1
|
Dvorak E, Mazet ID, Couture C, Delmotte F, Foulongne-Oriol M. Recombination landscape and karyotypic variations revealed by linkage mapping in the grapevine downy mildew pathogen Plasmopara viticola. G3 (BETHESDA, MD.) 2025; 15:jkae259. [PMID: 39613312 DOI: 10.1093/g3journal/jkae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 12/01/2024]
Abstract
Plasmopara viticola, the causal agent of grapevine downy mildew, is a biotrophic oomycete engaged in a tight coevolutionary relationship with its host. Rapid adaptation of the pathogen is favored by annual sexual reproduction that generates genotypic diversity. With the aim of studying the recombination landscape across the P. viticola genome, we generated 2 half-sibling F1 progenies (N = 189 and 162). Using targeted SNP sequencing, between 1,405 and 1,894 markers were included in parental linkage maps, and a consensus map was obtained by integrating 4,509 markers. The reference genome could be assembled into 17 pseudochromosomes, anchoring 88% of its physical length. We observed a strong collinearity between parental genomes and extensive synteny with the downy mildew Peronospora effusa. In the consensus map, the median recombination rate was 13.8 cM/Mb. The local recombination rate was highly variable along chromosomes, and recombination was suppressed in putative centromeric regions. Recombination rate was found negatively correlated with repeats' coverage and positively correlated with gene coverage. However, genes encoding secreted proteins and putative effectors were underrepresented in highly recombining regions. In both progenies, about 5% of the individuals presented karyotypic anomalies. Aneuploidies and triploidies almost exclusively originated from the male-transmitted chromosomes. Triploids resulted from fertilization by diploid gametes, but also from dispermy. Obligatory sexual reproduction each year may explain the lower level of karyotypic variation in P. viticola compared to other oomycetes. The linkage maps will be useful to guide future de novo chromosome-scale assemblies of P. viticola genomes and to perform forward genetics.
Collapse
Affiliation(s)
- Etienne Dvorak
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon F-33140, France
| | - Isabelle D Mazet
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon F-33140, France
| | - Carole Couture
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon F-33140, France
| | - François Delmotte
- SAVE, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon F-33140, France
| | | |
Collapse
|
2
|
Thawornwattana Y, Seixas F, Yang Z, Mallet J. Major patterns in the introgression history of Heliconius butterflies. eLife 2023; 12:RP90656. [PMID: 38108819 PMCID: PMC10727504 DOI: 10.7554/elife.90656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Gene flow between species, although usually deleterious, is an important evolutionary process that can facilitate adaptation and lead to species diversification. It also makes estimation of species relationships difficult. Here, we use the full-likelihood multispecies coalescent (MSC) approach to estimate species phylogeny and major introgression events in Heliconius butterflies from whole-genome sequence data. We obtain a robust estimate of species branching order among major clades in the genus, including the 'melpomene-silvaniform' group, which shows extensive historical and ongoing gene flow. We obtain chromosome-level estimates of key parameters in the species phylogeny, including species divergence times, present-day and ancestral population sizes, as well as the direction, timing, and intensity of gene flow. Our analysis leads to a phylogeny with introgression events that differ from those obtained in previous studies. We find that Heliconius aoede most likely represents the earliest-branching lineage of the genus and that 'silvaniform' species are paraphyletic within the melpomene-silvaniform group. Our phylogeny provides new, parsimonious histories for the origins of key traits in Heliconius, including pollen feeding and an inversion involved in wing pattern mimicry. Our results demonstrate the power and feasibility of the full-likelihood MSC approach for estimating species phylogeny and key population parameters despite extensive gene flow. The methods used here should be useful for analysis of other difficult species groups with high rates of introgression.
