1
|
Karn RC, Yazdanifar G, Pezer Ž, Boursot P, Laukaitis CM. Androgen-Binding Protein (Abp) Evolutionary History: Has Positive Selection Caused Fixation of Different Paralogs in Different Taxa of the Genus Mus? Genome Biol Evol 2021; 13:6377336. [PMID: 34581786 PMCID: PMC8525912 DOI: 10.1093/gbe/evab220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
Comparison of the androgen-binding protein (Abp) gene regions of six Mus genomes provides insights into the evolutionary history of this large murid rodent gene family. We identified 206 unique Abp sequences and mapped their physical relationships. At least 48 are duplicated and thus present in more than two identical copies. All six taxa have substantially elevated LINE1 densities in Abp regions compared with flanking regions, similar to levels in mouse and rat genomes, although nonallelic homologous recombination seems to have only occurred in Mus musculus domesticus. Phylogenetic and structural relationships support the hypothesis that the extensive Abp expansion began in an ancestor of the genus Mus. We also found duplicated Abpa27's in two taxa, suggesting that previously reported selection on a27 alleles may have actually detected selection on haplotypes wherein different paralogs were lost in each. Other studies reported that a27 gene and species trees were incongruent, likely because of homoplasy. However, L1MC3 phylogenies, supposed to be homoplasy-free compared with coding regions, support our paralog hypothesis because the L1MC3 phylogeny was congruent with the a27 topology. This paralog hypothesis provides an alternative explanation for the origin of the a27 gene that is suggested to be fixed in the three different subspecies of Mus musculus and to mediate sexual selection and incipient reinforcement between at least two of them. Finally, we ask why there are so many Abp genes, especially given the high frequency of pseudogenes and suggest that relaxed selection operates over a large part of the gene clusters.
Collapse
Affiliation(s)
- Robert C Karn
- Gene Networks in Neural and Developmental Plasticity, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | | | - Željka Pezer
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Pierre Boursot
- Institut des Sciences de l'Evolution Montpellier, Université de Montpellier, CNRS, IRD, France
| | - Christina M Laukaitis
- Carle Health and Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, USA
| |
Collapse
|
2
|
Clifton BD, Jimenez J, Kimura A, Chahine Z, Librado P, Sánchez-Gracia A, Abbassi M, Carranza F, Chan C, Marchetti M, Zhang W, Shi M, Vu C, Yeh S, Fanti L, Xia XQ, Rozas J, Ranz JM. Understanding the Early Evolutionary Stages of a Tandem Drosophilamelanogaster-Specific Gene Family: A Structural and Functional Population Study. Mol Biol Evol 2021; 37:2584-2600. [PMID: 32359138 PMCID: PMC7475035 DOI: 10.1093/molbev/msaa109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene families underlie genetic innovation and phenotypic diversification. However, our understanding of the early genomic and functional evolution of tandemly arranged gene families remains incomplete as paralog sequence similarity hinders their accurate characterization. The Drosophila melanogaster-specific gene family Sdic is tandemly repeated and impacts sperm competition. We scrutinized Sdic in 20 geographically diverse populations using reference-quality genome assemblies, read-depth methodologies, and qPCR, finding that ∼90% of the individuals harbor 3-7 copies as well as evidence of population differentiation. In strains with reliable gene annotations, copy number variation (CNV) and differential transposable element insertions distinguish one structurally distinct version of the Sdic region per strain. All 31 annotated copies featured protein-coding potential and, based on the protein variant encoded, were categorized into 13 paratypes differing in their 3' ends, with 3-5 paratypes coexisting in any strain examined. Despite widespread gene conversion, the only copy present in all strains has functionally diverged at both coding and regulatory levels under positive selection. Contrary to artificial tandem duplications of the Sdic region that resulted in increased male expression, CNV in cosmopolitan strains did not correlate with expression levels, likely as a result of differential genome modifier composition. Duplicating the region did not enhance sperm competitiveness, suggesting a fitness cost at high expression levels or a plateau effect. Beyond facilitating a minimally optimal expression level, Sdic CNV acts as a catalyst of protein and regulatory diversity, showcasing a possible evolutionary path recently formed tandem multigene families can follow toward long-term consolidation in eukaryotic genomes.
