1
|
Devic M, Dennu L, Lozano JC, Mariac C, Vergé V, Schatt P, Bouget FY, Sabot F. An INDEL genomic approach to explore population diversity of phytoplankton. BMC Genomics 2024; 25:1045. [PMID: 39506649 PMCID: PMC11539686 DOI: 10.1186/s12864-024-10896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Although metabarcoding and metagenomic approaches have generated large datasets on worldwide phytoplankton species diversity, the intraspecific genetic diversity underlying the genetic adaptation of marine phytoplankton to specific environmental niches remains largely unexplored. This is mainly due to the lack of biological resources and tools for monitoring the dynamics of this diversity in space and time. RESULTS To gain insight into population diversity, a novel method based on INDEL markers was developed on Bathycoccus prasinos (Mamiellophyceae), an abundant and cosmopolitan species with strong seasonal patterns. Long read sequencing was first used to characterize structural variants among the genomes of six B. prasinos strains sampled from geographically distinct regions in the world ocean. Markers derived from identified insertions/deletions were validated by PCR then used to genotype 55 B. prasinos strains isolated during the winter bloom 2018-2019 in the bay of Banyuls-sur-Mer (Mediterranean Sea, France). This led to their classification into eight multi-loci genotypes and the sequencing of strains representative of local diversity, further improving the available genetic diversity of B. prasinos. Finally, selected markers were directly tracked on environmental DNA sampled during 3 successive blooms from 2018 to 2021, showcasing a fast and cost-effective approach to follow local population dynamics. CONCLUSIONS This method, which involves (i) pre-identifying the genetic diversity of B. prasinos in environmental samples by PCR, (ii) isolating cells from selected environmental samples and (iii) identifying genotypes representative of B. prasinos diversity for sequencing, can be used to comprehensively describe the diversity and population dynamics not only in B. prasinos but also potentially in other generalist phytoplankton species.
Collapse
Affiliation(s)
- Martine Devic
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - Louis Dennu
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - Jean-Claude Lozano
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - Cédric Mariac
- Diversité, Adaptation Et Développement Des Plantes (DIADE) UMR 232, University of Montpellier, IRD, CIRAD, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Valérie Vergé
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - Philippe Schatt
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - François Sabot
- Diversité, Adaptation Et Développement Des Plantes (DIADE) UMR 232, University of Montpellier, IRD, CIRAD, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| |
Collapse
|
2
|
Foresi N, De Marco MA, Del Castello F, Ramirez L, Nejamkin A, Calo G, Grimsley N, Correa-Aragunde N, Martínez-Noël GMA. The tiny giant of the sea, Ostreococcus's unique adaptations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108661. [PMID: 38735153 DOI: 10.1016/j.plaphy.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.
Collapse
Affiliation(s)
- Noelia Foresi
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina.
| | - María Agustina De Marco
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | | | - Leonor Ramirez
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Andres Nejamkin
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina
| | - Gonzalo Calo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | - Nigel Grimsley
- CNRS, LBBM, Sorbonne Université OOB, 1 Avenue de Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | | | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina.
| |
Collapse
|
3
|
Rey Redondo E, Xu Y, Yung CCM. Genomic characterisation and ecological distribution of Mantoniella tinhauana: a novel Mamiellophycean green alga from the Western Pacific. Front Microbiol 2024; 15:1358574. [PMID: 38774501 PMCID: PMC11106453 DOI: 10.3389/fmicb.2024.1358574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Mamiellophyceae are dominant marine algae in much of the ocean, the most prevalent genera belonging to the order Mamiellales: Micromonas, Ostreococcus and Bathycoccus, whose genetics and global distributions have been extensively studied. Conversely, the genus Mantoniella, despite its potential ecological importance, remains relatively under-characterised. In this study, we isolated and characterised a novel species of Mamiellophyceae, Mantoniella tinhauana, from subtropical coastal waters in the South China Sea. Morphologically, it resembles other Mantoniella species; however, a comparative analysis of the 18S and ITS2 marker genes revealed its genetic distinctiveness. Furthermore, we sequenced and assembled the first genome of Mantoniella tinhauana, uncovering significant differences from previously studied Mamiellophyceae species. Notably, the genome lacked any detectable outlier chromosomes and exhibited numerous unique orthogroups. We explored gene groups associated with meiosis, scale and flagella formation, shedding light on species divergence, yet further investigation is warranted. To elucidate the biogeography of Mantoniella tinhauana, we conducted a comprehensive analysis using global metagenomic read mapping to the newly sequenced genome. Our findings indicate this species exhibits a cosmopolitan distribution with a low-level prevalence worldwide. Understanding the intricate dynamics between Mamiellophyceae and the environment is crucial for comprehending their impact on the ocean ecosystem and accurately predicting their response to forthcoming environmental changes.
