lakeshore Hospital, Cochin 682040, Kerala, India
| | - Govind Jayan
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Manish Kumar Yadav
- Department of Radiodiagnosis, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Krishnan Sarojam Manoj
- Department of Radiodiagnosis, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Abhishek Yadav
- Comprehensive Liver Care, VPS Lakeshore Hospital, Cochin 682040, Kerala, India
| | - Sindhu Radha Sadasivan Nair
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - T U Shabeerali
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Varghese Yeldho
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| | - Madhu Sasidharan
- Gastroenterology and Hepatology, Kerala Institute of Medical Sciences, Thiruvananthapuram 695029, India
| | - Shiraz Ahmad Rather
- Hepatobiliary Pancreatic and Liver Transplant Surgery, Kerala Institute of Medical Sciences, Trivandrum 695029, Kerala, India
| |
Collapse
|
23
|
Radiomics Can Provide a Deeper Role for Radiology in Precision Medicine of Hepatic Diseases. Acad Radiol 2021; 28 Suppl 1:S11-S12. [PMID: 34088591 DOI: 10.1016/j.acra.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
|
24
|
Sabottke CF, Spieler BM, Moawad AW, Elsayes KM. Artificial Intelligence in Imaging of Chronic Liver Diseases: Current Update and Future Perspectives. Magn Reson Imaging Clin N Am 2021; 29:451-463. [PMID: 34243929 DOI: 10.1016/j.mric.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here we review artificial intelligence (AI) models which aim to assess various aspects of chronic liver disease. Despite the clinical importance of hepatocellular carcinoma in the setting of chronic liver disease, we focus this review on AI models which are not lesion-specific and instead review models developed for liver parenchyma segmentation, evaluation of portal circulation, assessment of hepatic fibrosis, and identification of hepatic steatosis. Optimization of these models offers the opportunity to potentially reduce the need for invasive procedures such as catheterization to measure hepatic venous pressure gradient or biopsy to assess fibrosis and steatosis. We compare the performance of these AI models amongst themselves as well as to radiomics approaches and alternate modality assessments. We conclude that these models show promising performance and merit larger-scale evaluation. We review artificial intelligence models that aim to assess various aspects of chronic liver disease aside from hepatocellular carcinoma. We focus this review on models for liver parenchyma segmentation, evaluation of portal circulation, assessment of hepatic fibrosis, and identification of hepatic steatosis. We conclude that these models show promising performance and merit a larger scale evaluation.
Collapse
Affiliation(s)
- Carl F Sabottke
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell, P.O. Box 245067, Tucson, AZ 85724-5067, USA.
| | - Bradley M Spieler
- Department of Radiology, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, Rm 343, New Orleans, LA 70112, USA
| | - Ahmed W Moawad
- Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Unit 1472, P.O. Box 301402, Houston, TX 77230-1402, USA
| | - Khaled M Elsayes
- Department of Abdominal Imaging, The University of Texas, MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030, USA
| |
Collapse
|
25
|
Hoshino I, Yokota H. Radiogenomics of gastroenterological cancer: The dawn of personalized medicine with artificial intelligence-based image analysis. Ann Gastroenterol Surg 2021; 5:427-435. [PMID: 34337291 PMCID: PMC8316732 DOI: 10.1002/ags3.12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiogenomics is a new field of medical science that integrates two omics, radiomics and genomics, and may bring a major paradigm shift in traditional personalized medicine strategies that require tumor tissue samples. In addition, the acquisition of the data does not require special imaging equipment or special imaging conditions, and it is possible to use image information from computed tomography, magnetic resonance imaging, positron emission tomography-computed tomography in clinical practice, so the versatility and cost-effectiveness of radiogenomics are expected. So far, the field of radiogenomics has developed, especially in the fields of brain tumors and breast cancer, but recently, reports of radiogenomic research on gastroenterological cancer are increasing. This review provides an overview of radiogenomic research methods and summarizes the current radiogenomic research in gastroenterological cancer. In addition, the application of artificial intelligence is considered to be indispensable for the integrated analysis of enormous omics information in the future, and the future direction of this research, including the latest technologies, will be discussed.
