1
|
Hashimi A, Tocheva EI. Cell envelope diversity and evolution across the bacterial tree of life. Nat Microbiol 2024; 9:2475-2487. [PMID: 39294462 DOI: 10.1038/s41564-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved.
Collapse
Affiliation(s)
- Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Odelgard A, Hägglund E, Guy L, Andersson SGE. Phylogeny and Expansion of Serine/Threonine Kinases in Phagocytotic Bacteria in the Phylum Planctomycetota. Genome Biol Evol 2024; 16:evae068. [PMID: 38547507 PMCID: PMC11032199 DOI: 10.1093/gbe/evae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/22/2024] Open
Abstract
The recently isolated bacterium "Candidatus Uabimicrobium amorphum" is the only known prokaryote that can engulf other bacterial cells. Its proteome contains a high fraction of proteins involved in signal transduction systems, which is a feature normally associated with multicellularity in eukaryotes. Here, we present a protein-based phylogeny which shows that "Ca. Uabimicrobium amorphum" represents an early diverging lineage that clusters with the Saltatorellus clade within the phylum Planctomycetota. A gene flux analysis indicated a gain of 126 protein families for signal transduction functions in "Ca. Uabimicrobium amorphum", of which 66 families contained eukaryotic-like Serine/Threonine kinases with Pkinase domains. In total, we predicted 525 functional Serine/Threonine kinases in "Ca. Uabimicrobium amorphum", which represent 8% of the proteome and is the highest fraction of Serine/Threonine kinases in a bacterial proteome. The majority of Serine/Threonine kinases in this species are membrane proteins and 30% contain long, tandem arrays of WD40 or TPR domains. The pKinase domain was predicted to be located in the cytoplasm, while the WD40 and TPR domains were predicted to be located in the periplasm. Such domain combinations were also identified in the Serine/Threonine kinases of other species in the Planctomycetota, although in much lower abundances. A phylogenetic analysis of the Serine/Threonine kinases in the Planctomycetota inferred from the Pkinase domain alone provided support for lineage-specific expansions of the Serine/Threonine kinases in "Ca. Uabimicrobium amorphum". The results imply that expansions of eukaryotic-like signal transduction systems are not restricted to multicellular organisms, but have occurred in parallel in prokaryotes with predatory lifestyles and phagocytotic-like behaviors.
Collapse
Affiliation(s)
- Anna Odelgard
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emil Hägglund
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala University, Uppsala, Sweden
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Turner J, Abbott S, Fonseca N, Pye R, Carrijo L, Duraisamy AK, Salih O, Wang Z, Kleywegt GJ, Morris KL, Patwardhan A, Burley SK, Crichlow G, Feng Z, Flatt JW, Ghosh S, Hudson BP, Lawson CL, Liang Y, Peisach E, Persikova I, Sekharan M, Shao C, Young J, Velankar S, Armstrong D, Bage M, Bueno WM, Evans G, Gaborova R, Ganguly S, Gupta D, Harrus D, Tanweer A, Bansal M, Rangannan V, Kurisu G, Cho H, Ikegawa Y, Kengaku Y, Kim JY, Niwa S, Sato J, Takuwa A, Yu J, Hoch JC, Baskaran K, Xu W, Zhang W, Ma X. EMDB-the Electron Microscopy Data Bank. Nucleic Acids Res 2024; 52:D456-D465. [PMID: 37994703 PMCID: PMC10767987 DOI: 10.1093/nar/gkad1019] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023] Open
Abstract
The Electron Microscopy Data Bank (EMDB) is the global public archive of three-dimensional electron microscopy (3DEM) maps of biological specimens derived from transmission electron microscopy experiments. As of 2021, EMDB is managed by the Worldwide Protein Data Bank consortium (wwPDB; wwpdb.org) as a wwPDB Core Archive, and the EMDB team is a core member of the consortium. Today, EMDB houses over 30 000 entries with maps containing macromolecules, complexes, viruses, organelles and cells. Herein, we provide an overview of the rapidly growing EMDB archive, including its current holdings, recent updates, and future plans.