Collapse
Affiliation(s)
| | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
3
|
Cicconardi F, Milanetti E, Pinheiro de Castro EC, Mazo-Vargas A, Van Belleghem SM, Ruggieri AA, Rastas P, Hanly J, Evans E, Jiggins CD, Owen McMillan W, Papa R, Di Marino D, Martin A, Montgomery SH. Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies. Nat Commun 2023; 14:5620. [PMID: 37699868 PMCID: PMC10497600 DOI: 10.1038/s41467-023-41412-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Heliconius butterflies, a speciose genus of Müllerian mimics, represent a classic example of an adaptive radiation that includes a range of derived dietary, life history, physiological and neural traits. However, key lineages within the genus, and across the broader Heliconiini tribe, lack genomic resources, limiting our understanding of how adaptive and neutral processes shaped genome evolution during their radiation. Here, we generate highly contiguous genome assemblies for nine Heliconiini, 29 additional reference-assembled genomes, and improve 10 existing assemblies. Altogether, we provide a dataset of annotated genomes for a total of 63 species, including 58 species within the Heliconiini tribe. We use this extensive dataset to generate a robust and dated heliconiine phylogeny, describe major patterns of introgression, explore the evolution of genome architecture, and the genomic basis of key innovations in this enigmatic group, including an assessment of the evolution of putative regulatory regions at the Heliconius stem. Our work illustrates how the increased resolution provided by such dense genomic sampling improves our power to generate and test gene-phenotype hypotheses, and precisely characterize how genomes evolve.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Viale Regina Elena 291, 00161, Rome, Italy
| | | | - Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven M Van Belleghem
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Ecology, Evolution and Conservation Biology, Biology Department, KU Leuven, Leuven, Belgium
| | | | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joseph Hanly
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Elizabeth Evans
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, PR, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, Puerto Rico
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
4
|
Gong Y, Li Y, Liu X, Ma Y, Jiang L. A review of the pangenome: how it affects our understanding of genomic variation, selection and breeding in domestic animals? J Anim Sci Biotechnol 2023; 14:73. [PMID: 37143156 PMCID: PMC10161434 DOI: 10.1186/s40104-023-00860-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 05/06/2023] Open
Abstract
As large-scale genomic studies have progressed, it has been revealed that a single reference genome pattern cannot represent genetic diversity at the species level. While domestic animals tend to have complex routes of origin and migration, suggesting a possible omission of some population-specific sequences in the current reference genome. Conversely, the pangenome is a collection of all DNA sequences of a species that contains sequences shared by all individuals (core genome) and is also able to display sequence information unique to each individual (variable genome). The progress of pangenome research in humans, plants and domestic animals has proved that the missing genetic components and the identification of large structural variants (SVs) can be explored through pangenomic studies. Many individual specific sequences have been shown to be related to biological adaptability, phenotype and important economic traits. The maturity of technologies and methods such as third-generation sequencing, Telomere-to-telomere genomes, graphic genomes, and reference-free assembly will further promote the development of pangenome. In the future, pangenome combined with long-read data and multi-omics will help to resolve large SVs and their relationship with the main economic traits of interest in domesticated animals, providing better insights into animal domestication, evolution and breeding. In this review, we mainly discuss how pangenome analysis reveals genetic variations in domestic animals (sheep, cattle, pigs, chickens) and their impacts on phenotypes and how this can contribute to the understanding of species diversity. Additionally, we also go through potential issues and the future perspectives of pangenome research in livestock and poultry.
Collapse
Affiliation(s)
- Ying Gong
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yefang Li
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xuexue Liu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, 37 allées Jules Guesde, Toulouse, 31000, France
| | - Yuehui Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Lin Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
5
|
Gauthier J, Meier J, Legeai F, McClure M, Whibley A, Bretaudeau A, Boulain H, Parrinello H, Mugford ST, Durbin R, Zhou C, McCarthy S, Wheat CW, Piron-Prunier F, Monsempes C, François MC, Jay P, Noûs C, Persyn E, Jacquin-Joly E, Meslin C, Montagné N, Lemaitre C, Elias M. First chromosome scale genomes of ithomiine butterflies (Nymphalidae: Ithomiini): Comparative models for mimicry genetic studies. Mol Ecol Resour 2023; 23:872-885. [PMID: 36533297 DOI: 10.1111/1755-0998.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.
