1
|
Pompeo JN, Gatto KP, Baldo D, Lourenço LB. Evidence for the Transcription of a Satellite DNA Widely Found in Frogs. Genes (Basel) 2024; 15:1572. [PMID: 39766839 PMCID: PMC11675491 DOI: 10.3390/genes15121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The satellite DNA (satDNA) PcP190 has been identified in multiple frog species from seven phylogenetically distant families within Hyloidea, indicating its broad distribution. This satDNA consists of repeats of approximately 190 bp and exhibits a highly conserved region (CR) of 120 bp, which is similar to the transcribed region of 5S ribosomal DNA (rDNA), and a hypervariable region (HR) that varies in size and nucleotide composition among and within species. Here, to improve our understanding of PcP190 satDNA, we searched for evidence of its transcription in the available transcriptomes of Rhinella marina (Bufonidae) and Engystomops pustulosus (Leptodactylidae), two phylogenetically distantly related species. METHODS We first characterized the 5S rDNA and PcP190 sequences in these species by searching for them in available genome assemblies. Next, we used the PcP190 (CR and HR) and 5S rDNA sequences of each species as queries to search for these sequences in RNA-seq libraries. RESULTS We identified two types of 5S rDNA in each analyzed species, with a new type found in E. pustulosus. Our results also revealed a novel type of PcP190 sequence in R. marina and a new subtype of PcP-1 in E. pustulosus. Transcriptome analyses confirmed the expected transcription of the 5S rRNA gene and showed transcription of both the CR and HR of the PcP190 satDNA in both species and in different tissues. CONCLUSIONS As the entire repeat of this satDNA is susceptible to transcription, the high variability observed in the HR cannot be attributed to transcriptional activity confined to the CR.
Collapse
Affiliation(s)
- Jennifer Nunes Pompeo
- Laboratório de Estudos Cromossômicos, Instituto de Biologia, Universidade de Campinas, Campinas 13083-862, SP, Brazil;
| | - Kaleb Pretto Gatto
- Laboratório de Citogenética Evolutiva e Conservação Animal, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil;
| | - Diego Baldo
- Laboratorio de Genética Evolutiva “Claudio Juan Bidau”, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas N3300LQF, Misiones, Argentina;
| | - Luciana Bolsoni Lourenço
- Laboratório de Estudos Cromossômicos, Instituto de Biologia, Universidade de Campinas, Campinas 13083-862, SP, Brazil;
| |
Collapse
|
2
|
Toma GA, Sember A, Goes CAG, Kretschmer R, Porto-Foresti F, Bertollo LAC, Liehr T, Utsunomia R, de Bello Cioffi M. Satellite DNAs and the evolution of the multiple X 1X 2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes). Sci Rep 2024; 14:20402. [PMID: 39223262 PMCID: PMC11369246 DOI: 10.1038/s41598-024-70920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic
| | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | | | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, 07747, Jena, Germany.
| | | | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
3
|
Deon GA, Dos Santos RZ, Sassi FDMC, Moreira-Filho O, Vicari MR, Porto-Foresti F, Utsunomia R, Cioffi MDB. The role of satellite DNAs in the chromosomal rearrangements and the evolution of the rare XY1Y2 sex system in Harttia (Siluriformes: Loricariidae). J Hered 2024; 115:541-551. [PMID: 38757192 DOI: 10.1093/jhered/esae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024] Open
Abstract
The underlying processes behind the formation, evolution, and long-term maintenance of multiple sex chromosomes have been largely neglected. Among vertebrates, fishes represent the group with the highest diversity of multiple sex chromosome systems and, with six instances, the Neotropical fish genus Harttia stands out by presenting the most remarkable diversity. However, although the origin mechanism of their sex chromosome systems is well discussed, little is known about the importance of some repetitive DNA classes in the differentiation of multiple systems. In this work, by employing a combination of cytogenetic and genomic procedures, we evaluated the satellite DNA composition of H. carvalhoi with a focus on their role in the evolution, structure, and differentiation process of the rare XY1Y2 multiple-sex chromosome system. The genome of H. carvalhoi contains a total of 28 satellite DNA families, with the A + T content ranging between 38.1% and 68.1% and the predominant presence of long satellites. The in situ hybridization experiments detected 15 satellite DNAs with positive hybridization signals mainly on centromeric and pericentromeric regions of almost all chromosomes or clustered on a few pairs. Five of them presented clusters on X, Y1, and/or Y2 sex chromosomes which were therefore selected for comparative hybridization in the other three congeneric species. We found several conserved satellites accumulated on sex chromosomes and also in regions that were involved in chromosomal rearrangements. Our results provide a new contribution of satellitome studies in multiple sex chromosome systems in fishes and represent the first satellitome study for a Siluriformes species.
