1
|
Doležálková-Kaštánková M, Dedukh D, Labajová V, Pustovalova E, Choleva L. Inheritance patterns of male asexuality in hybrid males of a water frog Pelophylax esculentus. Sci Rep 2024; 14:22221. [PMID: 39333615 DOI: 10.1038/s41598-024-73043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Gametogenesis produces gametes as a piece of genetic information transmitted to the offspring. While during sexual reproduction, progeny inherits a mix of genetic material from both parents, asexually reproducing organisms transfer a copy of maternal or paternal DNA to the progeny clonally. Parthenogenetic, gynogenetic and hybridogenetic animals have developed various mechanisms of gametogenesis, however, their inheritance is not fully understood. Here, we focused on the inheritance of asexual gametogenesis in hybrid Pelophylax esculentus (RL), emerging after crosses of P. lessonae (LL) and P. ridibundus (RR). To understand the mechanisms of gametogenesis in hybrids, we performed three-generation experiments of sexual P. ridibundus females and hybrids from all-male hybrid populations. Using fluorescent in situ hybridization, micronuclei analysis, flow cytometry and genotyping, we found that most adult hybrid males simultaneously produced two types of clonal sperm. Also, most male tadpole progeny in two successive backcrossed generations simultaneously eliminated L and R parental genomes, while some progeny produced only one type of sperm. We hypothesize that the reproductive variability of males producing two kinds of sperm is an adaptive mechanism to reproduce in mixed populations with P. ridibundus and may explain the extensive distribution of the all-male lineage across the European River Basin.
Collapse
Affiliation(s)
- Marie Doležálková-Kaštánková
- Institute of Animal Physiology and Genetics, Laboratory of NonMendelian Evolution, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic.
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of NonMendelian Evolution, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic.
| | - Veronika Labajová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic
| | - Eleonora Pustovalova
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic
- Laboratory of Amphibian Population Ecology, Department of Zoology and Animal Ecology, School of Biology, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Lukáš Choleva
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Liběchov, 277 21, Czech Republic
| |
Collapse
|
2
|
Dedukh D, Lisachov A, Panthum T, Singchat W, Matsuda Y, Imai Y, Janko K, Srikulnath K. Meiotic deviations and endoreplication lead to diploid oocytes in female hybrids between bighead catfish ( Clarias macrocephalus) and North African catfish ( Clarias gariepinus). Front Cell Dev Biol 2024; 12:1465335. [PMID: 39247622 PMCID: PMC11377317 DOI: 10.3389/fcell.2024.1465335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Reproductive isolation and hybrid sterility are mechanisms that maintain the genetic integrity of species and prevent the introgression of heterospecific genes. However, crosses of closely related species can lead to complex evolution, such as the formation of all-female lineages that reproduce clonally. Bighead catfish (Clarias macrocephalus) and North African catfish (C. gariepinus) diverged 40 million years ago. They are cultivated and hybridized in Thailand for human consumption. Male hybrids are sterile due to genome-wide chromosome asynapsis during meiosis. Although female hybrids are sometimes fertile, their chromosome configuration during meiosis has not yet been studied. Methods We analyzed meiosis in the hybrid female catfish at pachytene (synaptonemal complexes) and diplotene (lampbrush chromosomes), using immunostaining to detect chromosome pairing and double-stranded break formation, and FISH with species-specific satellite DNAs to distinguish the parental chromosomes. Results More than 95% of oocytes exhibited chromosome asynapsis in female hybrid catfish; however, they were able to progress to the diplotene stage and form mature eggs. The remaining oocytes underwent premeiotic endoreplication, followed by synapsis and crossing over between sister chromosomes, similar to known clonal lineages in fish and reptiles. Discussion The occurrence of clonal reproduction in female hybrid catfish suggests a unique model for studying gametogenic alterations caused by hybridization and their potential for asexual reproduction. Our results further support the view that clonal reproduction in certain hybrid animals relies on intrinsic mechanisms of sexually reproducing parental species, given their multiple independent origins with the same mechanism.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Yoichi Matsuda
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Ostrava, Czechia
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok, Thailand
| |
Collapse
|
3
|
Dedukh D, Marta A, Myung RY, Ko MH, Choi DS, Won YJ, Janko K. A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level. Commun Biol 2024; 7:424. [PMID: 38589507 PMCID: PMC11001910 DOI: 10.1038/s42003-024-05948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
The cellular and molecular mechanisms governing sexual reproduction are conserved across eukaryotes. Nevertheless, hybridization can disrupt these mechanisms, leading to asexual reproduction, often accompanied by polyploidy. In this study, we investigate how ploidy level and ratio of parental genomes in hybrids affect their reproductive mode. We analyze the gametogenesis of sexual species and their diploid and triploid hybrids from the freshwater fish family Cobitidae, using newly developed cytogenetic markers. We find that diploid hybrid females possess oogonia and oocytes with original (diploid) and duplicated (tetraploid) ploidy. Diploid oocytes cannot progress beyond pachytene due to aberrant pairing. However, tetraploid oocytes, which emerge after premeiotic genome endoreplication, exhibit normal pairing and result in diploid gametes. Triploid hybrid females possess diploid, triploid, and haploid oogonia and oocytes. Triploid and haploid oocytes cannot progress beyond pachytene checkpoint due to aberrant chromosome pairing, while diploid oocytes have normal pairing in meiosis, resulting in haploid gametes. Diploid oocytes emerge after premeiotic elimination of a single-copied genome. Triploid hybrid males are sterile due to aberrant pairing and the failure of chromosomal segregation during meiotic divisions. Thus, changes in ploidy and genome dosage may lead to cyclical alteration of gametogenic pathways in hybrids.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CAS, Liběchov, Czech Republic.
