1
|
Mao W, Xu Z, Liu Q, Li N, Liu L, Ren B, Gao T, Liu C. A Whole-Genome Survey and the Mitochondrial Genome of Acanthocepola indica Provide Insights into Its Phylogenetic Relationships in Priacanthiformes. Animals (Basel) 2024; 14:3257. [PMID: 39595310 PMCID: PMC11590942 DOI: 10.3390/ani14223257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Acanthocepola indica, a deep-sea snake fish, is primarily found in the Indo-west Pacific region, including India, Korea, Japan, and the South China Sea. The taxonomic classification of A. indica based on morphological characteristics remains inaccurate and unclear. In this study, we utilized next-generation sequencing to generate comprehensive genomic data for A. indica. The estimated genome size of A. indica was 422.95 Mb, with a heterozygosity ratio of 1.02% and a sequence repeat ratio of 22.43%. Our analysis suggested that A. indica is diploid, and the draft genome assembly consists of 1,059,784 contigs with a contig N50 of 1942 bp. We identified a total of 444,728 simple sequence repeats in the genome of A. indica. Furthermore, we successfully assembled the complete mitochondrial genome (16,439 bp) of A. indica, which included 13 protein-coding genes, 22 tRNA genes and 2 rRNA genes. Phylogenetic analysis based on mitochondrial genomes revealed that A. indica is closely related to Acanthocepola krusensternii and Cepola schlegelii, providing evidence that the family Cepolidae belongs to the order Priacanthiformes. Population size dynamics analysis indicated that A. indica experienced a bottleneck effect during the Pleistocene Glacial Epoch, likely due to the changes in glacial cycles and sea level fluctuations since ~800 Kya.
Collapse
Affiliation(s)
- Weihua Mao
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Ziyi Xu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Qi Liu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Na Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Lu Liu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Biyan Ren
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chuan Liu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
2
|
Rappaport HB, Oliverio AM. Lessons from Extremophiles: Functional Adaptations and Genomic Innovations across the Eukaryotic Tree of Life. Genome Biol Evol 2024; 16:evae160. [PMID: 39101574 PMCID: PMC11299111 DOI: 10.1093/gbe/evae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
From hydrothermal vents, to glaciers, to deserts, research in extreme environments has reshaped our understanding of how and where life can persist. Contained within the genomes of extremophilic organisms are the blueprints for a toolkit to tackle the multitude of challenges of survival in inhospitable environments. As new sequencing technologies have rapidly developed, so too has our understanding of the molecular and genomic mechanisms that have facilitated the success of extremophiles. Although eukaryotic extremophiles remain relatively understudied compared to bacteria and archaea, an increasing number of studies have begun to leverage 'omics tools to shed light on eukaryotic life in harsh conditions. In this perspective paper, we highlight a diverse breadth of research on extremophilic lineages across the eukaryotic tree of life, from microbes to macrobes, that are collectively reshaping our understanding of molecular innovations at life's extremes. These studies are not only advancing our understanding of evolution and biological processes but are also offering a valuable roadmap on how emerging technologies can be applied to identify cellular mechanisms of adaptation to cope with life in stressful conditions, including high and low temperatures, limited water availability, and heavy metal habitats. We shed light on patterns of molecular and organismal adaptation across the eukaryotic tree of life and discuss a few promising research directions, including investigations into the role of horizontal gene transfer in eukaryotic extremophiles and the importance of increasing phylogenetic diversity of model systems.