Collapse
Affiliation(s)
- Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Rodrigo Zeni Dos Santos
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, Brazil
| | | | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, Brazil
| | - Ricardo Utsunomia
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
4
|
Setti PG, Deon GA, Zeni Dos Santos R, Goes CAG, Garnero ADV, Gunski RJ, de Oliveira EHC, Porto-Foresti F, de Freitas TRO, Silva FAO, Liehr T, Utsunomia R, Kretschmer R, de Bello Cioffi M. Evolution of bird sex chromosomes: a cytogenomic approach in Palaeognathae species. BMC Ecol Evol 2024; 24:51. [PMID: 38654159 PMCID: PMC11036779 DOI: 10.1186/s12862-024-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.
Collapse
Affiliation(s)
- Príncia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | | - Analía Del Valle Garnero
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Ricardo José Gunski
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil
| | - Fábio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | | | - Fábio Augusto Oliveira Silva
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, 96.010-610, Pelotas, RS, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
5
|
Dos Santos GE, Crepaldi C, da Silva MJ, Parise-Maltempi PP. Revealing the Satellite DNA Content in Ancistrus sp. (Siluriformes: Loricariidae) by Genomic and Bioinformatic Analysis. Cytogenet Genome Res 2024; 164:52-59. [PMID: 38631304 DOI: 10.1159/000538926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION Eukaryotic genomes are composed of simple, repetitive sequences, including satellite DNAs (satDNA), which are noncoding sequences arranged in tandem arrays. These sequences play a crucial role in genomic functions and innovations, influencing processes such as the maintenance of nuclear material, the formation of heterochromatin and the differentiation of sex chromosomes. In this genomic era, advances in next-generation sequencing and bioinformatics tools have facilitated the exhaustive cataloging of repetitive elements in genomes, particularly in non-model species. This study focuses on the satDNA content of Ancistrus sp., a diverse species of fish from the Loricariidae family. The genus Ancistrus shows significant karyotypic evolution, with extensive variability from the ancestral diploid number. METHODS By means of bioinformatic approaches, 40 satDNA families in Ancistrus sp., constituting 5.19% of the genome were identified. Analysis of the abundance and divergence landscape revealed diverse profiles, indicating recent amplification and homogenization of these satDNA sequences. RESULTS The most abundant satellite, AnSat1-142, constitutes 2.1% of the genome, while the least abundant, AnSat40-52, represents 0.0034%. The length of the monomer repeat varies from 16 to 142 base pairs, with an average length of 61 bp. These results contribute to understanding the genomic dynamics and evolution of satDNAs in Ancistrus sp. CONCLUSION The study underscores the variability of satDNAs between fish species and provides valuable information on chromosome organization and the evolution of repetitive elements in non-model organisms.
