1
|
Olli S, Lam NT, Hiljanen S, Kettunen T, Haikonen L, Hyvönen HM, Kiebler A, Köngäs I, Minkkinen S, Pöykiö V, Sannikka V, Vesa R, Wehrenberg G, Prost S, Prous M. Large mitochondrial genomes in tenthredinid sawflies (Hymenoptera, Tenthredinidae). Mitochondrial DNA A DNA Mapp Seq Anal 2024:1-9. [PMID: 39526637 DOI: 10.1080/24701394.2024.2427206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
We sequenced and assembled mitochondrial genomes of three tenthredinid sawflies (Euura poecilonota, E. striata, and Dolerus timidus) using Oxford Nanopore Technologies' MinION. The Canu assembler produced circular assemblies (23,000-40,000 bp). Still, errors were found in the highly repetitive non-coding control region because of the fragmented DNA which led to no reads spanning the complete control region, preventing its reliable assembly. Based on the non-repetitive coding region's sequencing coverage, we estimate the lengths of mitochondrial genomes of E. poecilonota, D. timidus, and E. striata to be about 30,000 bp, 31,000 bp, and 37,000 bp and control region to be 15,000 bp, 16,000 bp, and 22,000 bp respectively. All standard bilaterian mitochondrial genes are in the same order and orientation, except trnQ, which is on the minus strand in Euura and the plus strand in Dolerus. Using published tenthredinid genome data, we show that control region lengths are often underestimated.
Collapse
Affiliation(s)
- Suvi Olli
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Nok Ting Lam
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Siri Hiljanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Taru Kettunen
- Faculty of Science, University of Oulu, Oulu, Finland
| | | | | | - Angelika Kiebler
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Ida Köngäs
- Faculty of Science, University of Oulu, Oulu, Finland
| | | | - Veera Pöykiö
- Faculty of Science, University of Oulu, Oulu, Finland
| | - Ville Sannikka
- Faculty of Science, University of Oulu, Oulu, Finland
- Faculty of Science, University of Turku, Turku, Finland
| | - Ronja Vesa
- Faculty of Science, University of Oulu, Oulu, Finland
| | - Gerrit Wehrenberg
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Stefan Prost
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
- Central Research Laboratories, Natural History Museum Vienna, Vienna, Austria
| | - Marko Prous
- Museum of Natural History, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Sandberg TOM, Yahalomi D, Bracha N, Haddas-Sasson M, Pupko T, Atkinson SD, Bartholomew JL, Zhang JY, Huchon D. Evolution of myxozoan mitochondrial genomes: insights from myxobolids. BMC Genomics 2024; 25:388. [PMID: 38649808 PMCID: PMC11034133 DOI: 10.1186/s12864-024-10254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Myxozoa is a class of cnidarian parasites that encompasses over 2,400 species. Phylogenetic relationships among myxozoans remain highly debated, owing to both a lack of informative morphological characters and a shortage of molecular markers. Mitochondrial (mt) genomes are a common marker in phylogeny and biogeography. However, only five complete myxozoan mt genomes have been sequenced: four belonging to two closely related genera, Enteromyxum and Kudoa, and one from the genus Myxobolus. Interestingly, while cytochrome oxidase genes could be identified in Enteromyxum and Kudoa, no such genes were found in Myxobolus squamalis, and another member of the Myxobolidae (Henneguya salminicola) was found to have lost its entire mt genome. To evaluate the utility of mt genomes to reconstruct myxozoan relationships and to understand if the loss of cytochrome oxidase genes is a characteristic of myxobolids, we sequenced the mt genome of five myxozoans (Myxobolus wulii, M. honghuensis, M. shantungensis, Thelohanellus kitauei and, Sphaeromyxa zaharoni) using Illumina and Oxford Nanopore platforms. RESULTS Unlike Enteromyxum, which possesses a partitioned mt genome, the five mt genomes were encoded on single circular chromosomes. An mt plasmid was found in M. wulii, as described previously in Kudoa iwatai. In all new myxozoan genomes, five protein-coding genes (cob, cox1, cox2, nad1, and nad5) and two rRNAs (rnl and rns) were recognized, but no tRNA. We found that Myxobolus and Thelohanellus species shared unidentified reading frames, supporting the view that these mt open reading frames are functional. Our phylogenetic reconstructions based on the five conserved mt genes agree with previously published trees based on the 18S rRNA gene. CONCLUSIONS Our results suggest that the loss of cytochrome oxidase genes is not a characteristic of all myxobolids, the ancestral myxozoan mt genome was likely encoded on a single circular chromosome, and mt plasmids exist in a few lineages. Our findings indicate that myxozoan mt sequences are poor markers for reconstructing myxozoan phylogenetic relationships because of their fast-evolutionary rates and the abundance of repeated elements, which complicates assembly.
