1
|
Liu B, Ren YS, Su CY, Abe Y, Zhu DH. Pangenomic analysis of Wolbachia provides insight into the evolution of host adaptation and cytoplasmic incompatibility factor genes. Front Microbiol 2023; 14:1084839. [PMID: 36819029 PMCID: PMC9937081 DOI: 10.3389/fmicb.2023.1084839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The genus Wolbachia provides a typical example of intracellular bacteria that infect the germline of arthropods and filarial nematodes worldwide. Their importance as biological regulators of invertebrates, so it is particularly important to study the evolution, divergence and host adaptation of these bacteria at the genome-wide level. Methods Here, we used publicly available Wolbachia genomes to reconstruct their evolutionary history and explore their adaptation under host selection. Results Our findings indicate that segmental and single-gene duplications, such as DNA methylase, bZIP transcription factor, heat shock protein 90, in single monophyletic Wolbachia lineages (including supergroups A and B) may be responsible for improving the ability to adapt to a broad host range in arthropod-infecting strains. In contrast to A strains, high genetic diversity and rapidly evolving gene families occur in B strains, which may promote the ability of supergroup B strains to adapt to new hosts and their large-scale spreading. In addition, we hypothesize that there might have been two independent horizontal transfer events of cif genes in two sublineages of supergroup A strains. Interestingly, during the independent evolution of supergroup A and B strains, the rapid evolution of cif genes in supergroup B strains resulted in the loss of their functional domain, reflected in a possible decrease in the proportion of induced cytoplasmic incompatibility (CI) strains. Discussion This present study highlights for reconstructing of evolutionary history, addressing host adaptation-related evolution and exploring the origin and divergence of CI genes in each Wolbachia supergroup. Our results thus not only provide a basis for further exploring the evolutionary history of Wolbachia adaptation under host selection but also reveal a new research direction for studying the molecular regulation of Wolbachia- induced cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ye-Song Ren
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Cheng-Yuan Su
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Yoshihisa Abe
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,*Correspondence: Dao-Hong Zhu, ✉
| |
Collapse
|
2
|
Ross PA, Robinson KL, Yang Q, Callahan AG, Schmidt TL, Axford JK, Coquilleau MP, Staunton KM, Townsend M, Ritchie SA, Lau MJ, Gu X, Hoffmann AA. A decade of stability for wMel Wolbachia in natural Aedes aegypti populations. PLoS Pathog 2022; 18:e1010256. [PMID: 35196357 PMCID: PMC8901071 DOI: 10.1371/journal.ppat.1010256] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/07/2022] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
Abstract
Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti mosquitoes carrying wMel were first released into the field in Cairns, Australia, over a decade ago, and with wider releases have resulted in the near elimination of local dengue transmission. The long-term stability of Wolbachia effects is critical for ongoing disease suppression, requiring tracking of phenotypic and genomic changes in Wolbachia infections following releases. We used a combination of field surveys, phenotypic assessments, and Wolbachia genome sequencing to show that wMel has remained stable in its effects for up to a decade in Australian Ae. aegypti populations. Phenotypic comparisons of wMel-infected and uninfected mosquitoes from near-field and long-term laboratory populations suggest limited changes in the effects of wMel on mosquito fitness. Treating mosquitoes with antibiotics used to cure the wMel infection had limited effects on fitness in the next generation, supporting the use of tetracycline for generating uninfected mosquitoes without off-target effects. wMel has a temporally stable within-host density and continues to induce complete cytoplasmic incompatibility. A comparison of wMel genomes from pre-release (2010) and nine years post-release (2020) populations show few genomic differences and little divergence between release locations, consistent with the lack of phenotypic changes. These results indicate that releases of Wolbachia-infected mosquitoes for population replacement are likely to be effective for many years, but ongoing monitoring remains important to track potential evolutionary changes.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie L. Robinson
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley G. Callahan
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas L. Schmidt
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jason K. Axford
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Marianne P. Coquilleau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kyran M. Staunton
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Michael Townsend
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Scott A. Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Xinyue Gu
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Dainty KR, Hawkey J, Judd LM, Pacidônio EC, Duyvestyn JM, Gonçalves DS, Lin SY, O'Donnell TB, O'Neill SL, Simmons CP, Holt KE, Flores HA. wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations. Microb Genom 2021; 7. [PMID: 34468309 PMCID: PMC8715424 DOI: 10.1099/mgen.0.000641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infection of wMel Wolbachia in Aedes aegypti imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables wMel introgression into wild-type mosquito populations. The long-term success of this method relies, in part, on evolution of the wMel genome not compromising the critical features that make it an attractive biocontrol tool. This study compared the wMel Wolbachia genome at the time of initial releases and 1-7 years post-release in Cairns, Australia. Our results show the wMel genome remains highly conserved up to 7 years post-release in gene sequence, content, synteny and structure. This work suggests the wMel genome is stable in its new mosquito host and, therefore, provides reassurance on the potential for wMel to deliver long-term public-health impacts.
