1
|
Igoshin AV, Romashov GA, Yurchenko AA, Yudin NS, Larkin DM. Scans for Signatures of Selection in Genomes of Wagyu and Buryat Cattle Breeds Reveal Candidate Genes and Genetic Variants for Adaptive Phenotypes and Production Traits. Animals (Basel) 2024; 14:2059. [PMID: 39061521 PMCID: PMC11274160 DOI: 10.3390/ani14142059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Past and ongoing selection shapes the genomes of livestock breeds. Identifying such signatures of selection allows for uncovering the genetic bases of affected phenotypes, including economically important traits and environmental adaptations, for the further improvement of breed genetics to respond to climate and economic challenges. Turano-Mongolian cattle are a group of taurine breeds known for their adaptation to extreme environmental conditions and outstanding production performance. Buryat Turano-Mongolian cattle are among the few breeds adapted to cold climates and poor forage. Wagyu, on the other hand, is famous for high productivity and unique top-quality marbled meat. We used hapFLK, the de-correlated composite of multiple signals (DCMS), PBS, and FST methods to search for signatures of selection in their genomes. The scans revealed signals in genes related to cold adaptation (e.g., STAT3, DOCK5, GSTM3, and CXCL8) and food digestibility (SI) in the Buryat breed, and growth and development traits (e.g., RBFOX2 and SHOX2) and marbling (e.g., DGAT1, IQGAP2, RSRC1, and DIP2B) in Wagyu. Several putatively selected genes associated with reproduction, immunity, and resistance to pathogens were found in both breed genomes. The results of our work could be used for creating new productive adapted breeds or improving the extant breeds.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, 94800 Villejuif, France
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia; (A.V.I.)
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
2
|
Shpak M, Lawrence KN, Pool JE. The Precision and Power of Population Branch Statistics in Identifying the Genomic Signatures of Local Adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594139. [PMID: 38798330 PMCID: PMC11118325 DOI: 10.1101/2024.05.14.594139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Population branch statistics, which estimate the branch lengths of focal populations with respect to two outgroups, have been used as an alternative to FST-based genome-wide scans for identifying loci associated with local selective sweeps. In addition to the original population branch statistic (PBS), there are subsequently proposed branch rescalings: normalized population branch statistic (PBSn1), which adjusts focal branch length with respect to outgroup branch lengths at the same locus, and population branch excess (PBE), which also incorporates median branch lengths at other loci. PBSn1 and PBE have been proposed to be less sensitive to allele frequency divergence generated by background selection or geographically ubiquitous positive selection rather than local selective sweeps. However, the accuracy and statistical power of branch statistics have not been systematically assessed. To do so, we simulate genomes in representative large and small populations with varying proportions of sites evolving under genetic drift or background selection (approximated using variable Ne), local selective sweeps, and geographically parallel selective sweeps. We then assess the probability that local selective sweep loci are correctly identified as outliers by FST and by each of the branch statistics. We find that branch statistics consistently outperform FST at identifying local sweeps. When background selection and/or parallel sweeps are introduced, PBSn1 and especially PBE correctly identify local sweeps among their top outliers at a higher frequency than PBS. These results validate the greater specificity of rescaled branch statistics such as PBE to detect population-specific positive selection, supporting their use in genomic studies focused on local adaptation.
Collapse
Affiliation(s)
- Max Shpak
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - Kadee N. Lawrence
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
3
|
Cridland JM, Contino CE, Begun DJ. Selection and geography shape male reproductive tract transcriptomes in Drosophila melanogaster. Genetics 2023; 224:iyad034. [PMID: 36869688 PMCID: PMC10474930 DOI: 10.1093/genetics/iyad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Transcriptome analysis of several animal clades suggests that male reproductive tract gene expression evolves quickly. However, the factors influencing the abundance and distribution of within-species variation, the ultimate source of interspecific divergence, are poorly known. Drosophila melanogaster, an ancestrally African species that has recently spread throughout the world and colonized the Americas in the last roughly 100 years, exhibits phenotypic and genetic latitudinal clines on multiple continents, consistent with a role for spatially varying selection in shaping its biology. Nevertheless, geographic expression variation in the Americas is poorly described, as is its relationship to African expression variation. Here, we investigate these issues through the analysis of two male reproductive tissue transcriptomes [testis and accessory gland (AG)] in samples from Maine (USA), Panama, and Zambia. We find dramatic differences between these tissues in differential expression between Maine and Panama, with the accessory glands exhibiting abundant expression differentiation and the testis exhibiting very little. Latitudinal expression differentiation appears to be influenced by the selection of Panama expression phenotypes. While the testis shows little latitudinal expression differentiation, it exhibits much greater differentiation than the accessory gland in Zambia vs American population comparisons. Expression differentiation for both tissues is non-randomly distributed across the genome on a chromosome arm scale. Interspecific expression divergence between D. melanogaster and D. simulans is discordant with rates of differentiation between D. melanogaster populations. Strongly heterogeneous expression differentiation across tissues and timescales suggests a complex evolutionary process involving major temporal changes in the way selection influences expression evolution in these organs.