Collapse
Affiliation(s)
- Isamu Hoshino
- Division of Gastroenterological SurgeryChiba Cancer CenterChibaJapan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation OncologyGraduate School of MedicineChiba UniversityChibaJapan
| |
Collapse
|
26
|
Castaldo A, De Lucia DR, Pontillo G, Gatti M, Cocozza S, Ugga L, Cuocolo R. State of the Art in Artificial Intelligence and Radiomics in Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:1194. [PMID: 34209197 PMCID: PMC8307071 DOI: 10.3390/diagnostics11071194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The most common liver malignancy is hepatocellular carcinoma (HCC), which is also associated with high mortality. Often HCC develops in a chronic liver disease setting, and early diagnosis as well as accurate screening of high-risk patients is crucial for appropriate and effective management of these patients. While imaging characteristics of HCC are well-defined in the diagnostic phase, challenging cases still occur, and current prognostic and predictive models are limited in their accuracy. Radiomics and machine learning (ML) offer new tools to address these issues and may lead to scientific breakthroughs with the potential to impact clinical practice and improve patient outcomes. In this review, we will present an overview of these technologies in the setting of HCC imaging across different modalities and a range of applications. These include lesion segmentation, diagnosis, prognostic modeling and prediction of treatment response. Finally, limitations preventing clinical application of radiomics and ML at the present time are discussed, together with necessary future developments to bring the field forward and outside of a purely academic endeavor.
Collapse
Affiliation(s)
- Anna Castaldo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Davide Raffaele De Lucia
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy;
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (A.C.); (D.R.D.L.); (G.P.); (S.C.); (L.U.)
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
27
|
Beckers R, Kwade Z, Zanca F. The EU medical device regulation: Implications for artificial intelligence-based medical device software in medical physics. Phys Med 2021; 83:1-8. [DOI: 10.1016/j.ejmp.2021.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
|
28
|
Maruyama H, Yamaguchi T, Nagamatsu H, Shiina S. AI-Based Radiological Imaging for HCC: Current Status and Future of Ultrasound. Diagnostics (Basel) 2021; 11:diagnostics11020292. [PMID: 33673229 PMCID: PMC7918339 DOI: 10.3390/diagnostics11020292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide. Recent international guidelines request an identification of the stage and patient background/condition for an appropriate decision for the management direction. Radiomics is a technology based on the quantitative extraction of image characteristics from radiological imaging modalities. Artificial intelligence (AI) algorithms are the principal axis of the radiomics procedure and may provide various results from large data sets beyond conventional techniques. This review article focused on the application of the radiomics-related diagnosis of HCC using radiological imaging (computed tomography, magnetic resonance imaging, and ultrasound (B-mode, contrast-enhanced ultrasound, and elastography)), and discussed the current role, limitation and future of ultrasound. Although the evidence has shown the positive effect of AI-based ultrasound in the prediction of tumor characteristics and malignant potential, posttreatment response and prognosis, there are still a number of issues in the practical management of patients with HCC. It is highly expected that the wide range of applications of AI for ultrasound will support the further improvement of the diagnostic ability of HCC and provide a great benefit to the patients.
Collapse
Affiliation(s)
- Hitoshi Maruyama
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
- Correspondence: ; Tel.: +81-3-38133111; Fax: +81-3-56845960
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba 263-8522, Japan;
| | - Hiroaki Nagamatsu
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (H.N.); (S.S.)
| |
Collapse
|
29
|
Davendralingam N, Sebire NJ, Arthurs OJ, Shelmerdine SC. Artificial intelligence in paediatric radiology: Future opportunities. Br J Radiol 2021; 94:20200975. [PMID: 32941736 PMCID: PMC7774693 DOI: 10.1259/bjr.20200975] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) has received widespread and growing interest in healthcare, as a method to save time, cost and improve efficiencies. The high-performance statistics and diagnostic accuracies reported by using AI algorithms (with respect to predefined reference standards), particularly from image pattern recognition studies, have resulted in extensive applications proposed for clinical radiology, especially for enhanced image interpretation. Whilst certain sub-speciality areas in radiology, such as those relating to cancer screening, have received wide-spread attention in the media and scientific community, children's imaging has been hitherto neglected.In this article, we discuss a variety of possible 'use cases' in paediatric radiology from a patient pathway perspective where AI has either been implemented or shown early-stage feasibility, while also taking inspiration from the adult literature to propose potential areas for future development. We aim to demonstrate how a 'future, enhanced paediatric radiology service' could operate and to stimulate further discussion with avenues for research.
Collapse
Affiliation(s)
- Natasha Davendralingam
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | | |
Collapse
|