1
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Sloan DB, Broz AK, Kuster SA, Muthye V, Peñafiel-Ayala A, Marron JR, Lavrov DV, Brieba LG. Expansion of the MutS Gene Family in Plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603841. [PMID: 39071318 PMCID: PMC11275761 DOI: 10.1101/2024.07.17.603841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The MutS gene family is distributed across the tree of life and is involved in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded the set of MutS genes in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes. Land plants, green algae, red algae, and glaucophytes share cyanobacterial-like MutS1 and MutS2 genes that presumably were gained via plastid endosymbiotic gene transfer. MutS1 was subsequently lost in some taxa, including seed plants, whereas MutS2 was duplicated in Viridiplantae (i.e., land plants and green algae) with widespread retention of both resulting paralogs. Viridiplantae also have two anciently duplicated copies of the eukaryotic MSH6 gene (i.e., MSH6 and MSH7) and acquired MSH1 via horizontal gene transfer - potentially from a nucleocytovirus. Despite sharing the same name, "plant MSH1" is not directly related to the gene known as MSH1 in some fungi and animals, which may be an ancestral eukaryotic gene acquired via mitochondrial endosymbiosis and subsequently lost in most eukaryotic lineages. There has been substantial progress in understanding the functions of MSH1 and MSH6/MSH7 in plants, but the roles of the cyanobacterial-like MutS1 and MutS2 genes remain uncharacterized. Known functions of bacterial homologs and predicted protein structures, including fusions to diverse nuclease domains, provide hypotheses about potential molecular mechanisms. Because most plant-specific MutS proteins are targeted to the mitochondria and/or plastids, the expansion of this family appears to have played a large role in shaping plant organelle genetics.
Collapse
Affiliation(s)
- Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Shady A. Kuster
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Viraj Muthye
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Alejandro Peñafiel-Ayala
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, México
| | | | - Dennis V. Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Luis G. Brieba
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, México
| |
Collapse
|
3
|
Waneka G, Stewart J, Anderson JR, Li W, Wilusz J, Argueso JL, Sloan DB. UV damage induces production of mitochondrial DNA fragments with specific length profiles. Genetics 2024; 227:iyae070. [PMID: 38722894 PMCID: PMC11228841 DOI: 10.1093/genetics/iyae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
UV light is a potent mutagen that induces bulky DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). Photodamage and other bulky lesions occurring in nuclear genomes can be repaired through nucleotide excision repair (NER), where incisions on both sides of a damaged site precede the removal of a single-stranded oligonucleotide containing the damage. Mitochondrial genomes (mtDNAs) are also susceptible to damage from UV light, but current evidence suggests that the only way to eliminate bulky mtDNA damage is through mtDNA degradation. Damage-containing oligonucleotides excised during NER can be captured with antidamage antibodies and sequenced (XR-seq) to produce high-resolution maps of active repair locations following UV exposure. We analyzed previously published datasets from Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster to identify reads originating from the mtDNA (and plastid genome in A. thaliana). In A. thaliana and S. cerevisiae, the mtDNA-mapping reads have unique length distributions compared to the nuclear-mapping reads. The dominant fragment size was 26 nt in S. cerevisiae and 28 nt in A. thaliana with distinct secondary peaks occurring in regular intervals. These reads also show a nonrandom distribution of di-pyrimidines (the substrate for CPD formation) with TT enrichment at positions 7-8 of the reads. Therefore, UV damage to mtDNA appears to result in production of DNA fragments of characteristic lengths and positions relative to the damaged location. The mechanisms producing these fragments are unclear, but we hypothesize that they result from a previously uncharacterized DNA degradation pathway or repair mechanism in mitochondria.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins 80521, CO, USA
| | - Joseph Stewart
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins 80521, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins 80521, CO, USA
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins 80521, CO, USA
| | - Wentao Li
- Department of Environmental Health Science, University of Georgia, Athens 30602, GA, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins 80521, CO, USA
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins 80521, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins 80521, CO, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins 80521, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins 80521, CO, USA
| |
Collapse
|
4
|
Rossier V, Train C, Nevers Y, Robinson-Rechavi M, Dessimoz C. Matreex: Compact and Interactive Visualization for Scalable Studies of Large Gene Families. Genome Biol Evol 2024; 16:evae100. [PMID: 38742690 PMCID: PMC11149776 DOI: 10.1093/gbe/evae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Studying gene family evolution strongly benefits from insightful visualizations. However, the ever-growing number of sequenced genomes is leading to increasingly larger gene families, which challenges existing gene tree visualizations. Indeed, most of them present users with a dilemma: display complete but intractable gene trees, or collapse subtrees, thereby hiding their children's information. Here, we introduce Matreex, a new dynamic tool to scale up the visualization of gene families. Matreex's key idea is to use "phylogenetic" profiles, which are dense representations of gene repertoires, to minimize the information loss when collapsing subtrees. We illustrate Matreex's usefulness with three biological applications. First, we demonstrate on the MutS family the power of combining gene trees and phylogenetic profiles to delve into precise evolutionary analyses of large multicopy gene families. Second, by displaying 22 intraflagellar transport gene families across 622 species cumulating 5,500 representatives, we show how Matreex can be used to automate large-scale analyses of gene presence-absence. Notably, we report for the first time the complete loss of intraflagellar transport in the myxozoan Thelohanellus kitauei. Finally, using the textbook example of visual opsins, we show Matreex's potential to create easily interpretable figures for teaching and outreach. Matreex is available from the Python Package Index (pip install Matreex) with the source code and documentation available at https://github.com/DessimozLab/matreex.