Collapse
Affiliation(s)
| | - Dayana Yahalomi
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Noam Bracha
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Michal Haddas-Sasson
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, 97331, Corvallis, OR, USA
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, 97331, Corvallis, OR, USA
| | - Jin Yong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Dorothée Huchon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel.
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
3
|
Dial DT, Weglarz KM, Brunet BMT, Havill NP, von Dohlen CD, Burke GR. Whole-genome sequence of the Cooley spruce gall adelgid, Adelges cooleyi (Hemiptera: Sternorrhyncha: Adelgidae). G3 (BETHESDA, MD.) 2023; 14:jkad224. [PMID: 37766465 PMCID: PMC10755206 DOI: 10.1093/g3journal/jkad224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The adelgids (Adelgidae) are a small family of sap-feeding insects, which, together with true aphids (Aphididae) and phylloxerans (Phylloxeridae), make up the infraorder Aphidomorpha. Some adelgid species are highly destructive to forest ecosystems such as Adelges tsugae, Adelges piceae, Adelges laricis, Pineus pini, and Pineus boerneri. Despite this, there are no high-quality genomic resources for adelgids, hindering advanced genomic analyses within Adelgidae and among Aphidomorpha. Here, we used PacBio continuous long-read and Illumina RNA-sequencing to construct a high-quality draft genome assembly for the Cooley spruce gall adelgid, Adelges cooleyi (Gillette), a gall-forming species endemic to North America. The assembled genome is 270.2 Mb in total size and has scaffold and contig N50 statistics of 14.87 and 7.18 Mb, respectively. There are 24,967 predicted coding sequences, and the assembly completeness is estimated at 98.1 and 99.6% with core BUSCO gene sets of Arthropoda and Hemiptera, respectively. Phylogenomic analysis using the A. cooleyi genome, 3 publicly available adelgid transcriptomes, 4 phylloxera transcriptomes, the Daktulosphaira vitifoliae (grape phylloxera) genome, 4 aphid genomes, and 2 outgroup coccoid genomes fully resolves adelgids and phylloxerans as sister taxa. The mitochondrial genome is 24 kb, among the largest in insects sampled to date, with 39.4% composed of noncoding regions. This genome assembly is currently the only genome-scale, annotated assembly for adelgids and will be a valuable resource for understanding the ecology and evolution of Aphidomorpha.
Collapse
Affiliation(s)
- Dustin T Dial
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | | | - Bryan M T Brunet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6
| | - Nathan P Havill
- USDA Forest Service, Northern Research Station, Hamden, CT 06514, USA
| | | | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Ling MK, Yap NWL, Iesa IB, Yip ZT, Huang D, Quek ZBR. Revisiting mitogenome evolution in Medusozoa with eight new mitochondrial genomes. iScience 2023; 26:108252. [PMID: 37965150 PMCID: PMC10641506 DOI: 10.1016/j.isci.2023.108252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Mitogenomics has improved our understanding of medusozoan phylogeny. However, sequenced medusozoan mitogenomes remain scarce, and Medusozoa phylogeny studies often analyze mitogenomic sequences without incorporating mitogenome rearrangements. To better understand medusozoan evolution, we analyzed Medusozoa mitogenome phylogeny by sequencing and assembling eight mitogenomes from three classes (Cubozoa, Hydrozoa, and Scyphozoa). We reconstructed the mitogenome phylogeny using these mitogenomes and 84 other existing cnidarian mitogenomes to study mitochondrial gene rearrangements. All reconstructed mitogenomes had 13 mitochondrial protein-coding genes and two ribosomal genes typical for Medusozoa. Non-cubozoan mitogenomes were all linear and had typical gene orders, while arrangement of genes in the fragmented Cubozoa (Morbakka sp.) mitogenome differed from other Cubozoa mitogenomes. Gene order comparisons and ancestral state reconstruction suggest minimal rearrangements within medusozoan classes except for Hydrozoa. Our findings support a staurozoan ancestral medusozoan gene order, expand the pool of available medusozoan mitogenomes, and enhance our understanding of medusozoan phylogenetic relationships.