| | - Anatolie Marta
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CAS, Liběchov, Czech Republic
| | - Ra-Yeon Myung
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | | | - Da-Song Choi
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | - Yong-Jin Won
- Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CAS, Liběchov, Czech Republic.
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
4
|
Dudzik A, Dedukh D, Crochet PA, Rozenblut-Kościsty B, Rybka H, Doniol-Valcroze P, Choleva L, Ogielska M, Chmielewska M. Cytogenetics of the Hybridogenetic Frog Pelophylax grafi and Its Parental Species Pelophylax perezi. Genome Biol Evol 2023; 15:evad215. [PMID: 38015654 PMCID: PMC10715190 DOI: 10.1093/gbe/evad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
Hybrid taxa from the genus Pelophylax can propagate themselves in a modified way of sexual reproduction called hybridogenesis ensuring the formation of clonal gametes containing the genome of only one parental (host) species. Pelophylax grafi from South-Western Europe is a hybrid composed of P. ridibundus and P. perezi genomes and it lives with a host species P. perezi (P-G system). Yet it is unknown, whether non-Mendelian inheritance is fully maintained in such populations. In this study, we characterize P. perezi and P. grafi somatic karyotypes by using comparative genomic hybridization, genomic in situ hybridization, fluorescent in situ hybridization, and actinomycin D-DAPI. Here, we show the homeology of P. perezi and P. grafi somatic karyotypes to other Pelophylax taxa with 2n = 26 and equal contribution of ridibundus and perezi chromosomes in P. grafi which supports F1 hybrid genome constitution as well as a hemiclonal genome inheritance. We show that ridibundus chromosomes have larger regions of interstitial (TTAGGG)n repeats flanking the nucleolus organizing region on chromosome no. 10 and a high quantity of AT pairs in the centromeric regions. In P. perezi, we found species-specific sequences in metaphase chromosomes and marker structures in lampbrush chromosomes. Pericentromeric RrS1 repeat sequence was present in perezi and ridibundus chromosomes, but the blocks were stronger in ridibundus. Various cytogenetic techniques applied to the P-G system provide genome discrimination between ridibundus and perezi chromosomal sets. They could be used in studies of germ-line cells to explain patterns of clonal gametogenesis in P. grafi and broaden the knowledge about reproductive strategies in hybrid animals.
Collapse
Affiliation(s)
- Anna Dudzik
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | | | - Beata Rozenblut-Kościsty
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Hanna Rybka
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | | | - Lukáš Choleva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Maria Ogielska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Magdalena Chmielewska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| |
Collapse
|
5
|
Chmielewska M, Kaźmierczak M, Rozenblut-Kościsty B, Kolenda K, Dudzik A, Dedukh D, Ogielska M. Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus. Front Cell Dev Biol 2022; 10:1008506. [PMID: 36313575 PMCID: PMC9615423 DOI: 10.3389/fcell.2022.1008506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Hybridogenesis is a hemiclonal reproductive strategy in diploid and triploid hybrids. Our study model is a frog P. esculentus (diploid RL and triploids RLL and RRL), a natural hybrid between P. lessonae (LL) and P. ridibundus (RR). Hybridogenesis relies on elimination of one genome (L or R) from gonocytes (G) in tadpole gonads during prespermatogenesis, but not from spermatogonial stem cells (SSCs) in adults. Here we provide the first comprehensive study of testis morphology combined with chromosome composition in the full spectrum of spermatogenic cells. Using genomic in situ hybridization (GISH) and FISH we determined genomes in metaphase plates and interphase nuclei in Gs and SSCs. We traced genomic composition of SSCs, spermatocytes and spermatozoa in individual adult males that were crossed with females of the parental species and gave progeny. Degenerating gonocytes (24%–39%) and SSCs (18%–20%) led to partial sterility of juvenile and adult gonads. We conclude that elimination and endoreplication not properly completed during prespermatogenesis may be halted when gonocytes become dormant in juveniles. After resumption of mitotic divisions by SSCs in adults, these 20% of cells with successful genome elimination and endoreplication continue spermatogenesis, while in about 80% spermatogenesis is deficient. Majority of abnormal cells are eliminated by cell death, however some of them give rise to aneuploid spermatocytes and spermatozoa which shows that hybridogenesis is a wasteful process.