Collapse
Affiliation(s)
- H B Rappaport
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | | |
Collapse
|
3
|
Ghosh A, Tyagi K, Dubey AK, Sweet AD, Singha D, Goswami P, Kumar V. Purifying selection drove the adaptation of mitochondrial genes along with correlation of gene rearrangements and evolutionary rates in two subfamilies of Whitefly (Insecta: Hemiptera). Funct Integr Genomics 2024; 24:121. [PMID: 38976062 DOI: 10.1007/s10142-024-01400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Insect mitochondrial genomes (mitogenomes) are usually represented by a conserved gene order. Whiteflies exhibit gene rearrangement in their mitogenomes; however, understanding how nucleotide substitution rates shape gene rearrangement in whiteflies is unclear due to the limited number of mitogenomes. Additionally, the mechanisms by which selection pressure drives adaptations in mitochondrial genes in the two subfamilies of whiteflies are not yet known. Here, we analyzed 18 whitefly mitogenomes, including one newly generated mitogenome, to compare nucleotide substitution rates, selection pressure, and gene arrangements. The newly generated mitogenome is reported along with reannotation of Pealius mori and comparisons to other whitefly mitogenomes. Comparative studies on nucleotide composition of 18 whiteflies revealed the positive GC skewness, confirming the reversal of strand asymmetry. We found 11 rearranged gene orders within two subfamilies of whiteflies with 8-18 breakpoints of gene rearrangements. Members of the subfamily Aleyrodinae exhibit more complex pathways in the evolution of gene order as compared to the subfamily Aleurodicinae. Our findings also revealed that the increase or reduction of nucleotide substitution rates does not have an impact on any of the gene rearrangement scenarios depicting neutral correlation. Selection pressure analysis revealed that the mitogenomes from members of both the subfamilies Aleurodicinae and Aleyrodinae are characterized by intense purifying selection pressure.
Collapse
Affiliation(s)
- Abhishek Ghosh
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India.
| | - Anil Kumar Dubey
- Hemiptera Section, Zoological Survey of India, West Bengal, Kolkata, India
| | | | - Devkant Singha
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India
| | - Prathana Goswami
- Lepidoptera Section, Zoological Survey of India, Kolkata, West Bengal, India
- Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Jo E, Lee S, Kim J, Hettiarachchi SA, Kim S, Kim IC, Kang S, Kim JH. The complete mitochondrial genome of Trematomus hansoni Boulenger, 1902 (Perciformes, Nototheniidae). Mitochondrial DNA B Resour 2024; 9:701-706. [PMID: 38835641 PMCID: PMC11149566 DOI: 10.1080/23802359.2024.2358959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
The striped notothen Trematomus hansoni is an Antarctic fish species belonging to the family Nototheniidae (cod icefishes) that is distributed throughout the Southern Ocean. In this study, the complete mitochondrial genome of T. hansoni was sequenced using an Illumina MiSeq platform. The circular mitochondrial genome is 19,218 bp long and contains 13 protein-coding genes, 23 tRNA genes, two rRNA genes, and one control region. Notably, there are two trnG-UCC genes and the second gene, located between trnE-UUC and trnI-GAU, has no D-arm structure. The base composition is 56.18% of A + T and 43.82% of G + C. The phylogenetic analysis supports that T. hansoni is grouped into a single clade with T. bernacchii. This study will be a valuable resource for further research on the phylogeny and evolution of the genus Trematomus.
Collapse
Affiliation(s)
- Euna Jo
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Seungyeon Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Incheon, Korea
| | - Jihun Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Incheon, Korea
| | | | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Seunghyun Kang
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Jin-Hyoung Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Incheon, Korea
| |
Collapse
|
5
|
Ryder D, Stone D, Minardi D, Riley A, Avant J, Cross L, Soeffker M, Davidson D, Newman A, Thomson P, Darby C, van Aerle R. De novo assembly and annotation of the Patagonian toothfish (Dissostichus eleginoides) genome. BMC Genomics 2024; 25:233. [PMID: 38438840 PMCID: PMC10910785 DOI: 10.1186/s12864-024-10141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish. Despite its importance, genomic sequence data, which could be used for more accurate dating of the divergence between Patagonian and Antarctic toothfish, or establish whether it shares adaptations to temperature with fish living in more polar or equatorial climes, has so far been limited. RESULTS A high-quality D. eleginoides genome was generated using a combination of Illumina, PacBio and Omni-C sequencing technologies. To aid the genome annotation, the transcriptome derived from a variety of toothfish tissues was also generated using both short and long read sequencing methods. The final genome assembly was 797.8 Mb with a N50 scaffold length of 3.5 Mb. Approximately 31.7% of the genome consisted of repetitive elements. A total of 35,543 putative protein-coding regions were identified, of which 50% have been functionally annotated. Transcriptomics analysis showed that approximately 64% of the predicted genes (22,617 genes) were found to be expressed in the tissues sampled. Comparative genomics analysis revealed that the anti-freeze glycoprotein (AFGP) locus of D. eleginoides does not contain any AFGP proteins compared to the same locus in the Antarctic toothfish (Dissostichus mawsoni). This is in agreement with previously published results looking at hybridization signals and confirms that Patagonian toothfish do not possess AFGP coding sequences in their genome. CONCLUSIONS We have assembled and annotated the Patagonian toothfish genome, which will provide a valuable genetic resource for ecological and evolutionary studies on this and other closely related species.