Collapse
Affiliation(s)
- Bryan D Clifton
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Jamie Jimenez
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Ashlyn Kimura
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Zeinab Chahine
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Pablo Librado
- Laboratoire AMIS CNRS UMR 5288, Faculté de Médicine de Purpan, Université Paul Sabatier, Toulouse, France
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadistica, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - Mashya Abbassi
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Francisco Carranza
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Carolus Chan
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Marcella Marchetti
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Rome, Italy.,Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Christine Vu
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| | - Shudan Yeh
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA.,Department of Life Sciences, National Central University, Taoyuan City, Zhongli District, Taiwan
| | - Laura Fanti
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Rome, Italy.,Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadistica, Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Barcelona, Spain
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA
| |
Collapse
|
3
|
Pezer Ž, Chung AG, Karn RC, Laukaitis CM. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions. Genome Biol Evol 2018; 9:3858091. [PMID: 28575204 PMCID: PMC5513543 DOI: 10.1093/gbe/evx099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2017] [Indexed: 12/26/2022] Open
Abstract
The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice.
Collapse
Affiliation(s)
- Željka Pezer
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Ruđer Bošković Institute, Zagreb, Croatia
| | - Amanda G Chung
- Department of Medicine, College of Medicine, University of Arizona
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona
| | | |
Collapse
|
4
|
Studies of an Androgen-Binding Protein Knockout Corroborate a Role for Salivary ABP in Mouse Communication. Genetics 2017; 205:1517-1527. [PMID: 28159752 DOI: 10.1534/genetics.116.194571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/26/2017] [Indexed: 11/18/2022] Open
Abstract
The house mouse Androgen-binding protein (Abp) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg, encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27, by replacing them with the neomycin resistance gene. The knockout genotype (-/-) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the -/- genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the -/- animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the -/- genotype, compared with their +/+ and +/- siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP.
Collapse
|
5
|
Janoušek V, Laukaitis CM, Yanchukov A, Karn RC. The Role of Retrotransposons in Gene Family Expansions in the Human and Mouse Genomes. Genome Biol Evol 2016; 8:2632-50. [PMID: 27503295 PMCID: PMC5631067 DOI: 10.1093/gbe/evw192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Retrotransposons comprise a large portion of mammalian genomes. They contribute to structural changes and more importantly to gene regulation. The expansion and diversification of gene families have been implicated as sources of evolutionary novelties. Given the roles retrotransposons play in genomes, their contribution to the evolution of gene families warrants further exploration. In this study, we found a significant association between two major retrotransposon classes, LINEs and LTRs, and lineage-specific gene family expansions in both the human and mouse genomes. The distribution and diversity differ between LINEs and LTRs, suggesting that each has a distinct involvement in gene family expansion. LTRs are associated with open chromatin sites surrounding the gene families, supporting their involvement in gene regulation, whereas LINEs may play a structural role promoting gene duplication. Our findings also suggest that gene family expansions, especially in the mouse genome, undergo two phases. The first phase is characterized by elevated deposition of LTRs and their utilization in reshaping gene regulatory networks. The second phase is characterized by rapid gene family expansion due to continuous accumulation of LINEs and it appears that, in some instances at least, this could become a runaway process. We provide an example in which this has happened and we present a simulation supporting the possibility of the runaway process. Altogether we provide evidence of the contribution of retrotransposons to the expansion and evolution of gene families. Our findings emphasize the putative importance of these elements in diversification and adaptation in the human and mouse lineages.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic Institute of Vertebrate Biology, ASCR, Brno, Czech Republic
| | | | - Alexey Yanchukov
- Institute of Vertebrate Biology, ASCR, Brno, Czech Republic Department of Biology, Faculty of Arts and Sciences, Bülent Ecevit University, Zonguldak, Turkey
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona
| |
Collapse
|
6
|
Pieczonka TD, Bragiel AM, Horikawa H, Fukuta K, Yoshioka M, Ishikawa Y. Long-term administration of whey alters atrophy, gene expression profiles and dysfunction of salivary glands in elderly rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Karn RC, Laukaitis CM. Comparative Proteomics of Mouse Tears and Saliva: Evidence from Large Protein Families for Functional Adaptation. Proteomes 2015; 3:283-297. [PMID: 28248272 PMCID: PMC5217377 DOI: 10.3390/proteomes3030283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 07/29/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022] Open
Abstract
We produced a tear proteome of the genome mouse, C57BL/6, that contained 139 different protein identifications: 110 from a two-dimensional (2D) gel with subsequent trypsin digestion, 19 from a one-dimensional (1D) gel with subsequent trypsin digestion and ten from a 1D gel with subsequent Asp-N digestion. We compared this tear proteome with a C57BL/6 mouse saliva proteome produced previously. Sixteen of the 139 tear proteins are shared between the two proteomes, including six proteins that combat microbial growth. Among the 123 other tear proteins, were members of four large protein families that have no counterparts in humans: Androgen-binding proteins (ABPs) with different members expressed in the two proteomes, Exocrine secreted peptides (ESPs) expressed exclusively in the tear proteome, major urinary proteins (MUPs) expressed in one or both proteomes and the mouse-specific Kallikreins (subfamily b KLKs) expressed exclusively in the saliva proteome. All four families have members with suggested roles in mouse communication, which may influence some aspect of reproductive behavior. We discuss this in the context of functional adaptation involving tear and saliva proteins in the secretions of mouse lacrimal and salivary glands, respectively.