Collapse
Affiliation(s)
- Kimberley R Dainty
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Etiene C Pacidônio
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Johanna M Duyvestyn
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Daniela S Gonçalves
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Silk Yu Lin
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Tanya B O'Donnell
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Scott L O'Neill
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| | - Cameron P Simmons
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia.,Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Heather A Flores
- Institute of Vector-Borne Disease, Monash University, Melbourne, Victoria, Australia.,World Mosquito Program, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Towett-Kirui S, Morrow JL, Close S, Royer JE, Riegler M. Host-endoparasitoid-endosymbiont relationships: concealed Strepsiptera provide new twist to Wolbachia in Australian tephritid fruit flies. Environ Microbiol 2021; 23:5587-5604. [PMID: 34390609 DOI: 10.1111/1462-2920.15715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Wolbachia are widespread endosymbionts that affect arthropod reproduction and fitness. Mostly maternally inherited, Wolbachia are occasionally transferred horizontally. Previously, two Wolbachia strains were reported at low prevalence and titres across seven Australian tephritid species, possibly indicative of frequent horizontal transfer. Here, we performed whole-genome sequencing of field-caught Wolbachia-positive flies. Unexpectedly, we found complete mitogenomes of an endoparasitic strepsipteran, Dipterophagus daci, suggesting that Wolbachia in the flies are linked to concealed parasitization. We performed the first genetic characterization of D. daci and detected D. daci in Wolbachia-positive flies not visibly parasitized, and most but not all Wolbachia-negative flies were D. daci-negative, presumably reflecting polymorphism for the Wolbachia infections in D. daci. We dissected D. daci from stylopized flies and confirmed that Wolbachia infects D. daci, but also found Wolbachia in stylopized fly tissues, likely somatic, horizontally transferred, non-heritable infections. Furthermore, no Wolbachia cif and wmk genes were detected and very low mitogenomic variation in D. daci across its distribution. Therefore, Wolbachia may influence host fitness without reproductive manipulation. Our study of 13 tephritid species highlights that concealed early stages of strepsipteran parasitization led to the previous incorrect assignment of Wolbachia co-infections to tephritid species, obscuring ecological studies of this common endosymbiont and its horizontal transmission by parasitoids.
Collapse
Affiliation(s)
- Sharon Towett-Kirui
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Shannon Close
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Jane E Royer
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
5
|
Morrow JL, Riegler M. Genome analyses of four Wolbachia strains and associated mitochondria of Rhagoletis cerasi expose cumulative modularity of cytoplasmic incompatibility factors and cytoplasmic hitchhiking across host populations. BMC Genomics 2021; 22:616. [PMID: 34388986 PMCID: PMC8361831 DOI: 10.1186/s12864-021-07906-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background The endosymbiont Wolbachia can manipulate arthropod reproduction and invade host populations by inducing cytoplasmic incompatibility (CI). Some host species are coinfected with multiple Wolbachia strains which may have sequentially invaded host populations by expressing different types of modular CI factor (cif) genes. The tephritid fruit fly Rhagoletis cerasi is a model for CI and Wolbachia population dynamics. It is associated with at least four Wolbachia strains in various combinations, with demonstrated (wCer2, wCer4), predicted (wCer1) or unknown (wCer5) CI phenotypes. Results We sequenced and assembled the draft genomes of the Wolbachia strains wCer1, wCer4 and wCer5, and compared these with the previously sequenced genome of wCer2 which currently invades R. cerasi populations. We found complete cif gene pairs in all strains: four pairs in wCer2 (three Type I; one Type V), two pairs in wCer1 (both Type I) and wCer4 (one Type I; one Type V), and one pair in wCer5 (Type IV). Wolbachia genome variant analyses across geographically and genetically distant host populations revealed the largest diversity of single nucleotide polymorphisms (SNPs) in wCer5, followed by wCer1 and then wCer2, indicative of their different lengths of host associations. Furthermore, mitogenome analyses of the Wolbachia genome-sequenced individuals in combination with SNP data from six European countries revealed polymorphic mitogenome sites that displayed reduced diversity in individuals infected with wCer2 compared to those without. Conclusions Coinfections with Wolbachia are common in arthropods and affect options for Wolbachia-based management strategies of pest and vector species already infected by Wolbachia. Our analyses of Wolbachia genomes of a host naturally coinfected by several strains unravelled signatures of the evolutionary dynamics in both Wolbachia and host mitochondrial genomes as a consequence of repeated invasions. Invasion of already infected populations by new Wolbachia strains requires new sets of functionally different cif genes and thereby may select for a cumulative modularity of cif gene diversity in invading strains. Furthermore, we demonstrated at the mitogenomic scale that repeated CI-driven Wolbachia invasions of hosts result in reduced mitochondrial diversity and hitchhiking effects. Already resident Wolbachia strains may experience similar cytoplasmic hitchhiking effects caused by the invading Wolbachia strain. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07906-6.