Collapse
Affiliation(s)
- David Ryder
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK.
| | - David Stone
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Diana Minardi
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Ainsley Riley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Justin Avant
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Lisa Cross
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Marta Soeffker
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
- Collaborative Centre for Sustainable Use of the Seas, University of East Anglia, Norwich, UK
| | | | | | | | - Chris Darby
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
- Centre for Sustainable Aquaculture Futures , University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Liu Q, Cai YD, Ma L, Liu H, Linghu T, Guo S, Wei S, Song F, Tian L, Cai W, Li H. Relaxed purifying selection pressure drives accelerated and dynamic gene rearrangements in thrips (Insecta: Thysanoptera) mitochondrial genomes. Int J Biol Macromol 2023; 253:126742. [PMID: 37689283 DOI: 10.1016/j.ijbiomac.2023.126742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/11/2023]
Abstract
Insect mitochondrial genomes (mitogenome) generally present a typical gene order, which is considered as the ancestral arrangement. All sequenced mitogenomes in the Thysanoptera display high levels of gene rearrangement. Due to limited number of thrips mitogenomes sequenced, how gene rearrangement may be shaped by evolution remain unclear. Here, we analyzed 33 thrips mitogenomes, including 14 newly sequenced. These mitogenomes were diverse in organization, nucleotides substitution and gene arrangements. We found 28 highly rearranged gene orders with the breakpoints of gene rearrangements from 25 to 33. Reconstruction of the ancestors mitochondrial gene arrangements states indicated that Tubulifera have more complex pathways than Terebrantia in the gene order evolution. Molecular calibration estimated that divergence of two suborders occurred in the middle Triassic while the radiation of thrips was associated with the arose and flourish of angiosperm. Our evolutionary hypothesis testing suggests that relaxation of selection pressure enabled the early phase of Thysanoptera evolution, followed by a stronger selective pressure fixed diversification. Our analyses found gene inversion increases the nonsynonymous substitution rates and provide an evolutionary hypothesis driving the diverse gene orders.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hangrui Liu
- Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Tianye Linghu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shaokun Guo
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of Ministry of Agriculture and Rural Affairs, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Gomes-dos-Santos A, Vilas-Arrondo N, Machado AM, Román-Marcote E, Del Río Iglesias JL, Baldó F, Pérez M, Fonseca MM, Castro LFC, Froufe E. Mitochondrial replication's role in vertebrate mtDNA strand asymmetry. Open Biol 2023; 13:230181. [PMID: 38113934 PMCID: PMC10730292 DOI: 10.1098/rsob.230181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Mitogenomes are defined as compact and structurally stable over aeons. This perception results from a vertebrate-centric vision, where few types of mtDNA rearrangements are described. Here, we bring a new light to the involvement of mitochondrial replication in the strand asymmetry of the vertebrate mtDNA. Using several species of deep-sea hatchetfish (Sternoptychidae) displaying distinct mtDNA structural arrangements, we unravel the inversion of the coding direction of protein-coding genes (PCGs). This unexpected change is coupled with a strand asymmetry nucleotide composition reversal and is shown to be directly related to the strand location of the Control Region (CR). An analysis of the fourfold redundant sites of the PCGs (greater than 6000 vertebrates), revealed the rarity of this phenomenon, found in nine fish species (five deep-sea hatchetfish). Curiously, in Antarctic notothenioid fishes (Trematominae), where a single PCG inversion (the only other record in fish) is coupled with the inversion of the CR, the standard asymmetry is disrupted for the remaining PCGs but not yet reversed, suggesting a transitory state. Our results hint that a relaxation of the classic vertebrate mitochondrial structural stasis promotes disruption of the natural balance of asymmetry of the mtDNA. These findings support the long-lasting hypothesis that replication is the main molecular mechanism promoting the strand-specific compositional bias of this unique and indispensable molecule.