Collapse
Affiliation(s)
- Magdalena Chmielewska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
- *Correspondence: Magdalena Chmielewska,
| | - Mikołaj Kaźmierczak
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
- Department of Medicine Biology, The Cardinal Wyszyński National Institute of Cardiology, Warsaw, Poland
| | - Beata Rozenblut-Kościsty
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Krzysztof Kolenda
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Anna Dudzik
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Maria Ogielska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| |
Collapse
|
6
|
Jaron KS, Hodson CN, Ellers J, Baird SJE, Ross L. Genomic evidence of paternal genome elimination in the globular springtail Allacma fusca. Genetics 2022; 222:6659513. [PMID: 35946560 DOI: 10.1093/genetics/iyac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/13/2022] Open
Abstract
Paternal genome elimination (PGE) - a type of reproduction in which males inherit but fail to pass on their father's genome - evolved independently in six to eight arthropod clades. Thousands of species, including several important for agriculture, reproduce via this mode of reproduction. While PGE is well established in some of the clades, the evidence in globular springtails (Symphypleona) remains elusive, even though they represent the oldest and most species rich clade putatively reproducing via PGE. We sequenced genomic DNA from whole bodies of Allacma fusca males with high fractions (>27.5%) of sperm to conclusively confirm that all the sperm carry one parental haplotype only. Although it is suggestive that the single haplotype present in sperm is maternally inherited, definitive genetic proof of the parent of origin is still needed. The genomic approach we developed allows for detection of genotypic differences between germline and soma in all species with sufficiently high fraction of germline in their bodies. This opens new opportunities for scans of reproductive modes in small organisms.
Collapse
Affiliation(s)
- Kamil S Jaron
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Christina N Hodson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Faculty of Science, Amsterdam, 1081 HV, NL
| | - Stuart J E Baird
- Institute of Vertebrate Biology, Czech Academy of Sciences, Studenec 122 675 02 Koněšín, CZ
| | - Laura Ross
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
7
|
Thacker CE, Geiger DL, Unmack PJ. Species delineation and systematics of a hemiclonal hybrid complex in Australian freshwaters (Gobiiformes: Gobioidei: Eleotridae: Hypseleotris). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220201. [PMID: 35911191 PMCID: PMC9326278 DOI: 10.1098/rsos.220201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The rivers of southeastern Australia host a species complex within the carp gudgeon genus Hypseleotris that includes parental species and hemiclonal hybrid lineages. These hemiclones can be difficult to distinguish from their parent taxa, making delineation of species unusually difficult. We approach this historical taxonomic problem by using single nucleotide polymorphism (SNP) genotyping to distinguish individuals of each species and hemiclones, enabling us to quantify the variation among evolutionary lineages and assign names to the species. Hypseleotris klunzingeri remains valid and does not have any hemiclones. We describe Hypseleotris bucephala and Hypseleotris gymnocephala from the Murray-Darling Basin and Hypseleotris acropinna from the Murray-Darling as well as eastern coastal streams north of the Mary River, part of the range attributed to H. galii. We further split H. galii to distinguish a species from the Mary River, Hypseleotris moolooboolaensis. We designate a neotype and redescribe H. galii due to uncertainty about the source and species identity of specimens used in the original description. We reconcile previous taxonomies, provide new common names for parental species, and advocate using the scientific names of both parents when referring to the hemiclone hybrids to avoid confusion with previous common names that did not distinguish parental taxa and hemiclones.