Collapse
Affiliation(s)
- Robert C Karn
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
8
|
Selection shaped the evolution of mouse androgen-binding protein (ABP) function and promoted the duplication of Abp genes. Biochem Soc Trans 2015; 42:851-60. [PMID: 25109968 DOI: 10.1042/bst20140042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present article, we summarize two aspects of our work on mouse ABP (androgen-binding protein): (i) the sexual selection function producing incipient reinforcement on the European house mouse hybrid zone, and (ii) the mechanism behind the dramatic expansion of the Abp gene region in the mouse genome. Selection unifies these two components, although the ways in which selection has acted differ. At the functional level, strong positive selection has acted on key sites on the surface of one face of the ABP dimer, possibly to influence binding to a receptor. A different kind of selection has apparently driven the recent and rapid expansion of the gene region, probably by increasing the amount of Abp transcript, in one or both of two ways. We have shown previously that groups of Abp genes behave as LCRs (low-copy repeats), duplicating as relatively large blocks of genes by NAHR (non-allelic homologous recombination). The second type of selection involves the close link between the accumulation of L1 elements and the expansion of the Abp gene family by NAHR. It is probably predicated on an initial selection for increased transcription of existing Abp genes and/or an increase in Abp gene number providing more transcriptional sites. Either or both could increase initial transcript production, a quantitative change similar to increasing the volume of a radio transmission. In closing, we also provide a note on Abp gene nomenclature.
Collapse
|
9
|
Karn RC, Chung AG, Laukaitis CM. Did androgen-binding protein paralogs undergo neo- and/or Subfunctionalization as the Abp gene region expanded in the mouse genome? PLoS One 2014; 9:e115454. [PMID: 25531410 PMCID: PMC4274081 DOI: 10.1371/journal.pone.0115454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.
Collapse
Affiliation(s)
- Robert C. Karn
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
- * E-mail:
| | - Amanda G. Chung
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
| | - Christina M. Laukaitis
- College of Medicine, University of Arizona, Tucson, Arizona, 85724, United States of America
| |
Collapse
|
10
|
Message in a bottle: major urinary proteins and their multiple roles in mouse intraspecific chemical communication. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Ibarra-Soria X, Levitin MO, Logan DW. The genomic basis of vomeronasal-mediated behaviour. Mamm Genome 2013; 25:75-86. [PMID: 23884334 PMCID: PMC3916702 DOI: 10.1007/s00335-013-9463-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/19/2013] [Indexed: 11/04/2022]
Abstract
The vomeronasal organ (VNO) is a chemosensory subsystem found in the nose of most mammals. It is principally tasked with detecting pheromones and other chemical signals that initiate innate behavioural responses. The VNO expresses subfamilies of vomeronasal receptors (VRs) in a cell-specific manner: each sensory neuron expresses just one or two receptors and silences all the other receptor genes. VR genes vary greatly in number within mammalian genomes, from no functional genes in some primates to many hundreds in rodents. They bind semiochemicals, some of which are also encoded in gene families that are coexpanded in species with correspondingly large VR repertoires. Protein and peptide cues that activate the VNO tend to be expressed in exocrine tissues in sexually dimorphic, and sometimes individually variable, patterns. Few chemical ligand–VR–behaviour relationships have been fully elucidated to date, largely due to technical difficulties in working with large, homologous gene families with high sequence identity. However, analysis of mouse lines with mutations in genes involved in ligand–VR signal transduction has revealed that the VNO mediates a range of social behaviours, including male–male and maternal aggression, sexual attraction, lordosis, and selective pregnancy termination, as well as interspecific responses such as avoidance and defensive behaviours. The unusual logic of VR expression now offers an opportunity to map the specific neural circuits that drive these behaviours.