Collapse
Affiliation(s)
| | - Joana Meier
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fabrice Legeai
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Melanie McClure
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de la Recherche Scientifique, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, Cayenne, France
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony Bretaudeau
- BIPAA, IGEPP, INRAE, Institut Agro, Univ Rennes, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA, Rennes, France
| | - Hélène Boulain
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Chenxi Zhou
- Department of Genetics, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Shane McCarthy
- Department of Genetics, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | | | - Florence Piron-Prunier
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de la Recherche Scientifique, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| | - Christelle Monsempes
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Marie-Christine François
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Paul Jay
- Ecologie Systématique Evolution, Bâtiment 360, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | | | - Emma Persyn
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
- CIRAD, UMR PVBMT, St Pierre, France
| | - Emmanuelle Jacquin-Joly
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Camille Meslin
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | - Nicolas Montagné
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université de Paris, Paris, France
| | | | - Marianne Elias
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de la Recherche Scientifique, MNHN, EPHE, Sorbonne Université, Université des Antilles, Paris, France
| |
Collapse
|
6
|
Guo R, Papanicolaou A, Fritz ML. Validation of reference-assisted assembly using existing and novel Heliothine genomes. Genomics 2022; 114:110441. [PMID: 35931274 DOI: 10.1016/j.ygeno.2022.110441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Chloridea subflexa and Chloridea virescens are a pair of closely related noctuid species exhibiting pheromone-based sexual isolation and divergent host plant preferences. We produced a novel Illumina short read C. subflexa genome assembly and an improved C. virescens genome assembly, which offer opportunities to study the genomic basis for evolutionarily important traits in this lepidopteran family with few genomic resources. We then examined the feasibility of reference-assisted assembly, an approach that leverages existing high quality genomic resources for genome improvement in closely related taxa and applied it to our Heliothine genomes. Our work demonstrates that reference-assisted assembly has the potential to enhance contiguity and completeness of existing insect genomic resources with minimal additional laboratory costs. We conclude by discussing both the potential and pitfalls of reference-assisted assembly according to the intended downstream assembly application.
Collapse
Affiliation(s)
- Rong Guo
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia.
| | - Megan L Fritz
- Department of Entomology, University of Maryland, College Park, MD 20742, USA; Computational Biology, Bioinformatics and Genomics Program, Department of Biological Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
Telomere-to-Telomere Genome Sequences across a Single Genus Reveal Highly Variable Chromosome Rearrangement Rates but Absolute Stasis of Chromosome Number. J Fungi (Basel) 2022; 8:jof8070670. [PMID: 35887427 PMCID: PMC9318876 DOI: 10.3390/jof8070670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Genome rearrangements in filamentous fungi are prevalent but little is known about the modalities of their evolution, in part because few complete genomes are available within a single genus. To address this, we have generated and compared 15 complete telomere-to-telomere genomes across the phylogeny of a single genus of filamentous fungi, Epichloë. We find that the striking distinction between gene-rich and repeat-rich regions previously reported for isolated species is ubiquitous across the Epichloë genus. We built a species phylogeny from single-copy gene orthologs to provide a comparative framing to study chromosome composition and structural change through evolutionary time. All Epichloë genomes have exactly seven nuclear chromosomes, but despite this conserved ploidy, analyses reveal low synteny and substantial rearrangement of gene content across the genus. These rearrangements are highly lineage-dependent, with most occurring over short evolutionary distances, with long periods of structural stasis. Quantification of chromosomal rearrangements shows they are uncorrelated with numbers of substitutions and evolutionary distances, suggesting that different modes of evolution are acting to create nucleotide and chromosome-scale changes.
Collapse
|
8
|
Volarić M, Despot-Slade E, Veseljak D, Meštrović N, Mravinac B. Reference-Guided De Novo Genome Assembly of the Flour Beetle Tribolium freemani. Int J Mol Sci 2022; 23:5869. [PMID: 35682551 PMCID: PMC9180572 DOI: 10.3390/ijms23115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
The flour beetle Tribolium freemani is a sibling species of the model organism and important pest Tribolium castaneum. The two species are so closely related that they can produce hybrid progeny, but the genetic basis of their differences has not been revealed. In this work, we sequenced the T. freemani genome by applying PacBio HiFi technology. Using the well-assembled T. castaneum genome as a reference, we assembled 262 Mb of the T. freemani genomic sequence and anchored it in 10 linkage groups corresponding to nine autosomes and sex chromosome X. The assembly showed 99.8% completeness of conserved insect genes, indicating a high-quality reference genome. Comparison with the T. castaneum assembly revealed that the main differences in genomic sequence between the two sibling species come from repetitive DNA, including interspersed and tandem repeats. In this work, we also provided the complete assembled mitochondrial genome of T. freemani. Although the genome assembly needs to be ameliorated in tandemly repeated regions, the first version of the T. freemani reference genome and the complete mitogenome presented here represent useful resources for comparative evolutionary studies of related species and for further basic and applied research on different biological aspects of economically important pests.
