1
|
Salvia R, Scieuzo C, Boschi A, Pezzi M, Mistri M, Munari C, Chicca M, Vogel H, Cozzolino F, Monaco V, Monti M, Falabella P. An Overview of Ovarian Calyx Fluid Proteins of Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae): An Integrated Transcriptomic and Proteomic Approach. Biomolecules 2023; 13:1547. [PMID: 37892230 PMCID: PMC10605793 DOI: 10.3390/biom13101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Boschi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
| | - Marco Pezzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Michele Mistri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Cristina Munari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße 8, D-07745 Jena, Germany;
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
2
|
Collins DH, Prince DC, Donelan JL, Chapman T, Bourke AFG. Costs of reproduction are present but latent in eusocial bumblebee queens. BMC Biol 2023; 21:153. [PMID: 37430246 DOI: 10.1186/s12915-023-01648-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND The standard evolutionary theory of ageing proposes that ageing occurs because of a trade-off between reproduction and longevity. Eusocial insect queens exhibit positive fecundity-longevity associations and so have been suggested to be counter-examples through not expressing costs of reproduction and through remodelling conserved genetic and endocrine networks regulating ageing and reproduction. If so, eusocial evolution from solitary ancestors with negative fecundity-longevity associations must have involved a stage at which costs of reproduction were suppressed and fecundity and longevity became positively associated. Using the bumblebee (Bombus terrestris), we experimentally tested whether queens in annual eusocial insects at an intermediate level of eusocial complexity experience costs of reproduction, and, using mRNA-seq, the extent to which they exhibit a remodelling of relevant genetic and endocrine networks. Specifically, we tested whether costs of reproduction are present but latent, or whether a remodelling of relevant genetic and endocrine networks has already occurred allowing queens to reproduce without costs. RESULTS We experimentally increased queens' costs of reproduction by removing their eggs, which caused queens to increase their egg-laying rate. Treatment queens had significantly reduced longevity relative to control queens whose egg-laying rate was not increased. Reduced longevity in treatment queens was not caused by increased worker-to-queen aggression or by increased overall activity in queens. In addition, treatment and control queens differed in age-related gene expression based on mRNA-seq in both their overall expression profiles and the expression of ageing-related genes. Remarkably, these differences appeared to occur principally with respect to relative age, not chronological age. CONCLUSIONS This study represents the first simultaneously phenotypic and transcriptomic experimental test for a longevity cost of reproduction in eusocial insect queens. The results support the occurrence of costs of reproduction in annual eusocial insects of intermediate social complexity and suggest that reproductive costs are present but latent in queens of such species, i.e. that these queens exhibit condition-dependent positive fecundity-longevity associations. They also raise the possibility that a partial remodelling of genetic and endocrine networks underpinning ageing may have occurred in intermediately eusocial species such that, in unmanipulated conditions, age-related gene expression depends more on chronological than relative age.
Collapse
Affiliation(s)
- David H Collins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - David C Prince
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jenny L Donelan
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
3
|
Harrison MC, Dohmen E, George S, Sillam-Dussès D, Séité S, Vasseur-Cognet M. Complex regulatory role of DNA methylation in caste- and age-specific expression of a termite. Open Biol 2022; 12:220047. [PMID: 35857972 PMCID: PMC9256085 DOI: 10.1098/rsob.220047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The reproductive castes of eusocial insects are often characterized by extreme lifespans and reproductive output, indicating an absence of the fecundity/longevity trade-off. The role of DNA methylation in the regulation of caste- and age-specific gene expression in eusocial insects is controversial. While some studies find a clear link to caste formation in honeybees and ants, others find no correlation when replication is increased across independent colonies. Although recent studies have identified transcription patterns involved in the maintenance of high reproduction throughout the long lives of queens, the role of DNA methylation in the regulation of these genes is unknown. We carried out a comparative analysis of DNA methylation in the regulation of caste-specific transcription and its importance for the regulation of fertility and longevity in queens of the higher termite Macrotermes natalensis. We found evidence for significant, well-regulated changes in DNA methylation in mature compared to young queens, especially in several genes related to ageing and fecundity in mature queens. We also found a strong link between methylation and caste-specific alternative splicing. This study reveals a complex regulatory role of fat body DNA methylation both in the division of labour in termites, and during the reproductive maturation of queens.