Collapse
Affiliation(s)
- Ximena Ibarra-Soria
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | | |
Collapse
|
12
|
Janoušek V, Karn RC, Laukaitis CM. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family. BMC Evol Biol 2013; 13:107. [PMID: 23718880 PMCID: PMC3669608 DOI: 10.1186/1471-2148-13-107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/14/2013] [Indexed: 12/01/2022] Open
Abstract
Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague 128 43, Czech Republic
| | | | | |
Collapse
|
13
|
Evolution of the ABPA subunit of androgen-binding protein expressed in the submaxillary glands in New and Old World rodent taxa. J Mol Evol 2013; 76:324-31. [PMID: 23636475 DOI: 10.1007/s00239-013-9561-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
The salivary androgen-binding proteins (ABPs) are members of the secretoglobin gene family present in mammals. Each ABP is a heterodimer assembled as an ABPA subunit encoded by an Abpa gene and linked by disulfide bridges to an ABPBG subunit encoded by an Abpbg gene. The ABP dimers are secreted into the saliva of mice and then transferred to the pelage after grooming and subsequently to the environment allowing an animal to mark territory with a biochemical signal. The putative role of the mouse salivary ABPs is that of pheromones mediating mate selection resulting in assortative mating in the Mus musculus species complex. We focused on comparing patterns of molecular evolution between the Abpa genes expressed in the submaxillary glands of species of New World and Old World muroids. We found that in both sets of rodents the Abpa genes expressed in the submaxillary glands appear to be evolving under a similar evolutionary regime, with relatively high nonsynonymous substitution rates, suggesting that ABP might play a similar biological role in both systems. Thus, ABP could be involved with mate recognition and species isolation in New World as well as Old World muroids.
Collapse
|
14
|
Karn RC, Laukaitis CM. The roles of gene duplication, gene conversion and positive selection in rodent Esp and Mup pheromone gene families with comparison to the Abp family. PLoS One 2012; 7:e47697. [PMID: 23094077 PMCID: PMC3477143 DOI: 10.1371/journal.pone.0047697] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/18/2012] [Indexed: 11/22/2022] Open
Abstract
Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.
Collapse
Affiliation(s)
- Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America.
| | | |
Collapse
|
15
|
Wynn EH, Sánchez-Andrade G, Carss KJ, Logan DW. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice. BMC Genomics 2012; 13:415. [PMID: 22908939 PMCID: PMC3460788 DOI: 10.1186/1471-2164-13-415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/18/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Vomeronasal receptors (VRs), expressed in sensory neurons of the vomeronasal organ, are thought to bind pheromones and mediate innate behaviours. The mouse reference genome has over 360 functional VRs arranged in highly homologous clusters, but the vast majority are of unknown function. Differences in these receptors within and between closely related species of mice are likely to underpin a range of behavioural responses. To investigate these differences, we interrogated the VR gene repertoire from 17 inbred strains of mice using massively parallel sequencing. RESULTS Approximately half of the 6222 VR genes that we investigated could be successfully resolved, and those that were unambiguously mapped resulted in an extremely accurate dataset. Collectively VRs have over twice the coding sequence variation of the genome average; but we identify striking non-random distribution of these variants within and between genes, clusters, clades and functional classes of VRs. We show that functional VR gene repertoires differ considerably between different Mus subspecies and species, suggesting these receptors may play a role in mediating behavioural adaptations. Finally, we provide evidence that widely-used, highly inbred laboratory-derived strains have a greatly reduced, but not entirely redundant capacity for differential pheromone-mediated behaviours. CONCLUSIONS Together our results suggest that the unusually variable VR repertoires of mice have a significant role in encoding differences in olfactory-mediated responses and behaviours. Our dataset has expanded over nine fold the known number of mouse VR alleles, and will enable mechanistic analyses into the genetics of innate behavioural differences in mice.