Collapse
Affiliation(s)
- André Gomes-dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Nair Vilas-Arrondo
- Programa de Doctorado ‘Ciencias marinas, Tecnología y Gestión’ (Do*MAR), Universidad de Vigo, Vigo, Spain
- Centro Oceanográfico de Vigo (COV), Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, 50, Vigo (Pontevedra), 36390, Spain
| | - André M. Machado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Esther Román-Marcote
- Centro Oceanográfico de Vigo (COV), Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, 50, Vigo (Pontevedra), 36390, Spain
| | - Jose Luís Del Río Iglesias
- Centro Oceanográfico de Vigo (COV), Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, 50, Vigo (Pontevedra), 36390, Spain
| | - Francisco Baldó
- Centro Oceanográfico de Cádiz (COCAD), Instituto Español de Oceanografía (IEO-CSIC), Puerto Pesquero, Muelle de Levante s/n, Cádiz, 11006, Spain
| | - Montse Pérez
- Centro Oceanográfico de Vigo (COV), Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, 50, Vigo (Pontevedra), 36390, Spain
| | - Miguel M. Fonseca
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - L. Filipe C. Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| |
Collapse
|
8
|
Nguyen PT, Lee S, Jeong J, Kim J, Han DW, Kim IC, Lee JH, Park J, Kim JH. Complete mitochondrial genome of Trematomus newnesi (Perciformes, Nototheniidae). Mitochondrial DNA B Resour 2023; 8:1196-1199. [PMID: 38196755 PMCID: PMC10776061 DOI: 10.1080/23802359.2023.2194456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/19/2023] [Indexed: 01/11/2024] Open
Abstract
The complete mitochondrial genome of Trematomus newnesi was sequenced using an Illumina platform. The 18,602 bp mitogenome contains 13 protein-coding genes, two rRNAs, and 23 tRNAs (tRNAMet is duplicated). The eight stop codons are TAA, TAG, CTT, GTA, AAT, ACT, AGG, and TTA. Two start codons ATG and GTG are present. The GC content is 44.4% and AT content is 55.6%. A phylogenetic tree was generated using 13 species from three families. The results showed that T. newnesi is closely related to Pagothenia borchgrevinki in Nototheniidae. This study provides fundamental data for further genetic evolutionary studies on T. newnesi.
Collapse
Affiliation(s)
- Phuong Thi Nguyen
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Daejeon, Korea
| | - Seungyeon Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Daejeon, Korea
| | - Jihye Jeong
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Jihun Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Daejeon, Korea
| | - Dong-Won Han
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Jun Hyuck Lee
- Polar Science, University of Science and Technology, Daejeon, Korea
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Inchon, Korea
| | - Jisoo Park
- Polar Science, University of Science and Technology, Daejeon, Korea
- Division of Ocean Sciences, Korea Polar Research Institute, Inchon, Korea
| | - Jin-Hyoung Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
9
|
Mthethwa S, Bester‐van der Merwe AE, Roodt‐Wilding R. Addressing the complex phylogenetic relationship of the Gempylidae fishes using mitogenome data. Ecol Evol 2023; 13:e10217. [PMID: 37351481 PMCID: PMC10283032 DOI: 10.1002/ece3.10217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
The Gempylidae (snake mackerels) family, belonging to the order Perciformes, consists of about 24 species described in 16 genera primarily distributed in tropical, subtropical, and temperate seas worldwide. Despite substantial research on this family utilizing morphological and molecular approaches, taxonomy categorization in this group has remained puzzling for decades prompting the need for further investigation into the underlying evolutionary history among the gempylids using molecular tools. In this study, we assembled eight complete novel mitochondrial genomes for five Gempylidae species (Neoepinnula minetomai, Neoepinnula orientalis, Rexea antefurcata, Rexea prometheoides, and Thyrsites atun) using Ion Torrent sequencing to supplement publicly available mitogenome data for gempylids. Using Bayesian inference and maximum-likelihood tree search methods, we investigated the evolutionary relationships of 17 Gempylidae species using mitogenome data. In addition, we estimated divergence times for extant gempylids. We identified two major clades that formed approximately 48.05 (35.89-52.04) million years ago: Gempylidae 1 (Thyrsites atun, Promethichthys prometheus, Nealotus tripes, Diplospinus multistriatus, Paradiplospinus antarcticus, Rexea antefurcata, Rexea nakamurai, Rexea prometheoides, Rexea solandri, Thyrsitoides marleyi, Gempylus serpens, and Nesiarchus nasutus) and Gempylidae 2 (Lepidocybium flavobrunneum, Ruvettus pretiosus, Neoepinnula minetomai, Neoepinnula orientalis, and Epinnula magistralis). The present study demonstrated the superior performance of complete mitogenome data compared with individual genes in phylogenetic reconstruction. By including T. atun individuals from different regions, we demonstrated the potential for the application of mitogenomes in species phylogeography.