Collapse
|
4
|
Rivas-Marin E, Moyano-Palazuelo D, Henriques V, Merino E, Devos DP. Essential gene complement of Planctopirus limnophila from the bacterial phylum Planctomycetes. Nat Commun 2023; 14:7224. [PMID: 37940686 PMCID: PMC10632474 DOI: 10.1038/s41467-023-43096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Planctopirus limnophila belongs to the bacterial phylum Planctomycetes, a relatively understudied lineage with remarkable cell biology features. Here, we report a genome-wide analysis of essential gene content in P. limnophila. We show that certain genes involved in peptidoglycan synthesis or cell division, which are essential in most other studied bacteria, are not essential for growth under laboratory conditions in this species. We identify essential genes likely involved in lipopolysaccharide biosynthesis, consistent with the view of Planctomycetes as diderm bacteria, and highlight other essential genes of unknown functions. Furthermore, we explore potential stages of evolution of the essential gene repertoire in Planctomycetes and the related phyla Verrucomicrobia and Chlamydiae. Our results provide insights into the divergent molecular and cellular biology of Planctomycetes.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain.
| | - David Moyano-Palazuelo
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain
| | - Valentina Henriques
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain.
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, University of Lille, Lille, France.
| |
Collapse
|
5
|
Mesdaghi S, Price RM, Madine J, Rigden DJ. Deep Learning-based structure modelling illuminates structure and function in uncharted regions of β-solenoid fold space. J Struct Biol 2023; 215:108010. [PMID: 37544372 DOI: 10.1016/j.jsb.2023.108010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Repeat proteins are common in all domains of life and exhibit a wide range of functions. One class of repeat protein contains solenoid folds where the repeating unit consists of β-strands separated by tight turns. β-solenoids have distinguishing structural features such as handedness, twist, oligomerisation state, coil shape and size which give rise to their diversity. Characterised β-solenoid repeat proteins are known to form regions in bacterial and viral virulence factors, antifreeze proteins and functional amyloids. For many of these proteins, the experimental structure has not been solved, as they are difficult to crystallise or model. Here we use various deep learning-based structure-modelling methods to discover novel predicted β-solenoids, perform structural database searches to mine further structural neighbours and relate their predicted structure to possible functions. We find both eukaryotic and prokaryotic adhesins, confirming a known functional linkage between adhesin function and the β-solenoid fold. We further identify exceptionally long, flat β-solenoid folds as possible structures of mucin tandem repeat regions and unprecedentedly small β-solenoid structures. Additionally, we characterise a novel β-solenoid coil shape, the FapC Greek key β-solenoid as well as plausible complexes between it and other proteins involved in Pseudomonas functional amyloid fibres.
Collapse
Affiliation(s)
- Shahram Mesdaghi
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom; Computational Biology Facility, MerseyBio, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Rebecca M Price
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jillian Madine
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Daniel J Rigden
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
6
|
Seeger C, Dyrhage K, Näslund K, Andersson SGE. Apilactobacillus kunkeei releases RNA-associated membrane vesicles and proteinaceous nanoparticles. MICROLIFE 2023; 4:uqad037. [PMID: 37705871 PMCID: PMC10496945 DOI: 10.1093/femsml/uqad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Extracellularly released particles, including membrane vesicles, have increasingly been recognized as important for bacterial community functions and host-interaction processes, but their compositions and functional roles differ between species and also between strains of the same species. In this study, we have determined the composition of membrane vesicles and protein particles identified in the cell-free pellets of two strains of Apilactobacillus kunkeei, a defensive symbiont of honeybees. The membrane vesicles were separated from the extracellular particles using density gradient ultracentrifugation. The peaks of the RNA and protein distributions were separated from each other and the highest concentration of RNA was observed in the fractions that contained the membrane vesicles while the highest protein concentration coincided with the fractions that contained extracellular particles. A comparative proteomics analysis by LC-MS/MS showed that 37 proteins with type-I signal peptides were consistently identified across the fractionated samples obtained from the cell-free pellets, of which 29 were orthologs detected in both strains. Functional predictions of the extracellular proteins revealed the presence of glycoside hydrolases, glycosyltransferases, giant proteins and peptidases. The extracellular transcriptomes mapped to a broad set of genes with a similar functional profile as the whole cell transcriptome. This study provides insights into the composition of membrane vesicles and extracellular proteins of a bee-associated symbiont.