Collapse
Affiliation(s)
| | | | - Keren J Carss
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | |
Collapse
|
16
|
Jackson BC, Thompson DC, Wright MW, McAndrews M, Bernard A, Nebert DW, Vasiliou V. Update of the human secretoglobin (SCGB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum Genomics 2012; 5:691-702. [PMID: 22155607 PMCID: PMC3251818 DOI: 10.1186/1479-7364-5-6-691] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The secretoglobins (SCGBs) comprise a family of small, secreted proteins found in animals exclusively of mammalian lineage. There are 11 human SCGB genes and five pseudogenes. Interestingly, mice have 68 Scgb genes, four of which are highly orthologous to human SCGB genes; the remainder represent an 'evolutionary bloom' and make up a large gene family represented by only six counterparts in humans. SCGBs are found in high concentrations in many mammalian secretions, including fluids of the lung, lacrimal gland, salivary gland, prostate and uterus. Whereas the biological activities of most individual SCGBs have not been fully characterised, what already has been discovered suggests that this family has an important role in the modulation of inflammation, tissue repair and tumorigenesis. In mice, the large Scgb1b and Scgb2b gene families encode the androgen-binding proteins, which have been shown to play a role in mate selection. Although much has been learned about SCGBs in recent years, clearly more research remains to be done to allow a better understanding of the roles of these proteins in human health and disease. Such information is predicted to reveal valuable novel drug targets for the treatment of inflammation, as well as designing biomarkers that might identify tissue damage or cancer.
Collapse
Affiliation(s)
- Brian C Jackson
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Joly E. The existence of species rests on a metastable equilibrium between inbreeding and outbreeding. An essay on the close relationship between speciation, inbreeding and recessive mutations. Biol Direct 2011; 6:62. [PMID: 22152499 PMCID: PMC3275546 DOI: 10.1186/1745-6150-6-62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/09/2011] [Indexed: 12/19/2022] Open
Abstract
Background Speciation corresponds to the progressive establishment of reproductive barriers between groups of individuals derived from an ancestral stock. Since Darwin did not believe that reproductive barriers could be selected for, he proposed that most events of speciation would occur through a process of separation and divergence, and this point of view is still shared by most evolutionary biologists today. Results I do, however, contend that, if so much speciation occurs, the most likely explanation is that there must be conditions where reproductive barriers can be directly selected for. In other words, situations where it is advantageous for individuals to reproduce preferentially within a small group and reduce their breeding with the rest of the ancestral population. This leads me to propose a model whereby new species arise not by populations splitting into separate branches, but by small inbreeding groups "budding" from an ancestral stock. This would be driven by several advantages of inbreeding, and mainly by advantageous recessive phenotypes, which could only be retained in the context of inbreeding. Reproductive barriers would thus not arise as secondary consequences of divergent evolution in populations isolated from one another, but under the direct selective pressure of ancestral stocks. Many documented cases of speciation in natural populations appear to fit the model proposed, with more speciation occurring in populations with high inbreeding coefficients, and many recessive characters identified as central to the phenomenon of speciation, with these recessive mutations expected to be surrounded by patterns of limited genomic diversity. Conclusions Whilst adaptive evolution would correspond to gains of function that would, most of the time, be dominant, this type of speciation by budding would thus be driven by mutations resulting in the advantageous loss of certain functions since recessive mutations very often correspond to the inactivation of a gene. A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to extinction. Reviewer names Eugene V. Koonin, Patrick Nosil (nominated by Dr Jerzy Jurka), Pierre Pontarotti
Collapse
Affiliation(s)
- Etienne Joly
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, F-31077 Toulouse, France.
| |
Collapse
|
18
|
Positive selection shaped the convergent evolution of independently expanded kallikrein subfamilies expressed in mouse and rat saliva proteomes. PLoS One 2011; 6:e20979. [PMID: 21695125 PMCID: PMC3114847 DOI: 10.1371/journal.pone.0020979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/16/2011] [Indexed: 12/16/2022] Open
Abstract
We performed proteomics studies of salivas from the genome mouse (C57BL/6 strain) and the genome rat (BN/SsNHsd/Mcwi strain). Our goal was to identify salivary proteins with one or more of three characteristics that may indicate that they have been involved in adaptation: 1) rapid expansion of their gene families; 2) footprints of positive selection; and/or 3) sex-limited expression. The results of our proteomics studies allow direct comparison of the proteins expressed and their levels between the sexes of the two rodent species. Twelve members of the Mus musculus species-specific kallikrein subfamily Klk1b showed sex-limited expression in the mouse saliva proteomes. By contrast, we did not find any of the Rattus norvegicus species-specific kallikrein subfamily Klk1c proteins in male or female genome rat, nor transcripts in their submandibular glands. On the other hand, we detected expression of this family as transcripts in the submandibular glands of both sexes of Sprague-Dawley rats. Using the CODEML program in the PAML package, we demonstrate that the two rodent kallikrein subfamilies have apparently evolved rapidly under the influence of positive selection that continually remodeled the amino acid sites on the same face in the members of the subfamilies. Thus, although their kallikrein subfamily expansions were independent, this evolutionary pattern has occurred in parallel in the two rodent species, suggesting a form of convergent evolution at the molecular level. On the basis of this new data, we suggest that the previous speculative function of the species-specific rodent kallikreins as important solely in wound healing in males be investigated further. In addition to or instead of that function, we propose that their sex-limited expression, coupled with their rapid evolution may be clues to an as-yet-undetermined interaction between the sexes.