Collapse
Affiliation(s)
- Gabriel Esbrisse Dos Santos
- General and Applied Biology Department, Bioscience Institute/São Paulo State University (UNESP), Rio Claro, Brazil
| | - Carolina Crepaldi
- General and Applied Biology Department, Bioscience Institute/São Paulo State University (UNESP), Rio Claro, Brazil
| | - Marcelo João da Silva
- General and Applied Biology Department, Bioscience Institute/São Paulo State University (UNESP), Rio Claro, Brazil
| | | |
Collapse
|
6
|
Sales-Oliveira VC, Dos Santos RZ, Goes CAG, Calegari RM, Garrido-Ramos MA, Altmanová M, Ezaz T, Liehr T, Porto-Foresti F, Utsunomia R, Cioffi MB. Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia). BMC Biol 2024; 22:47. [PMID: 38413947 PMCID: PMC10900743 DOI: 10.1186/s12915-024-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Crocodilians are one of the oldest extant vertebrate lineages, exhibiting a combination of evolutionary success and morphological resilience that has persisted throughout the history of life on Earth. This ability to endure over such a long geological time span is of great evolutionary importance. Here, we have utilized the combination of genomic and chromosomal data to identify and compare the full catalogs of satellite DNA families (satDNAs, i.e., the satellitomes) of 5 out of the 8 extant Alligatoridae species. As crocodilian genomes reveal ancestral patterns of evolution, by employing this multispecies data collection, we can investigate and assess how satDNA families evolve over time. RESULTS Alligators and caimans displayed a small number of satDNA families, ranging from 3 to 13 satDNAs in A. sinensis and C. latirostris, respectively. Together with little variation both within and between species it highlighted long-term conservation of satDNA elements throughout evolution. Furthermore, we traced the origin of the ancestral forms of all satDNAs belonging to the common ancestor of Caimaninae and Alligatorinae. Fluorescence in situ experiments showed distinct hybridization patterns for identical orthologous satDNAs, indicating their dynamic genomic placement. CONCLUSIONS Alligators and caimans possess one of the smallest satDNA libraries ever reported, comprising only four sets of satDNAs that are shared by all species. Besides, our findings indicated limited intraspecific variation in satellite DNA, suggesting that the majority of new satellite sequences likely evolved from pre-existing ones.
Collapse
Affiliation(s)
- Vanessa C Sales-Oliveira
- Departamento de Genética E Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czech Republic
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | | | | | - Marcelo B Cioffi
- Departamento de Genética E Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
7
|
Lukšíková K, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Krysanov EY, Jankásek M, Hiřman M, Reichard M, Ráb P, Sember A. Conserved satellite DNA motif and lack of interstitial telomeric sites in highly rearranged African Nothobranchius killifish karyotypes. JOURNAL OF FISH BIOLOGY 2023; 103:1501-1514. [PMID: 37661806 DOI: 10.1111/jfb.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Using African annual killifishes of the genus Nothobranchius from temporary savannah pools with rapid karyotype and sex chromosome evolution, we analysed the chromosomal distribution of telomeric (TTAGGG)n repeat and Nfu-SatC satellite DNA (satDNA; isolated from Nothobranchius furzeri) in 15 species across the Nothobranchius killifish phylogeny, and with Fundulosoma thierryi as an out-group. Our fluorescence in situ hybridization experiments revealed that all analysed taxa share the presence of Nfu-SatC repeat but with diverse organization and distribution on chromosomes. Nfu-SatC landscape was similar in conspecific populations of Nothobranchius guentheri and Nothobranchius melanospilus but slightly-to-moderately differed between populations of Nothobranchius pienaari, and between closely related Nothobranchius kuhntae and Nothobranchius orthonotus. Inter-individual variability in Nfu-SatC patterns was found in N. orthonotus and Nothobranchius krysanovi. We revealed mostly no sex-linked patterns of studied repetitive DNA distribution. Only in Nothobranchius brieni, possessing multiple sex chromosomes, Nfu-SatC repeat occupied a substantial portion of the neo-Y chromosome, similarly as formerly found in the XY sex chromosome system of turquoise killifish N. furzeri and its sister species Nothobranchius kadleci-representatives not closely related to N. brieni. All studied species further shared patterns of expected telomeric repeats at the ends of all chromosomes and no additional interstitial telomeric sites. In summary, we revealed (i) the presence of conserved satDNA class in Nothobranchius clades (a rare pattern among ray-finned fishes); (ii) independent trajectories of Nothobranchius sex chromosome differentiation, with recurrent and convergent accumulation of Nfu-SatC on the Y chromosome in some species; and (iii) genus-wide shared tendency to loss of telomeric repeats during interchromosomal rearrangements. Collectively, our findings advance our understanding of genome structure, mechanisms of karyotype reshuffling, and sex chromosome differentiation in Nothobranchius killifishes from the genus-wide perspective.