Collapse
Affiliation(s)
- Victor Rossier
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Comparative Genomics, Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Clement Train
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Yannis Nevers
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Comparative Genomics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- SIB Swiss Institute of Bioinformatics, Comparative Genomics, Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Comparative Genomics, Lausanne, Switzerland
| |
Collapse
|
5
|
Peñafiel-Ayala A, Peralta-Castro A, Mora-Garduño J, García-Medel P, Zambrano-Pereira AG, Díaz-Quezada C, Abraham-Juárez MJ, Benítez-Cardoza CG, Sloan DB, Brieba LG. Plant Organellar MSH1 Is a Displacement Loop-Specific Endonuclease. PLANT & CELL PHYSIOLOGY 2024; 65:560-575. [PMID: 37756637 PMCID: PMC11494383 DOI: 10.1093/pcp/pcad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
MutS HOMOLOG 1 (MSH1) is an organellar-targeted protein that obstructs ectopic recombination and the accumulation of mutations in plant organellar genomes. MSH1 also modulates the epigenetic status of nuclear DNA, and its absence induces a variety of phenotypic responses. MSH1 is a member of the MutS family of DNA mismatch repair proteins but harbors an additional GIY-YIG nuclease domain that distinguishes it from the rest of this family. How MSH1 hampers recombination and promotes fidelity in organellar DNA inheritance is unknown. Here, we elucidate its enzymatic activities by recombinantly expressing and purifying full-length MSH1 from Arabidopsis thaliana (AtMSH1). AtMSH1 is a metalloenzyme that shows a strong binding affinity for displacement loops (D-loops). The DNA-binding abilities of AtMSH1 reside in its MutS domain and not in its GIY-YIG domain, which is the ancillary nickase of AtMSH1. In the presence of divalent metal ions, AtMSH1 selectively executes multiple incisions at D-loops, but not other DNA structures including Holliday junctions or dsDNA, regardless of the presence or absence of mismatches. The selectivity of AtMSH1 to dismantle D-loops supports the role of this enzyme in preventing recombination between short repeats. Our results suggest that plant organelles have evolved novel DNA repair routes centered around the anti-recombinogenic activity of MSH1.
Collapse
Affiliation(s)
- Alejandro Peñafiel-Ayala
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Antolin Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Josue Mora-Garduño
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Paola García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Angie G Zambrano-Pereira
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - María Jazmín Abraham-Juárez
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Guillermo Massieu Helguera No. 239, La Escalera Ticoman 07320 DF, México
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| |
Collapse
|
6
|
Gastineau R, Dąbek P, Mianowicz K, Stoyanova V, Krawcewicz A, Abramowski T. Complete mitochondrial genome of the abyssal coral Abyssoprimnoagemina Cairns, 2015 (Octocorallia, Primnoidae) from the Clarion-Clipperton Zone, Pacific Ocean. Zookeys 2023; 1183:81-98. [PMID: 37953748 PMCID: PMC10632777 DOI: 10.3897/zookeys.1183.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
The Clarion-Clipperton Zone (CCZ) in the tropical East Pacific is a region of interest for deep-sea mining due to its underwater deposits of polymetallic nodules containing economically important metals such as nickel, copper, and cobalt. It is also a region of extensive baseline studies aiming to describe the state of the environment, including the biodiversity of the benthic fauna. An abundant component of the abyssal plain ecosystem consists of sessile fauna which encrusts polymetallic nodules and are vulnerable to potential impacts arising from exploitation activities, particularly removal of substrate. Therefore, this fauna is often considered to have key species whose genetic connectivity should be studied to assess their ecological resilience. One such species is Abyssoprimnoagemina Cairns, 2015, a deep-sea coral from the CCZ whose presence in the Interoceanmetal Joint Organization (IOM) claim area has been confirmed during samplings. In this study, we used next-generation sequencing (NGS) to obtain the 18S nuclear rRNA gene and the complete mitochondrial genome of A.gemina from IOM exploration area. The mitogenome is 18,825 bp long and encodes for 14 protein coding genes, 2 rRNAs, and a single tRNA. The two phylogeny reconstructions derived from these data confirm previous studies and display A.gemina within a highly supported cluster of seven species whose mitogenomes are all colinear and of comparable size. This study also demonstrates the suitability of NGS for DNA barcoding of the benthic megafauna of the CCZ, which could become part of the IOM protocol for the assessment of population diversity and genetic connectivity in its claim area.