Collapse
Affiliation(s)
- Christine E. Thacker
- Department of Vertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, CA 93105, USA
- Research and Collections, Section of Ichthyology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA
| | - Daniel L. Geiger
- Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, CA 93105, USA
| | - Peter J. Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Thacker CE, Shelley JJ, McCraney WT, Adams M, Hammer MP, Unmack PJ. Phylogeny, diversification, and biogeography of a hemiclonal hybrid system of native Australian freshwater fishes (Gobiiformes: Gobioidei: Eleotridae: Hypseleotris). BMC Ecol Evol 2022; 22:22. [PMID: 35236294 PMCID: PMC8892812 DOI: 10.1186/s12862-022-01981-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Carp gudgeons (genus Hypseleotris) are a prominent part of the Australian freshwater fish fauna, with species distributed around the western, northern, and eastern reaches of the continent. We infer a calibrated phylogeny of the genus based on nuclear ultraconserved element (UCE) sequences and using Bayesian estimation of divergence times, and use this phylogeny to investigate geographic patterns of diversification with GeoSSE. The southeastern species have hybridized to form hemiclonal lineages, and we also resolve relationships of hemiclones and compare their phylogenetic placement in the UCE phylogeny with a hypothesis based on complete mitochondrial genomes. We then use phased SNPs extracted from the UCE sequences for population structure analysis among the southeastern species and hemiclones. Results Hypseleotris cyprinoides, a widespread euryhaline species known from throughout the Indo-Pacific, is resolved outside the remainder of the species. Two Australian radiations comprise the bulk of Hypseleotris, one primarily in the northwestern coastal rivers and a second inhabiting the southeastern region including the Murray–Darling, Bulloo-Bancannia and Lake Eyre basins, plus coastal rivers east of the Great Dividing Range. Our phylogenetic results reveal cytonuclear discordance between the UCE and mitochondrial hypotheses, place hemiclone hybrids among their parental taxa, and indicate that the genus Kimberleyeleotris is nested within the northwestern Hypseleotris radiation along with three undescribed species. We infer a crown age for Hypseleotris of 17.3 Ma, date the radiation of Australian species at roughly 10.1 Ma, and recover the crown ages of the northwestern (excluding H. compressa) and southeastern radiations at 5.9 and 7.2 Ma, respectively. Range-dependent diversification analyses using GeoSSE indicate that speciation and extinction rates have been steady between the northwestern and southeastern Australian radiations and between smaller radiations of species in the Kimberley region and the Arnhem Plateau. Analysis of phased SNPs confirms inheritance patterns and reveals high levels of heterozygosity among the hemiclones. Conclusions The northwestern species have restricted ranges and likely speciated in allopatry, while the southeastern species are known from much larger areas, consistent with peripatric speciation or allopatric speciation followed by secondary contact. Species in the northwestern Kimberley region differ in shape from those in the southeast, with the Kimberley species notably more elongate and slender than the stocky southeastern species, likely due to the different topographies and flow regimes of the rivers they inhabit.
Collapse
Affiliation(s)
- Christine E Thacker
- Vertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, CA, 93105, USA. .,Research and Collections, Department of Ichthyology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA.
| | - James J Shelley
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia.,Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, VIC, 3084, Australia
| | - W Tyler McCraney
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Drive South, Box 957246, Los Angeles, CA, 90095-7246, USA
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, 5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Michael P Hammer
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, 5000, Australia.,Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin, NT, 0801, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2617, Australia
| |
Collapse
|
9
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
10
|
McGrath C. Highlight: Reconciling Differences between Germline and Soma. Genome Biol Evol 2021. [PMCID: PMC8245196 DOI: 10.1093/gbe/evab102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Suh A, Dion-Côté AM. New Perspectives on the Evolution of Within-Individual Genome Variation and Germline/Soma Distinction. Genome Biol Evol 2021; 13:evab095. [PMID: 33963843 PMCID: PMC8245192 DOI: 10.1093/gbe/evab095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
Genomes can vary significantly even within the same individual. The underlying mechanisms are manifold, ranging from somatic mutation and recombination, development-associated ploidy changes and genetic bottlenecks, over to programmed DNA elimination during germline/soma differentiation. In this perspective piece, we briefly review recent developments in the study of within-individual genome variation in eukaryotes and prokaryotes. We highlight a Society for Molecular Biology and Evolution 2020 virtual symposium entitled "Within-individual genome variation and germline/soma distinction" and the present Special Section of the same name in Genome Biology and Evolution, together fostering cross-taxon synergies in the field to identify and tackle key open questions in the understanding of within-individual genome variation.
Collapse
Affiliation(s)
- Alexander Suh
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, United Kingdom
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Sweden
| | | |
Collapse
|