Collapse
Affiliation(s)
- Christian Seeger
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Karl Dyrhage
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Kristina Näslund
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, 752 36 Uppsala, Sweden
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
7
|
Wettstadt S. Unravelling evolution one nucleotide at a time. MICROLIFE 2023; 4:uqad023. [PMID: 37223737 PMCID: PMC10132846 DOI: 10.1093/femsml/uqad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Sarah Wettstadt
- Corresponding author. Kopenhagener Str. 22, 13407 Berlin. E-mail:
| |
Collapse
|
8
|
Revealing bacterial cell biology using cryo-electron tomography. Curr Opin Struct Biol 2022; 75:102419. [PMID: 35820259 DOI: 10.1016/j.sbi.2022.102419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Visualizing macromolecules inside bacteria at a high spatial resolution has remained a challenge owing to their small size and limited resolution of optical microscopy techniques. Recent advances in cryo-electron tomography (cryo-ET) imaging methods have revealed the spatial and temporal assemblies of many macromolecules involved in different cellular processes in bacteria at a resolution of a few nanometers in their native milieu. Specifically, the application of cryo-focused ion beam (cryo-FIB) milling to thin bacterial specimens makes them amenable for high-resolution cryo-ET data collection. In this review, we highlight recent research in three emerging areas of bacterial cell biology that have benefited from the cryo-FIB-ET technology - cytoskeletal filament assembly, intracellular organelles, and multicellularity.
Collapse
|
9
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
10
|
Seeger C, Dyrhage K, Mahajan M, Odelgard A, Lind SB, Andersson SGE. The Subcellular Proteome of a Planctomycetes Bacterium Shows That Newly Evolved Proteins Have Distinct Fractionation Patterns. Front Microbiol 2021; 12:643045. [PMID: 34745019 PMCID: PMC8567305 DOI: 10.3389/fmicb.2021.643045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Planctomycetes bacteria have unique cell architectures with heavily invaginated membranes as confirmed by three-dimensional models reconstructed from FIB-SEM images of Tuwongella immobilis and Gemmata obscuriglobus. The subcellular proteome of T. immobilis was examined by differential solubilization followed by LC-MS/MS analysis, which identified 1569 proteins in total. The Tris-soluble fraction contained mostly cytoplasmic proteins, while inner and outer membrane proteins were found in the Triton X-100 and SDS-soluble fractions, respectively. For comparisons, the subcellular proteome of Escherichia coli was also examined using the same methodology. A notable difference in the overall fractionation pattern of the two species was a fivefold higher number of predicted cytoplasmic proteins in the SDS-soluble fraction in T. immobilis. One category of such proteins is represented by innovations in the Planctomycetes lineage, including unique sets of serine/threonine kinases and extracytoplasmic sigma factors with WD40 repeat domains for which no homologs are present in E. coli. Other such proteins are members of recently expanded protein families in which the newly evolved paralog with a new domain structure is recovered from the SDS-soluble fraction, while other paralogs may have similar domain structures and fractionation patterns as the single homolog in E. coli. The expanded protein families in T. immobilis include enzymes involved in replication-repair processes as well as in rRNA and tRNA modification and degradation. These results show that paralogization and domain shuffling have yielded new proteins with distinct fractionation characteristics. Understanding the molecular intricacies of these adaptive changes might aid in the development of a model for the evolution of cellular complexity.
Collapse
Affiliation(s)
- Christian Seeger
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Karl Dyrhage
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Mayank Mahajan
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anna Odelgard
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sara Bergström Lind
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Siv G E Andersson
- Science for Life Laboratory, Molecular Evolution, Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Ivanova AA, Kulichevskaya IS, Dedysh SN. Gemmata palustris sp. nov., a Novel Planctomycete from a Fen in Northwestern Russia. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|