Collapse
Affiliation(s)
- Julie M Cridland
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - Colin E Contino
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Quiver MH, Lachance J. Adaptive eQTLs reveal the evolutionary impacts of pleiotropy and tissue-specificity while contributing to health and disease. HGG ADVANCES 2022; 3:100083. [PMID: 35047867 PMCID: PMC8756519 DOI: 10.1016/j.xhgg.2021.100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Large numbers of expression quantitative trait loci (eQTLs) have recently been identified in humans, and many of these regulatory variants have large allele frequency differences between populations. Here, we conducted genome-wide scans of selection to identify adaptive eQTLs (i.e., eQTLs with large population branch statistics). We then tested if tissue pleiotropy affects whether eQTLs are more or less likely to be adaptive and identified tissues that have been key targets of positive selection during the last 100,000 years. Top adaptive eQTL outliers include rs1043809, rs66899053, and rs2814778 (a SNP that is associated with malaria resistance). We found that effect sizes of eQTLs were negatively correlated with population branch statistics and that adaptive eQTLs affect two-thirds as many tissues as do non-adaptive eQTLs. Because the tissue breadth of an eQTL can be viewed as a measure of pleiotropy, these results imply that pleiotropy inhibits adaptation. The proportion of eQTLs that are adaptive varies by tissue, and we found that eQTLs that regulate expression in testis, thyroid, blood, or sun-exposed skin are enriched for signatures of positive selection. By contrast, eQTLs that regulate expression in the cerebrum or female-specific tissues have a relative lack of adaptive outliers. Scans of selections also reveal that many adaptive eQTLs are closely linked to disease-associated loci. Taken together, our results indicate that eQTLs have played an important role in recent human evolution.
Collapse
Affiliation(s)
- Melanie H Quiver
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Cao C, Wang J, Kwok D, Cui F, Zhang Z, Zhao D, Li MJ, Zou Q. webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Res 2021; 50:D1123-D1130. [PMID: 34669946 PMCID: PMC8728162 DOI: 10.1093/nar/gkab957] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
The development of transcriptome-wide association studies (TWAS) has enabled researchers to better identify and interpret causal genes in many diseases. However, there are currently no resources providing a comprehensive listing of gene-disease associations discovered by TWAS from published GWAS summary statistics. TWAS analyses are also difficult to conduct due to the complexity of TWAS software pipelines. To address these issues, we introduce a new resource called webTWAS, which integrates a database of the most comprehensive disease GWAS datasets currently available with credible sets of potential causal genes identified by multiple TWAS software packages. Specifically, a total of 235 064 gene-diseases associations for a wide range of human diseases are prioritized from 1298 high-quality downloadable European GWAS summary statistics. Associations are calculated with seven different statistical models based on three popular and representative TWAS software packages. Users can explore associations at the gene or disease level, and easily search for related studies or diseases using the MeSH disease tree. Since the effects of diseases are highly tissue-specific, webTWAS applies tissue-specific enrichment analysis to identify significant tissues. A user-friendly web server is also available to run custom TWAS analyses on user-provided GWAS summary statistics data. webTWAS is freely available at http://www.webtwas.net.
Collapse
Affiliation(s)
- Chen Cao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jianhua Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Devin Kwok
- School of Computer Science, McGill University, Montreal, Canada
| | - Feifei Cui
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Zilong Zhang
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Da Zhao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Mulin Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|