Collapse
Affiliation(s)
- Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Štundlová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Šárka Pelikánová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Sergey A Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Eugene Yu Krysanov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matyáš Hiřman
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Ráb
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|
8
|
Goes CAG, dos Santos RZ, Aguiar WRC, Alves DCV, Silva DMZDA, Foresti F, Oliveira C, Utsunomia R, Porto-Foresti F. Revealing the Satellite DNA History in Psalidodon and Astyanax Characid Fish by Comparative Satellitomics. Front Genet 2022; 13:884072. [PMID: 35801083 PMCID: PMC9253505 DOI: 10.3389/fgene.2022.884072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic genomes are usually enriched in repetitive DNA sequences, which can be classified as dispersed or tandemly repeated elements. Satellite DNAs are noncoding monomeric sequences organized in a head-to-tail fashion that are generally located on the subtelomeric and/or pericentromeric heterochromatin. In general, a single species incorporates a diverse group of satellite DNA families, which collection is called satellitome. Here, we characterized three new satellitomes from distinct characid fish (Psalidodon fasciatus, P. bockmanni, and Astyanax lacustris) using a combination of genomic, cytogenetic, and bioinformatic protocols. We also compared our data with the available satellitome of P. paranae. We described 57 satellite DNA (satDNA) families of P. fasciatus (80 variants), 50 of P. bockmanni (77 variants), and 33 of A. lacustris (54 variants). Our analyses demonstrated that several sequences were shared among the analyzed species, while some were restricted to two or three species. In total, we isolated 104 distinctive satDNA families present in the four species, of which 10 were shared among all four. Chromosome mapping revealed that the clustered satDNA was mainly located in the subtelomeric and pericentromeric areas. Although all Psalidodon species demonstrated the same pattern of clusterization of satDNA, the number of clusters per genome was variable, indicating a high dynamism of these sequences. In addition, our results expand the knowledge of the As51 satellite DNA family, revealing that P. bockmanni and P. paranae exhibited an abundant variant of 39 bp, while P. fasciatus showed a variant of 43 bp. The majority of satDNAs in the satellitomes analyzed here presented a common library repetitive sequence in Psalidodon and Astyanax, with abundance variations in each species, as expected for closely related groups. In addition, we concluded that the most abundant satDNA in Psalidodon (As51) passed through a diversification process in this group, resulting in new variants exclusive of Psalidodon.
Collapse
Affiliation(s)
- Caio Augusto Gomes Goes
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
| | - Rodrigo Zeni dos Santos
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
| | - Weidy Rozendo Clemente Aguiar
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
| | - Dálete Cássia Vieira Alves
- Instituto de Ciências Biológicas e da Saude, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Fausto Foresti
- Laboratório de Biologia e Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Botucatu, Brazil
| | - Claudio Oliveira
- Laboratório de Biologia e Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Instituto de Biociências, Botucatu, Brazil
| | - Ricardo Utsunomia
- Instituto de Ciências Biológicas e da Saude, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Fabio Porto-Foresti
- Laboratório de Genética de Peixes, Faculdade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Ciências Biológicas, Faculdade de Ciências, Bauru, Brazil
- *Correspondence: Fabio Porto-Foresti,
| |
Collapse
|
9
|