Collapse
|
19
|
Meslin C, Brimau F, Nagnan-Le Meillour P, Callebaut I, Pascal G, Monget P. The evolutionary history of the SAL1 gene family in eutherian mammals. BMC Evol Biol 2011; 11:148. [PMID: 21619679 PMCID: PMC3128046 DOI: 10.1186/1471-2148-11-148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/28/2011] [Indexed: 11/16/2022] Open
Abstract
Background SAL1 (salivary lipocalin) is a member of the OBP (Odorant Binding Protein) family and is involved in chemical sexual communication in pig. SAL1 and its relatives may be involved in pheromone and olfactory receptor binding and in pre-mating behaviour. The evolutionary history and the selective pressures acting on SAL1 and its orthologous genes have not yet been exhaustively described. The aim of the present work was to study the evolution of these genes, to elucidate the role of selective pressures in their evolution and the consequences for their functions. Results Here, we present the evolutionary history of SAL1 gene and its orthologous genes in mammals. We found that (1) SAL1 and its related genes arose in eutherian mammals with lineage-specific duplications in rodents, horse and cow and are lost in human, mouse lemur, bushbaby and orangutan, (2) the evolution of duplicated genes of horse, rat, mouse and guinea pig is driven by concerted evolution with extensive gene conversion events in mouse and guinea pig and by positive selection mainly acting on paralogous genes in horse and guinea pig, (3) positive selection was detected for amino acids involved in pheromone binding and amino acids putatively involved in olfactory receptor binding, (4) positive selection was also found for lineage, indicating a species-specific strategy for amino acid selection. Conclusions This work provides new insights into the evolutionary history of SAL1 and its orthologs. On one hand, some genes are subject to concerted evolution and to an increase in dosage, suggesting the need for homogeneity of sequence and function in certain species. On the other hand, positive selection plays a role in the diversification of the functions of the family and in lineage, suggesting adaptive evolution, with possible consequences for speciation and for the reinforcement of prezygotic barriers.
Collapse
Affiliation(s)
- Camille Meslin
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
20
|
Bímová BV, Macholán M, Baird SJE, Munclinger P, Dufková P, Laukaitis CM, Karn RC, Luzynski K, Tucker PK, Piálek J. Reinforcement selection acting on the European house mouse hybrid zone. Mol Ecol 2011; 20:2403-24. [PMID: 21521395 DOI: 10.1111/j.1365-294x.2011.05106.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Behavioural isolation may lead to complete speciation when partial postzygotic isolation acts in the presence of divergent-specific mate-recognition systems. These conditions exist where Mus musculus musculus and M. m. domesticus come into contact and hybridize. We studied two mate-recognition signal systems, based on urinary and salivary proteins, across a Central European portion of the mouse hybrid zone. Introgression of the genomic regions responsible for these signals: the major urinary proteins (MUPs) and androgen binding proteins (ABPs), respectively, was compared to introgression at loci assumed to be nearly neutral and those under selection against hybridization. The preference of individuals taken from across the zone regarding these signals was measured in Y mazes, and we develop a model for the analysis of the transition of such traits under reinforcement selection. The strongest assortative preferences were found in males for urine and females for ABP. Clinal analyses confirm nearly neutral introgression of an Abp locus and two loci closely linked to the Abp gene cluster, whereas two markers flanking the Mup gene region reveal unexpected introgression. Geographic change in the preference traits matches our reinforcement selection model significantly better than standard cline models. Our study confirms that behavioural barriers are important components of reproductive isolation between the house mouse subspecies.
Collapse
Affiliation(s)
- Barbora Vošlajerová Bímová
- Department of Population Biology, Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
A candidate subspecies discrimination system involving a vomeronasal receptor gene with different alleles fixed in M. m. domesticus and M. m. musculus. PLoS One 2010; 5. [PMID: 20844586 PMCID: PMC2936562 DOI: 10.1371/journal.pone.0012638] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/08/2010] [Indexed: 11/19/2022] Open
Abstract
Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown) that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus) meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s), also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO), by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24) are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD) between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP) capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(sub)specific polymorphism but no inter(sub)specific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive selection, but was derived from an introgressed allele, possibly from Mus spretus.
Collapse
|