Collapse
Affiliation(s)
- Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16a, Szczecin, 70-383, PolandUniversity of SzczecinSzczecinPoland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16a, Szczecin, 70-383, PolandUniversity of SzczecinSzczecinPoland
| | - Kamila Mianowicz
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, PolandInteroceanmetal Joint OrganizationSzczecinPoland
| | - Valcana Stoyanova
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, PolandInteroceanmetal Joint OrganizationSzczecinPoland
| | - Artur Krawcewicz
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, PolandInteroceanmetal Joint OrganizationSzczecinPoland
| | - Tomasz Abramowski
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, PolandInteroceanmetal Joint OrganizationSzczecinPoland
| |
Collapse
|
7
|
Lee Y, Cho CH, Noh C, Yang JH, Park SI, Lee YM, West JA, Bhattacharya D, Jo K, Yoon HS. Origin of minicircular mitochondrial genomes in red algae. Nat Commun 2023; 14:3363. [PMID: 37291154 PMCID: PMC10250338 DOI: 10.1038/s41467-023-39084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Eukaryotic organelle genomes are generally of conserved size and gene content within phylogenetic groups. However, significant variation in genome structure may occur. Here, we report that the Stylonematophyceae red algae contain multipartite circular mitochondrial genomes (i.e., minicircles) which encode one or two genes bounded by a specific cassette and a conserved constant region. These minicircles are visualized using fluorescence microscope and scanning electron microscope, proving the circularity. Mitochondrial gene sets are reduced in these highly divergent mitogenomes. Newly generated chromosome-level nuclear genome assembly of Rhodosorus marinus reveals that most mitochondrial ribosomal subunit genes are transferred to the nuclear genome. Hetero-concatemers that resulted from recombination between minicircles and unique gene inventory that is responsible for mitochondrial genome stability may explain how the transition from typical mitochondrial genome to minicircles occurs. Our results offer inspiration on minicircular organelle genome formation and highlight an extreme case of mitochondrial gene inventory reduction.
Collapse
Affiliation(s)
- Yongsung Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Chanyoung Noh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Yu Min Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - John A West
- School of Biosciences 2, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, 08901, USA
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
8
|
Feng H, Lv S, Li R, Shi J, Wang J, Cao P. Mitochondrial genome comparison reveals the evolution of cnidarians. Ecol Evol 2023; 13:e10157. [PMID: 37325715 PMCID: PMC10261974 DOI: 10.1002/ece3.10157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Cnidarians are the most primitive metazoans, but their evolutionary relationships are poorly understood, although recent studies present several phylogenetic hypotheses. Here, we collected 266 complete cnidarian mitochondrial genomes and re-evaluated the phylogenetic relationships between the major lineages. We described the gene rearrangement patterns of Cnidaria. Anthozoans had significantly greater mitochondrial genome size and lower A + T content than medusozoans. Most of the protein-coding genes in anthozoans such as COX 13, ATP6, and CYTB displayed a faster rate of evolution based on selection analysis. There were 19 distinct patterns of mitochondrial gene order, including 16 unique gene orders in anthozoans and 3 mtDNA gene orders pattern in medusozoans, were identified among cnidarians. The gene order arrangement suggested that a linearized mtDNA structure may be more conducive to Medusozoan mtDNA stability. Based on phylogenetic analyses, the monophyly of the Anthozoa was strongly supported compared to previous mitochondrial genome-based analyses rather than octocorals forming a sister group relationship with medusozoans. In addition, Staurozoa were more closely related to Anthozoa than to Medusozoa. In conclusion, these results largely support the traditional phylogenetic view of the relationships of cnidarians and provide new insights into the evolutionary processes for studying the most ancient animal radiations.
Collapse
Affiliation(s)
- Hui Feng
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| | - Sitong Lv
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Rong Li
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| | - Jing Shi
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| | - Jianxing Wang
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| | - Pinglin Cao
- Marine Microorganism Ecological & Application LabZhejiang Ocean UniversityZhoushanChina
| |
Collapse
|
9
|
Shimpi GG, Bentlage B. Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes. Bioessays 2023; 45:e2200190. [PMID: 36412071 DOI: 10.1002/bies.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.
Collapse
|
10
|
Schaffner SH, Patel MR. Plant organellar genomes utilize gene conversion to drive heteroplasmic sorting. Proc Natl Acad Sci U S A 2022; 119:e2213014119. [PMID: 36044538 PMCID: PMC9477390 DOI: 10.1073/pnas.2213014119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Samantha H. Schaffner
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Evolutionary Studies, Vanderbilt University, Nashville, TN 37235
| | - Maulik R. Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Evolutionary Studies, Vanderbilt University, Nashville, TN 37235
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|