Collapse
Affiliation(s)
- Min Kang Ling
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Nicholas Wei Liang Yap
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- St. John’s Island National Marine Laboratory, c/o Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
| | - Iffah Binte Iesa
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Zhi Ting Yip
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Singapore
| | - Zheng Bin Randolph Quek
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Yale-NUS College, National University of Singapore, Singapore 138527, Singapore
| |
Collapse
|
5
|
Gastineau R, Otis C, Boyle B, Lemieux C, Turmel M, St-Cyr J, Koken M. The mitochondrial genome of the bioluminescent fish Malacosteus niger Ayres, 1848 (Stomiidae, Actinopterygii) is large and complex, and contains an inverted-repeat structure. Zookeys 2023; 1157:177-191. [DOI: 10.3897/zookeys.1157.97921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/17/2023] [Indexed: 04/08/2023] Open
Abstract
We determined the complete mitogenome sequence of the bioluminescent fish Malacosteus niger using long-read sequencing technologies. The 21,263 bp mitogenome features a complex structure with two copies of a 1198-bp inverted-repeat and a region of 2616-bp containing alternating copies of 16 and 26 bp repeat elements. Whole mitogenome phylogenies inferred from both nucleotide and amino-acid datasets place M. niger among Melanostomiinae. The need for additional complete mitogenome sequences from the subfamily Malacosteinae is discussed.
Collapse
|
6
|
Graham AM, Barreto FS. Myxozoans (Cnidaria) do not Retain Key Oxygen-Sensing and Homeostasis Toolkit Genes. Genome Biol Evol 2023; 15:6989568. [PMID: 36648250 PMCID: PMC9887271 DOI: 10.1093/gbe/evad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
For aerobic organisms, both the hypoxia-inducible factor pathway and the mitochondrial genomes are key players in regulating oxygen homeostasis. Recent work has suggested that these mechanisms are not as highly conserved as previously thought, prompting more surveys across animal taxonomic levels, which would permit testing of hypotheses about the ecological conditions facilitating evolutionary loss of such genes. The Phylum Cnidaria is known to harbor wide variation in mitochondrial chromosome morphology, including an extreme example, in the Myxozoa, of mitochondrial genome loss. Because myxozoans are obligate endoparasites, frequently encountering hypoxic environments, we hypothesize that variation in environmental oxygen availability could be a key determinant in the evolution of metabolic gene networks associated with oxygen-sensing, hypoxia-response, and energy production. Here, we surveyed genomes and transcriptomes across 46 cnidarian species for the presence of HIF pathway members, as well as for an assortment of hypoxia, mitochondrial, and stress-response toolkit genes. We find that presence of the HIF pathway, as well as number of genes associated with mitochondria, hypoxia, and stress response, do not vary in parallel to mitochondrial genome morphology. More interestingly, we uncover evidence that myxozoans have lost the canonical HIF pathway repression machinery, potentially altering HIF pathway functionality to work under the specific conditions of their parasitic lifestyles. In addition, relative to other cnidarians, myxozoans show loss of large proportions of genes associated with the mitochondrion and involved in response to hypoxia and general stress. Our results provide additional evidence that the HIF regulatory machinery is evolutionarily labile and that variations in the canonical system have evolved in many animal groups.
Collapse
Affiliation(s)
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| |
Collapse
|