Collapse
Affiliation(s)
- Siphesihle Mthethwa
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | | | - Rouvay Roodt‐Wilding
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
10
|
Minhas BF, Beck EA, Cheng CHC, Catchen J. Novel mitochondrial genome rearrangements including duplications and extensive heteroplasmy could underlie temperature adaptations in Antarctic notothenioid fishes. Sci Rep 2023; 13:6939. [PMID: 37117267 PMCID: PMC10147917 DOI: 10.1038/s41598-023-34237-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Mitochondrial genomes are known for their compact size and conserved gene order, however, recent studies employing long-read sequencing technologies have revealed the presence of atypical mitogenomes in some species. In this study, we assembled and annotated the mitogenomes of five Antarctic notothenioids, including four icefishes (Champsocephalus gunnari, C. esox, Chaenocephalus aceratus, and Pseudochaenichthys georgianus) and the cold-specialized Trematomus borchgrevinki. Antarctic notothenioids are known to harbor some rearrangements in their mt genomes, however the extensive duplications in icefishes observed in our study have never been reported before. In the icefishes, we observed duplications of the protein coding gene ND6, two transfer RNAs, and the control region with different copy number variants present within the same individuals and with some ND6 duplications appearing to follow the canonical Duplication-Degeneration-Complementation (DDC) model in C. esox and C. gunnari. In addition, using long-read sequencing and k-mer analysis, we were able to detect extensive heteroplasmy in C. aceratus and C. esox. We also observed a large inversion in the mitogenome of T. borchgrevinki, along with the presence of tandem repeats in its control region. This study is the first in using long-read sequencing to assemble and identify structural variants and heteroplasmy in notothenioid mitogenomes and signifies the importance of long-reads in resolving complex mitochondrial architectures. Identification of such wide-ranging structural variants in the mitogenomes of these fishes could provide insight into the genetic basis of the atypical icefish mitochondrial physiology and more generally may provide insights about their potential role in cold adaptation.
Collapse
Affiliation(s)
- Bushra Fazal Minhas
- Informatics Programs, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Emily A Beck
- Data Science Initiative, University of Oregon, Eugene, USA
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Julian Catchen
- Informatics Programs, University of Illinois at Urbana-Champaign, Urbana, USA.
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, USA.
| |
Collapse
|
11
|
Bilyk KT, Zhuang X, Papetti C. Positive and Relaxed Selective Pressures Have Both Strongly Influenced the Evolution of Cryonotothenioid Fishes during Their Radiation in the Freezing Southern Ocean. Genome Biol Evol 2023; 15:evad049. [PMID: 36951069 PMCID: PMC10078794 DOI: 10.1093/gbe/evad049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Evolution in the chronic cold of the Southern Ocean has had a profound influence on the physiology of cryonotothenioid fishes. However, the suite of genetic changes underlying the physiological gains and losses in these fishes is still poorly surveyed. By identifying the genomic signatures of selection, this study aims to identify the functional classes of genes that have been changed following two major physiological transitions: the onset of freezing temperatures and the loss of hemoproteins. Looking at the changes that followed the onset of freezing temperatures, positive selective pressure was found among a set of broadly acting gene regulatory factors, suggesting a route through which cryonotothenioid gene expression has been retooled for life in the cold. Further, genes related to the cell cycle and cellular adhesion were found under positive selection suggesting that both present key challenges to life in freezing waters. By contrast, genes showing signatures of the relaxation of selective pressure showed a narrower biological impact, acting on genes related to mitochondrial function. Finally, although chronic cold-water temperatures appear correlated with substantial genetic change, the loss of hemoproteins resulted in little observable change in protein-coding genes relative to their red-blooded relatives. Combined, the influence of positive and relaxed selection shows that long-term exposure to cold has led to profound changes in cryonotothenioid genomes that may make it challenging for them to adapt to a rapidly changing climate.