Haq IU, Muhammad M, Yuan H, Ali S, Abbasi A, Asad M, Ashraf HJ, Khurshid A, Zhang K, Zhang Q, Liu C. Satellitome Analysis and Transposable Elements Comparison in Geographically Distant Populations of Spodoptera frugiperda. Life (Basel) 2022; 12:521. [PMID: 35455012 PMCID: PMC9026859 DOI: 10.3390/life12040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Spodoptera frugiperda (fall armyworm) is a member of the superfamily Noctuoidea that accounts for more than a third of all Lepidoptera and includes a considerable number of agricultural and forest pest species. Spodoptera frugiperda is a polyphagous species that is a significant agricultural pest worldwide, emphasizing its economic importance. Spodoptera frugiperda's genome size, assembly, phylogenetic classification, and transcriptome analysis have all been previously described. However, the different studies reported different compositions of repeated DNA sequences that occupied the whole assembled genome, and the Spodoptera frugiperda genome also lacks the comprehensive study of dynamic satellite DNA. We conducted a comparative analysis of repetitive DNA across geographically distant populations of Spodoptera frugiperda, particularly satellite DNA, using publicly accessible raw genome data from eight different geographical regions. Our results showed that most transposable elements (TEs) were commonly shared across all geographically distant samples, except for the Maverick and PIF/Harbinger elements, which have divergent repeat copies. The TEs age analysis revealed that most TEs families consist of young copies 1-15 million years old; however, PIF/Harbinger has some older/degenerated copies of 30-35 million years old. A total of seven satellite DNA families were discovered, accounting for approximately 0.65% of the entire genome of the Spodoptera frugiperda fall armyworm. The repeat profiling analysis of satellite DNA families revealed differential read depth coverage or copy numbers. The satellite DNA families range in size from the lowest 108 bp SfrSat06-108 families to the largest (1824 bp) SfrSat07-1824 family. We did not observe a statistically significant correlation between monomer length and K2P divergence, copy number, or abundance of each satellite family. Our findings suggest that the satellite DNA families identified in Spodoptera frugiperda account for a considerable proportion of the genome's repetitive fraction. The satellite DNA families' repeat profiling revealed a point mutation along the reference sequences. Limited TEs differentiation exists among geographically distant populations of Spodoptera frugiperda.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Majid Muhammad
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Huang Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Shahbaz Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan;
| | - Asim Abbasi
- Department of Zoology, Bahawalpur Campus, University of Central Punjab, Bahawalpur 63100, Pakistan;
| | - Muhammad Asad
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hafiza Javaria Ashraf
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Aroosa Khurshid
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Kexin Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Qiangyan Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| |
Collapse
|
10
|
Camacho JPM, Cabrero J, López-León MD, Martín-Peciña M, Perfectti F, Garrido-Ramos MA, Ruiz-Ruano FJ. Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol 2022; 20:36. [PMID: 35130900 PMCID: PMC8822648 DOI: 10.1186/s12915-021-01216-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The full catalog of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full satellitomes. We compare here the satellitomes of two Oedipodine grasshoppers (Locusta migratoria and Oedaleus decorus) which shared their most recent common ancestor about 22.8 Ma ago. RESULTS We found that about one third of their satDNA families (near 60 in every species) showed sequence homology and were grouped into 12 orthologous superfamilies. The turnover rate of consensus sequences was extremely variable among the 20 orthologous family pairs analyzed in both species. The satDNAs shared by both species showed poor association with sequence signatures and motives frequently argued as functional, except for short inverted repeats allowing short dyad symmetries and non-B DNA conformations. Orthologous satDNAs frequently showed different FISH patterns at both intra- and interspecific levels. We defined indices of homogenization and degeneration and quantified the level of incomplete library sorting between species. CONCLUSIONS Our analyses revealed that satDNA degenerates through point mutation and homogenizes through partial turnovers caused by massive tandem duplications (the so-called satDNA amplification). Remarkably, satDNA amplification increases homogenization, at intragenomic level, and diversification between species, thus constituting the basis for concerted evolution. We suggest a model of satDNA evolution by means of recursive cycles of amplification and degeneration, leading to mostly contingent evolutionary pathways where concerted evolution emerges promptly after lineages split.