Collapse
Affiliation(s)
- Mark C. Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology (LEEC), UR4443, Villetaneuse, France
| | - Sarah Séité
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAE 1392, Institute of Ecology and Environmental Sciences of Paris, Paris 7 113, Bondy, France,University of Paris-Est, Créteil, France
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAE 1392, Institute of Ecology and Environmental Sciences of Paris, Paris 7 113, Bondy, France,University of Paris-Est, Créteil, France,INSERM, Paris, France
| |
Collapse
|
4
|
Jaimes-Nino LM, Heinze J, Oettler J. Late-life fitness gains and reproductive death in Cardiocondyla obscurior ants. eLife 2022; 11:74695. [PMID: 35384839 PMCID: PMC8986319 DOI: 10.7554/elife.74695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
A key hypothesis for the occurrence of senescence is the decrease in selection strength due to the decrease in the proportion of newborns from parents attaining an advanced age - the so-called selection shadow. Strikingly, queens of social insects have long lifespans and reproductive senescence seems to be negligible. By lifelong tracking of 99 Cardiocondyla obscurior (Formicidae: Myrmicinae) ant colonies, we find that queens shift to the production of sexuals in late life regardless of their absolute lifespan or the number of workers present. Furthermore, RNAseq analyses of old queens past their peak of reproductive performance showed the development of massive pathology while queens were still fertile, leading to rapid death. We conclude that the evolution of superorganismality is accompanied by 'continuusparity,' a life history strategy that is distinct from other iteroparous and semelparous strategies across the tree of life, in that it combines continuous reproduction with a fitness peak late in life.
Collapse
Affiliation(s)
| | - Jürgen Heinze
- Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| | - Jan Oettler
- Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Séité S, Harrison MC, Sillam-Dussès D, Lupoli R, Van Dooren TJM, Robert A, Poissonnier LA, Lemainque A, Renault D, Acket S, Andrieu M, Viscarra J, Sul HS, de Beer ZW, Bornberg-Bauer E, Vasseur-Cognet M. Lifespan prolonging mechanisms and insulin upregulation without fat accumulation in long-lived reproductives of a higher termite. Commun Biol 2022; 5:44. [PMID: 35027667 PMCID: PMC8758687 DOI: 10.1038/s42003-021-02974-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Kings and queens of eusocial termites can live for decades, while queens sustain a nearly maximal fertility. To investigate the molecular mechanisms underlying their long lifespan, we carried out transcriptomics, lipidomics and metabolomics in Macrotermes natalensis on sterile short-lived workers, long-lived kings and five stages spanning twenty years of adult queen maturation. Reproductives share gene expression differences from workers in agreement with a reduction of several aging-related processes, involving upregulation of DNA damage repair and mitochondrial functions. Anti-oxidant gene expression is downregulated, while peroxidability of membranes in queens decreases. Against expectations, we observed an upregulated gene expression in fat bodies of reproductives of several components of the IIS pathway, including an insulin-like peptide, Ilp9. This pattern does not lead to deleterious fat storage in physogastric queens, while simple sugars dominate in their hemolymph and large amounts of resources are allocated towards oogenesis. Our findings support the notion that all processes causing aging need to be addressed simultaneously in order to prevent it.
Collapse
Affiliation(s)
- Sarah Séité
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France
- University of Paris-Est, Créteil, France
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, UR4443, Villetaneuse, France
| | - Roland Lupoli
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France
- University of Paris-Est, Créteil, France
| | - Tom J M Van Dooren
- UMR UPMC 113, IRD 242, UPEC, CNRS 7618, INRA 1392, PARIS 7 113, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Alain Robert
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, UR4443, Villetaneuse, France
| | - Laure-Anne Poissonnier
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Arnaud Lemainque
- Genoscope, François-Jacob Institute of Biology, Alternative Energies and Atomic Energy Commission, University of Paris-Saclay, Evry, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystems, biodiversity, evolution) - UMR, 6553, Rennes, France
- University Institute of France, Paris, France
| | - Sébastien Acket
- University of Technology of Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Royallieu research Center, Compiègne, France
| | - Muriel Andrieu
- Cochin Institute, UMR INSERM U1016, CNRS 8104, University of Paris Descartes, CYBIO Platform, Paris, France
| | - José Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France.
- University of Paris-Est, Créteil, France.
- INSERM, Paris, France.
| |
Collapse
|