Collapse
Affiliation(s)
- Kevin T Bilyk
- Department of Biology, Montclair State University, New Jersey
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville
| | | |
Collapse
|
12
|
Schiavon L, Negrisolo E, Battistotti A, Lucassen M, Damerau M, Harms L, Riginella E, Matschiner M, Zane L, La Mesa M, Papetti C. Species identification and population genetics of the Antarctic fish genera
Lepidonotothen
and
Nototheniops
(Perciformes, Notothenioidei). ZOOL SCR 2023. [DOI: 10.1111/zsc.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Luca Schiavon
- Department of Biology University of Padova Padova Italy
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science University of Padova Legnaro Italy
- CRIBI Interdepartmental Research Centre for Innovative Biotechnologies University of Padova Padova Italy
| | | | - Magnus Lucassen
- Data Science Support Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
| | - Malte Damerau
- Institute of Fisheries Ecology, Johann Heinrich von Thuenen Institute Federal Research Institute for Rural Areas, Forestry and Fisheries Hamburg Germany
| | - Lars Harms
- Data Science Support Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
| | - Emilio Riginella
- Department of Integrative Marine Ecology Zoological Station Anton Dohrn Naples Italy
| | | | - Lorenzo Zane
- Department of Biology University of Padova Padova Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa) Rome Italy
| | - Mario La Mesa
- CNR, Institute of Polar Sciences (ISP), c/o Area di Ricerca di Bologna Bologna Italy
| | - Chiara Papetti
- Department of Biology University of Padova Padova Italy
- Department of Integrative Marine Ecology Zoological Station Anton Dohrn Naples Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa) Rome Italy
| |
Collapse
|
13
|
The mitochondrial genome of the red icefish (Channichthys rugosus) casts doubt on its species status. Polar Biol 2022; 45:1541-1552. [DOI: 10.1007/s00300-022-03083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
AbstractAntarctic notothenioid fishes are recognised as one of the rare examples of adaptive radiation in the marine system. Withstanding the freezing temperatures of Antarctic waters, these fishes have diversified into over 100 species within no more than 10–20 million years. However, the exact species richness of the radiation remains contested. In the genus Channichthys, between one and nine species are recognised by different authors. To resolve the number of Channichthys species, genetic information would be highly valuable; however, so far, only sequences of a single species, C. rhinoceratus, are available. Here, we present the nearly complete sequence of the mitochondrial genome of C. rugosus, obtained from a formalin-fixed museum specimen sampled in 1974. This sequence differs from the mitochondrial genome of C. rhinoceratus in no more than 27 positions, suggesting that the two species may be synonymous.
Collapse
|
14
|
Patel S, Evans CW, Stuckey A, Matzke NJ, Millar CD. A Unique Mitochondrial Gene Block Inversion in Antarctic Trematomin Fishes: A Cautionary Tale. J Hered 2022; 113:414-420. [PMID: 35657776 PMCID: PMC9308043 DOI: 10.1093/jhered/esac028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Many Antarctic notothenioid fishes have major rearrangements in their mitochondrial (mt) genomes. Here, we report the complete mt genomes of 3 trematomin notothenioids: the bald notothen (Trematomus (Pagothenia) borchgrevinki), the spotted notothen (T. nicolai), and the emerald notothen (T. bernacchii). The 3 mt genomes were sequenced using next-generation Illumina technology, and the assemblies verified by Sanger sequencing. When compared with the canonical mt gene order of the Antarctic silverfish (Pleuragramma antarctica), we found a large gene inversion in the 3 trematomin mt genomes that included tRNAIle, ND1, tRNALeu2, 16S, tRNAVal, 12S, tRNAPhe, and the control region. The trematomin mt genomes contained 3 intergenic spacers, which are thought to be the remnants of previous gene and control region duplications. All control regions included the characteristic conserved regulatory sequence motifs. Although short-read next-generation DNA sequencing technology has allowed the rapid and cost-effective sequencing of a large number of complete mt genomes, it is essential in all cases to verify the assembly in order to prevent the publication and use of erroneous data.