Collapse
Affiliation(s)
| | - Josefa Cabrero
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Francisco Perfectti
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain.,Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | | | - Francisco J Ruiz-Ruano
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden. .,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| |
Collapse
|
11
|
Kretschmer R, Goes CAG, Bertollo LAC, Ezaz T, Porto-Foresti F, Toma GA, Utsunomia R, de Bello Cioffi M. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma 2022; 131:29-45. [PMID: 35099570 DOI: 10.1007/s00412-022-00768-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.
Collapse
Affiliation(s)
- Rafael Kretschmer
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | | | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Ricardo Utsunomia
- Instituto de Ciências Biológicas e da Saúde, ICBS, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
| |
Collapse
|
12
|
Crepaldi C, Martí E, Gonçalves ÉM, Martí DA, Parise-Maltempi PP. Genomic Differences Between the Sexes in a Fish Species Seen Through Satellite DNAs. Front Genet 2021; 12:728670. [PMID: 34659353 PMCID: PMC8514694 DOI: 10.3389/fgene.2021.728670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/14/2022] Open
Abstract
Neotropical fishes have highly diversified karyotypic and genomic characteristics and present many diverse sex chromosome systems, with various degrees of sex chromosome differentiation. Knowledge on their sex-specific composition and evolution, however, is still limited. Satellite DNAs (satDNAs) are tandemly repeated sequences with pervasive genomic distribution and distinctive evolutionary pathways, and investigating satDNA content might shed light into how genome architecture is organized in fishes and in their sex chromosomes. The present study investigated the satellitome of Megaleporinus elongatus, a freshwater fish with a proposed Z1Z1Z2Z2/Z1W1Z2W2 multiple sex chromosome system that encompasses a highly heterochromatic and differentiated W1 chromosome. The species satellitome comprises of 140 different satDNA families, including previously isolated sequences and new families found in this study. This diversity is remarkable considering the relatively low proportion that satDNAs generally account for the M. elongatus genome (around only 5%). Differences between the sexes in regards of satDNA content were also evidenced, as these sequences are 14% more abundant in the female genome. The occurrence of sex-biased signatures of satDNA evolution in the species is tightly linked to satellite enrichment associated with W1 in females. Although both sexes share practically all satDNAs, the overall massive amplification of only a few of them accompanied the W1 differentiation. We also investigated the expansion and diversification of the two most abundant satDNAs of M. elongatus, MelSat01-36 and MelSat02-26, both highly amplified sequences in W1 and, in MelSat02-26’s case, also harbored by Z2 and W2 chromosomes. We compared their occurrences in M. elongatus and the sister species M. macrocephalus (with a standard ZW sex chromosome system) and concluded that both satDNAs have led to the formation of highly amplified arrays in both species; however, they formed species-specific organization on female-restricted sex chromosomes. Our results show how satDNA composition is highly diversified in M. elongatus, in which their accumulation is significantly contributing to W1 differentiation and not satDNA diversity per se. Also, the evolutionary behavior of these repeats may be associated with genome plasticity and satDNA variability between the sexes and between closely related species, influencing how seemingly homeologous heteromorphic sex chromosomes undergo independent satDNA evolution.