Collapse
Affiliation(s)
- Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
6
|
Wolfe TM, Bruzzese DJ, Klasson L, Corretto E, Lečić S, Stauffer C, Feder JL, Schuler H. Comparative genome sequencing reveals insights into the dynamics of Wolbachia in native and invasive cherry fruit flies. Mol Ecol 2021; 30:6259-6272. [PMID: 33882628 PMCID: PMC9290052 DOI: 10.1111/mec.15923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
Wolbachia is a maternally inherited obligate endosymbiont that can induce a wide spectrum of effects in its host, ranging from mutualism to reproductive parasitism. At the genomic level, recombination within and between strains, transposable elements, and horizontal transfer of strains between host species make Wolbachia an evolutionarily dynamic bacterial system. The invasive cherry fruit fly Rhagoletis cingulata arrived in Europe from North America ~40 years ago, where it now co‐occurs with the native cherry pest R. cerasi. This shared distribution has been proposed to have led to the horizontal transfer of different Wolbachia strains between the two species. To better understand transmission dynamics, we performed a comparative genome study of the strain wCin2 in its native United States and invasive European populations of R. cingulata with wCer2 in European R. cerasi. Previous multilocus sequence genotyping (MLST) of six genes implied that the source of wCer2 in R. cerasi was wCin2 from R. cingulata. However, we report genomic evidence discounting the recent horizontal transfer hypothesis for the origin of wCer2. Despite near identical sequences for the MLST markers, substantial sequence differences for other loci were found between wCer2 and wCin2, as well as structural rearrangements, and differences in prophage, repetitive element, gene content, and cytoplasmic incompatibility inducing genes. Our study highlights the need for whole‐genome sequencing rather than relying on MLST markers for resolving Wolbachia strains and assessing their evolutionary dynamics.
Collapse
Affiliation(s)
- Thomas M Wolfe
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel J Bruzzese
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erika Corretto
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Sonja Lečić
- Department of Evolutionary Biology, Ludwig-Maximilians University, Munich, Germany
| | - Christian Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| |
Collapse
|
7
|
Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, Beckmann JF, Krueger LM, Macaluso KR, Azad AF, Gillespie JJ. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 2020; 8:e10646. [PMID: 33362982 PMCID: PMC7750005 DOI: 10.7717/peerj.10646] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Wolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA, USA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and three adjacent genes are collectively similar to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of large modular toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though fleas in wild populations mostly harbor wCfeT alone. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.
Collapse
Affiliation(s)
| | - Victoria I Verhoeve
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | | | | | - Mariah Plumer
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Spiridon E Sevdalis
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - John F Beckmann
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Laura M Krueger
- Orange County Mosquito and Vector Control District, Garden Grove, CA, USA
| | - Kevin R Macaluso
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Abdu F Azad
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Joseph J Gillespie
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| |
Collapse
|
8
|
Bakovic V, Schebeck M, Stauffer C, Schuler H. Wolbachia-Mitochondrial DNA Associations in Transitional Populations of Rhagoletis cerasi. INSECTS 2020; 11:E675. [PMID: 33027888 PMCID: PMC7650823 DOI: 10.3390/insects11100675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022]
Abstract
The endosymbiont Wolbachia can manipulate arthropod host reproduction by inducing cytoplasmic incompatibility (CI), which results in embryonic mortality when infected males mate with uninfected females. A CI-driven invasion of Wolbachia can result in a selective sweep of associated mitochondrial haplotype. The co-inheritance of Wolbachia and host mitochondrial DNA can therefore provide significant information on the dynamics of an ongoing Wolbachia invasion. Therefore, transition zones (i.e., regions where a Wolbachia strain is currently spreading from infected to uninfected populations) represent an ideal area to investigate the relationship between Wolbachia and host mitochondrial haplotype. Here, we studied Wolbachia-mitochondrial haplotype associations in the European cherry fruit fly, Rhagoletis cerasi, in two transition zones in the Czech Republic and Hungary, where the CI-inducing strain wCer2 is currently spreading. The wCer2-infection status of 881 individuals was compared with the two known R. cerasi mitochondrial haplotypes, HT1 and HT2. In accordance with previous studies, wCer2-uninfected individuals were associated with HT1, and wCer2-infected individuals were mainly associated with HT2. We found misassociations only within the transition zones, where HT2 flies were wCer2-uninfected, suggesting the occurrence of imperfect maternal transmission. We did not find any HT1 flies that were wCer2-infected, suggesting that Wolbachia was not acquired horizontally. Our study provides new insights into the dynamics of the early phase of a Wolbachia invasion.