Collapse
Affiliation(s)
| | | | | | | | - Brankica Mravinac
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.V.); (E.D.-S.); (D.V.); (N.M.)
| |
Collapse
|
9
|
Rosser N, Edelman NB, Queste LM, Nelson M, Seixas F, Dasmahapatra KK, Mallet J. Complex basis of hybrid female sterility and Haldane's rule in Heliconius butterflies: Z-linkage and epistasis. Mol Ecol 2021; 31:959-977. [PMID: 34779079 DOI: 10.1111/mec.16272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022]
Abstract
Hybrids between species are often sterile or inviable. Hybrid unfitness usually evolves first in the heterogametic sex-a pattern known as Haldane's rule. The genetics of Haldane's rule have been extensively studied in species where the male is the heterogametic (XX/XY) sex, but its basis in taxa where the female is heterogametic (ZW/ZZ), such as Lepidoptera and birds, is largely unknown. Here, we analyse a new case of female hybrid sterility between geographic subspecies of Heliconius pardalinus. The two subspecies mate freely in captivity, but female F1 hybrids in both directions of cross are sterile. Sterility is due to arrested development of oocytes after they become differentiated from nurse cells, but before yolk deposition. We backcrossed fertile male F1 hybrids to parental females and mapped quantitative trait loci (QTLs) for female sterility. We also identified genes differentially expressed in the ovary as a function of oocyte development. The Z chromosome has a major effect, similar to the 'large X effect' in Drosophila, with strong epistatic interactions between loci at either end of the Z chromosome, and between the Z chromosome and autosomal loci on chromosomes 8 and 20. By intersecting the list of genes within these QTLs with those differentially expressed in sterile and fertile hybrids, we identified three candidate genes with relevant phenotypes. This study is the first to characterize hybrid sterility using genome mapping in the Lepidoptera and shows that it is produced by multiple complex epistatic interactions often involving the sex chromosome, as predicted by the dominance theory of Haldane's rule.
Collapse
Affiliation(s)
- Neil Rosser
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, University of York, York, UK
| | - Nathaniel B Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut, USA.,Yale School for the Environment, Yale University, New Haven, Connecticut, USA
| | | | | | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Kozak KM, Joron M, McMillan WO, Jiggins CD. Rampant Genome-Wide Admixture across the Heliconius Radiation. Genome Biol Evol 2021; 13:evab099. [PMID: 33944917 PMCID: PMC8283734 DOI: 10.1093/gbe/evab099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
How frequent is gene flow between species? The pattern of evolution is typically portrayed as a phylogenetic tree, yet gene flow between good species may be an important mechanism in diversification, spreading adaptive traits and leading to a complex pattern of phylogenetic incongruence. This process has thus far been studied mainly among a few closely related species, or in geographically restricted areas such as islands, but not on the scale of a continental radiation. Using a genomic representation of 40 out of 47 species in the genus, we demonstrate that admixture has played a role throughout the evolution of the charismatic Neotropical butterflies Heliconius. Modeling of phylogenetic networks based on the exome uncovers up to 13 instances of interspecific gene flow. Admixture is detected among the relatives of Heliconius erato, as well as between the ancient lineages leading to modern clades. Interspecific gene flow played a role throughout the evolution of the genus, although the process has been most frequent in the clade of Heliconius melpomene and relatives. We identify Heliconius hecalesia and relatives as putative hybrids, including new evidence for introgression at the loci controlling the mimetic wing patterns. Models accounting for interspecific gene flow yield a more complete picture of the radiation as a network, which will improve our ability to study trait evolution in a realistic comparative framework.
Collapse
Affiliation(s)
- Krzysztof M Kozak
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Department of Zoology, University of Cambridge, United Kingdom
| | - Mathieu Joron
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, France
| | | | - Chris D Jiggins
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Department of Zoology, University of Cambridge, United Kingdom
| |
Collapse
|