Collapse
Affiliation(s)
- Carolina Crepaldi
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Emiliano Martí
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Évelin Mariani Gonçalves
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Dardo Andrea Martí
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM), CONICET, Posadas, Argentina
| | | |
Collapse
|
13
|
Comparative Analysis of Transposable Elements in Genus Calliptamus Grasshoppers Revealed That Satellite DNA Contributes to Genome Size Variation. INSECTS 2021; 12:insects12090837. [PMID: 34564277 PMCID: PMC8466570 DOI: 10.3390/insects12090837] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Calliptamus is a genus of grasshoppers belonging to the family Acrididae. The genus Calliptamus includes approximately 17 recognized species. Calliptamus abbreviatus, Calliptamus italicus, and Calliptamus barbarus are three species that are widely found in northern China. These species are polyphagous, feeding on a variety of wild plants as well as crops, particularly legumes. The genome sizes, phylogenetic position, and transcriptome analysis of the genus Calliptamus were already known previous to this research. The repeatome analysis of these species was missing, which is directly linked to the larger genome sizes of the grasshoppers. Here, we classified repetitive DNA sequences at the level of superfamilies and sub-families, and found that LINE, TcMar-Tc1 and Ty3-gypsy LTR retrotransposons dominated the repeatomes of all genomes, accounting for 16–34% of the total genomes of these species. Satellite DNA dynamic evolutionary changes in all three genomes played a role in genome size evolution. This study would be a valuable source for future genome assemblies. Abstract Transposable elements (TEs) play a significant role in both eukaryotes and prokaryotes genome size evolution, structural changes, duplication, and functional variabilities. However, the large number of different repetitive DNA has hindered the process of assembling reference genomes, and the genus level TEs diversification of the grasshopper massive genomes is still under investigation. The genus Calliptamus diverged from Peripolus around 17 mya and its species divergence dated back about 8.5 mya, but their genome size shows rather large differences. Here, we used low-coverage Illumina unassembled short reads to investigate the effects of evolutionary dynamics of satDNAs and TEs on genome size variations. The Repeatexplorer2 analysis with 0.5X data resulted in 52%, 56%, and 55% as repetitive elements in the genomes of Calliptamus barbarus, Calliptamus italicus, and Calliptamus abbreviatus, respectively. The LINE and Ty3-gypsy LTR retrotransposons and TcMar-Tc1 dominated the repeatomes of all genomes, accounting for 16–35% of the total genomes of these species. Comparative analysis unveiled that most of the transposable elements (TEs) except satDNAs were highly conserved across three genomes in the genus Calliptamus grasshoppers. Out of a total of 20 satDNA families, 17 satDNA families were commonly shared with minor variations in abundance and divergence between three genomes, and 3 were Calliptamus barbarus specific. Our findings suggest that there is a significant amplification or contraction of satDNAs at genus phylogeny which is the main cause that made genome size different.
Collapse
|
14
|
The B Chromosomes of Prochilodus lineatus (Teleostei, Characiformes) Are Highly Enriched in Satellite DNAs. Cells 2021; 10:cells10061527. [PMID: 34204462 PMCID: PMC8235050 DOI: 10.3390/cells10061527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
B or supernumerary chromosomes are dispensable elements that are widely present in numerous eukaryotes. Due to their non-recombining nature, there is an evident tendency for repetitive DNA accumulation in these elements. Thus, satellite DNA plays an important role in the evolution and diversification of B chromosomes and can provide clues regarding their origin. The characiform Prochilodus lineatus was one of the first discovered fish species bearing B chromosomes, with all populations analyzed so far showing one to nine micro-B chromosomes and exhibiting at least three morphological variants (Ba, Bsm, and Bm). To date, a single satellite DNA is known to be located on the B chromosomes of this species, but no information regarding the differentiation of the proposed B-types is available. Here, we characterized the satellitome of P. lineatus and mapped 35 satellite DNAs against the chromosomes of P. lineatus, of which six were equally located on all B-types and this indicates a similar genomic content. In addition, we describe, for the first time, an entire population without B chromosomes.
Collapse
|
15
|
Montiel EE, Panzera F, Palomeque T, Lorite P, Pita S. Satellitome Analysis of Rhodnius prolixus, One of the Main Chagas Disease Vector Species. Int J Mol Sci 2021; 22:6052. [PMID: 34205189 PMCID: PMC8199985 DOI: 10.3390/ijms22116052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG)n and (GATA)n repeats, also present in the T. infestans genome. Only three of them exceed 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes. Moreover, clustering analysis revealed that most abundant satDNA families configured several superclusters, indicating that R. prolixus satellitome is complex and that the four most abundant satDNA families are composed by different subfamilies. Additionally, transcription of satDNA families was analyzed in different tissues, showing that 33 out of 39 satDNA families are transcribed in four different patterns of expression across samples.
Collapse
Affiliation(s)
- Eugenia E. Montiel
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Francisco Panzera
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Pedro Lorite
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Sebastián Pita
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| |
Collapse
|