Collapse
Affiliation(s)
- Vid Bakovic
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Peter-Jordan-Strasse 82/I, A-1190 Vienna, Austria; (M.S.); (C.S.)
| | - Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Peter-Jordan-Strasse 82/I, A-1190 Vienna, Austria; (M.S.); (C.S.)
| | - Christian Stauffer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Peter-Jordan-Strasse 82/I, A-1190 Vienna, Austria; (M.S.); (C.S.)
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Universitätsplatz 5, I-39100 Bozen-Bolzano, Italy;
| |
Collapse
|
9
|
Chen H, Zhang M, Hochstrasser M. The Biochemistry of Cytoplasmic Incompatibility Caused by Endosymbiotic Bacteria. Genes (Basel) 2020; 11:genes11080852. [PMID: 32722516 PMCID: PMC7465683 DOI: 10.3390/genes11080852] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Many species of arthropods carry maternally inherited bacterial endosymbionts that can influence host sexual reproduction to benefit the bacterium. The most well-known of such reproductive parasites is Wolbachia pipientis. Wolbachia are obligate intracellular α-proteobacteria found in nearly half of all arthropod species. This success has been attributed in part to their ability to manipulate host reproduction to favor infected females. Cytoplasmic incompatibility (CI), a phenomenon wherein Wolbachia infection renders males sterile when they mate with uninfected females, but not infected females (the rescue mating), appears to be the most common. CI provides a reproductive advantage to infected females in the presence of a threshold level of infected males. The molecular mechanisms of CI and other reproductive manipulations, such as male killing, parthenogenesis, and feminization, have remained mysterious for many decades. It had been proposed by Werren more than two decades ago that CI is caused by a Wolbachia-mediated sperm modification and that rescue is achieved by a Wolbachia-encoded rescue factor in the infected egg. In the past few years, new research has highlighted a set of syntenic Wolbachia gene pairs encoding CI-inducing factors (Cifs) as the key players for the induction of CI and its rescue. Within each Cif pair, the protein encoded by the upstream gene is denoted A and the downstream gene B. To date, two types of Cifs have been characterized based on the enzymatic activity identified in the B protein of each protein pair; one type encodes a deubiquitylase (thus named CI-inducing deubiquitylase or cid), and a second type encodes a nuclease (named CI-inducing nuclease or cin). The CidA and CinA proteins bind tightly and specifically to their respective CidB and CinB partners. In transgenic Drosophila melanogaster, the expression of either the Cid or Cin protein pair in the male germline induces CI and the expression of the cognate A protein in females is sufficient for rescue. With the identity of the Wolbachia CI induction and rescue factors now known, research in the field has turned to directed studies on the molecular mechanisms of CI, which we review here.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
| | - Mengwen Zhang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, CT 06511, USA
- Correspondence:
| |
Collapse
|
10
|
Mateos M, Martinez Montoya H, Lanzavecchia SB, Conte C, Guillén K, Morán-Aceves BM, Toledo J, Liedo P, Asimakis ED, Doudoumis V, Kyritsis GA, Papadopoulos NT, Augustinos AA, Segura DF, Tsiamis G. Wolbachia pipientis Associated With Tephritid Fruit Fly Pests: From Basic Research to Applications. Front Microbiol 2020; 11:1080. [PMID: 32582067 PMCID: PMC7283806 DOI: 10.3389/fmicb.2020.01080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.
Collapse
Affiliation(s)
- Mariana Mateos
- Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States
| | - Humberto Martinez Montoya
- Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Silvia B Lanzavecchia
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Claudia Conte
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | | | | | - Jorge Toledo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Elias D Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Vangelis Doudoumis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Georgios A Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Antonios A Augustinos
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Diego F Segura
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| |
Collapse
|