Collapse
Affiliation(s)
| | | | - Charmaine Cheuk Man Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Barton S, Padfield D, Masterson A, Buckling A, Smirnoff N, Yvon-Durocher G. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming. GLOBAL CHANGE BIOLOGY 2023; 29:5261-5275. [PMID: 37395481 DOI: 10.1111/gcb.16827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
A number of experimental studies have demonstrated that phytoplankton can display rapid thermal adaptation in response to warmed environments. While these studies provide insight into the evolutionary responses of single species, they tend to employ different experimental techniques. Consequently, our ability to compare the potential for thermal adaptation across different, ecologically relevant, species remains limited. Here, we address this limitation by conducting simultaneous long-term warming experiments with the same experimental design on clonal isolates of three phylogenetically diverse species of marine phytoplankton; the cyanobacterium Synechococcus sp., the prasinophyte Ostreococcus tauri and the diatom Phaeodoactylum tricornutum. Over the same experimental time period, we observed differing levels of thermal adaptation in response to stressful supra-optimal temperatures. Synechococcus sp. displayed the greatest improvement in fitness (i.e., growth rate) and thermal tolerance (i.e., temperature limits of growth). Ostreococcus tauri was able to improve fitness and thermal tolerance, but to a lesser extent. Finally, Phaeodoactylum tricornutum showed no signs of adaptation. These findings could help us understand how the structure of phytoplankton communities may change in response to warming, and possible biogeochemical implications, as some species show relatively more rapid adaptive shifts in their thermal tolerance.
Collapse
Affiliation(s)
- Samuel Barton
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Daniel Padfield
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - Abigail Masterson
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| |
Collapse
|
5
|
Yamamoto K, Matsuzaki R, Mahakham W, Heman W, Sekimoto H, Kawachi M, Minakuchi Y, Toyoda A, Nozaki H. Expanded male sex-determining region conserved during the evolution of homothallism in the green alga Volvox. iScience 2023; 26:106893. [PMID: 37378338 PMCID: PMC10291315 DOI: 10.1016/j.isci.2023.106893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
Male and female genotypes in heterothallic (self-incompatible) species of haploid organisms, such as algae and bryophytes, are generally determined by male and female sex-determining regions (SDRs) in the sex chromosomes. To resolve the molecular genetic basis for the evolution of homothallic (bisexual and self-compatible) species from a heterothallic ancestor, we compared whole-genome data from Thai and Japanese genotypes within the homothallic green alga Volvox africanus. The Thai and Japanese algae harbored expanded ancestral male and female SDRs of ∼1 Mbp each, representing a direct heterothallic ancestor. Therefore, the expanded male and female ancestral SDRs may originate from the ancient (∼75 mya) heterothallic ancestor, and either might have been conserved during the evolution of each homothallic genotype. An expanded SDR-like region seems essential for homothallic sexual reproduction in V. africanus, irrespective of male or female origin. Our study stimulates future studies to elucidate the biological significance of such expanded genomic regions.
Collapse
Affiliation(s)
- Kayoko Yamamoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Tokyo 112-8681 Japan
| | - Ryo Matsuzaki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Wuttipong Mahakham
- Department of Biology & Applied Taxonomic Research Center, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wirawan Heman
- Department of Science and Mathematics, Faculty of Science and Health Technology, Kalasin University, Mueang Kalasin, Thailand
| | - Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, Tokyo 112-8681 Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Yohei Minakuchi
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima 411-8540, Japan
| | - Hisayoshi Nozaki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Diversity and Evolution of Mamiellophyceae: Early-Diverging Phytoplanktonic Green Algae Containing Many Cosmopolitan Species. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genomic revolution has bridged a gap in our knowledge about the diversity, biology and evolution of unicellular photosynthetic eukaryotes, which bear very few discriminating morphological features among species from the same genus. The high-quality genome resources available in the class Mamiellophyceae (Chlorophyta) have been paramount to estimate species diversity and screen available metagenomic data to assess the biogeography and ecological niches of different species on a global scale. Here we review the current knowledge about the diversity, ecology and evolution of the Mamiellophyceae and the large double-stranded DNA prasinoviruses infecting them, brought by the combination of genomic and metagenomic analyses, including 26 metabarcoding environmental studies, as well as the pan-oceanic GOS and the Tara Oceans expeditions.
Collapse
|