Collapse
Affiliation(s)
- Selina Patel
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Clive W Evans
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Alex Stuckey
- Genomics England, Queen Mary University of London, Dawson Hall, London EC1M 6BQ, United Kingdom
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Craig D Millar
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
15
|
Liu D, Basso A, Babbucci M, Patarnello T, Negrisolo E. Macrostructural Evolution of the Mitogenome of Butterflies (Lepidoptera, Papilionoidea). INSECTS 2022; 13:insects13040358. [PMID: 35447800 PMCID: PMC9031222 DOI: 10.3390/insects13040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Papilionoidea is a superfamily of Lepidoptera encompassing about 19,000 species. In the present work, we study the evolution of the structure of the mitogenome of these lepidopterans. The mechanisms generating the eight arrangements known for Papilionoidea were investigated analysing the movements of different mitochondrial genes. Five newly sequenced/assembled mitogenomes were included in our analysis involving more than 600 genomes. We provide new findings that help to understand the evolution of the gene orders MIQGO, IMQGO, 2S1GO, ES1GO and S1NGO in different butterflies. We demonstrate that the evolution of the 2S1GO in Lycaenidae followed a complicated pathway with multiple events of duplication and loss of trnS1 and changes in anticodon. We describe two new gene orders 2FFGO and 4QGO for Ampittia subvittatus (Hesperiidae) and Bhutanitis thaidina (Papilionidae). Abstract The mitogenome of the species belonging to the Papilionodea (Lepidoptera) is a double stranded circular molecule containing the 37 genes shared by Metazoa. Eight mitochondrial gene orders are known in the Papilionoidea. MIQGO is the plesiomorphic gene order for this superfamily, while other mitochondrial arrangements have a very limited distribution. 2S1GO gene order is an exception and is present in several Lycaenidae and one species of Hesperiidae. We studied the macrostructural changes generating the gene orders of butterflies by analysing a large data set (611 taxa) containing 5 new mitochondrial sequences/assemblies and 87 de novo annotated mitogenomes. Our analysis supports a possible origin of the intergenic spacer trnQ-nad2, characterising MIQGO, from trnM. We showed that the homoplasious gene order IMQGO, shared by butterflies, species of ants, beetles and aphids, evolved through different transformational pathways. We identify a complicated evolutionary scenario for 2S1GO in Lycaenidae, characterised by multiple events of duplication/loss and change in anticodon of trnS1. We show that the gene orders ES1GO and S1NGO originated through a tandem duplication random loss mechanism. We describe two novel gene orders. Ampittia subvittatus (Hesperiidae) exhibits the gene order 2FFGO, characterised by two copies of trnF, one located in the canonical position and a second placed in the opposite strand between trnR and trnN. Bhutanitis thaidina (Papilionidae) exhibits the gene order 4QGO, characterised by the quadruplication of trnQ.
Collapse
Affiliation(s)
- Di Liu
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Andrea Basso
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
| | - Enrico Negrisolo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (D.L.); (M.B.); (T.P.)
- Correspondence:
| |
Collapse
|
16
|
Sousa C, Fernandes SA, Cardoso JCR, Wang Y, Zhai W, Guerreiro PM, Chen L, Canário AVM, Power DM. Toll-Like Receptor Evolution: Does Temperature Matter? Front Immunol 2022; 13:812890. [PMID: 35237266 PMCID: PMC8882821 DOI: 10.3389/fimmu.2022.812890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) recognize conserved pathogen-associated molecular patterns (PAMPs) and are an ancient and well-conserved group of pattern recognition receptors (PRRs). The isolation of the Antarctic continent and its unique teleost fish and microbiota prompted the present investigation into Tlr evolution. Gene homologues of tlr members in teleosts from temperate regions were present in the genome of Antarctic Nototheniidae and the non-Antarctic sister lineage Bovichtidae. Overall, in Nototheniidae apart from D. mawsoni, no major tlr gene family expansion or contraction occurred. Instead, lineage and species-specific changes in the ectodomain and LRR of Tlrs occurred, particularly in the Tlr11 superfamily that is well represented in fish. Positive selective pressure and associated sequence modifications in the TLR ectodomain and within the leucine-rich repeats (LRR), important for pathogen recognition, occurred in Tlr5, Tlr8, Tlr13, Tlr21, Tlr22, and Tlr23 presumably associated with the unique Antarctic microbiota. Exposure to lipopolysaccharide (Escherichia coli O111:B4) Gram negative bacteria did not modify tlr gene expression in N. rossii head–kidney or anterior intestine, although increased water temperature (+4°C) had a significant effect.
Collapse
Affiliation(s)
- Cármen Sousa
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
| | | | - João C. R. Cardoso
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
| | - Wanying Zhai
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
| | - Pedro M. Guerreiro
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
| | - Adelino V. M. Canário
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
| | - Deborah M. Power
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University (SHOU), Shanghai, China
- *Correspondence: Deborah M. Power,
| |
Collapse
|