1
|
Santos JL, Nick F, Adhitama N, Fields PD, Stillman JH, Kato Y, Watanabe H, Ebert D. Trehalose mediates salinity-stress tolerance in natural populations of a freshwater crustacean. Curr Biol 2024; 34:4160-4169.e7. [PMID: 39168123 DOI: 10.1016/j.cub.2024.07.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Salinization poses an increasing problem worldwide, threatening freshwater organisms and raising questions about their ability to adapt. We explored the mechanisms enabling a planktonic crustacean to tolerate elevated salinity. By gradually raising water salinity in clonal cultures from 185 Daphnia magna populations, we showed that salt tolerance strongly correlates with native habitat salinity, indicating local adaptation. A genome-wide association study (GWAS) further revealed a major effect of the Alpha,alpha-trehalose-phosphate synthase (TPS) gene, suggesting that trehalose production facilitates salinity tolerance. Salinity-tolerant animals showed a positive correlation between water salinity and trehalose concentrations, while intolerant animals failed to produce trehalose. Animals with a non-functional TPS gene, generated through CRISPR-Cas9, supported the trehalose role in salinity stress. Our study highlights how a keystone freshwater animal adapts to salinity stress using an evolutionary mechanism known in bacteria, plants, and arthropods.
Collapse
Affiliation(s)
- Joana L Santos
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
| | - Fabienne Nick
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Japan
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jonathon H Stillman
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland; Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132, USA; Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building 3140, Berkeley, CA 94720, USA
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Japan
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland.
| |
Collapse
|
2
|
Church SH, Mah JL, Dunn CW. Integrating phylogenies into single-cell RNA sequencing analysis allows comparisons across species, genes, and cells. PLoS Biol 2024; 22:e3002633. [PMID: 38787797 PMCID: PMC11125556 DOI: 10.1371/journal.pbio.3002633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
Comparisons of single-cell RNA sequencing (scRNA-seq) data across species can reveal links between cellular gene expression and the evolution of cell functions, features, and phenotypes. These comparisons evoke evolutionary histories, as depicted by phylogenetic trees, that define relationships between species, genes, and cells. This Essay considers each of these in turn, laying out challenges and solutions derived from a phylogenetic comparative approach and relating these solutions to previously proposed methods for the pairwise alignment of cellular dimensional maps. This Essay contends that species trees, gene trees, cell phylogenies, and cell lineages can all be reconciled as descriptions of the same concept-the tree of cellular life. By integrating phylogenetic approaches into scRNA-seq analyses, challenges for building informed comparisons across species can be overcome, and hypotheses about gene and cell evolution can be robustly tested.
Collapse
Affiliation(s)
- Samuel H. Church
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jasmine L. Mah
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Casey W. Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Meng A, Li X, Li Z, Miao F, Ma L, Li S, Sun W, Huang J, Yang G. Genome assembly of Melilotus officinalis provides a new reference genome for functional genomics. BMC Genom Data 2024; 25:37. [PMID: 38637749 PMCID: PMC11025269 DOI: 10.1186/s12863-024-01224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Sweet yellow clover (Melilotus officinalis) is a diploid plant (2n = 16) that is native to Europe. It is an excellent legume forage. It can both fix nitrogen and serve as a medicine. A genome assembly of Melilotus officinalis that was collected from Best corporation in Beijing is available based on Nanopore sequencing. The genome of Melilotus officinalis was sequenced, assembled, and annotated. RESULTS The latest PacBio third generation HiFi assembly and sequencing strategies were used to produce a Melilotus officinalis genome assembly size of 1,066 Mbp, contig N50 = 5 Mbp, scaffold N50 = 130 Mbp, and complete benchmarking universal single-copy orthologs (BUSCOs) = 96.4%. This annotation produced 47,873 high-confidence gene models, which will substantially aid in our research on molecular breeding. A collinear analysis showed that Melilotus officinalis and Medicago truncatula shared conserved synteny. The expansion and contraction of gene families showed that Melilotus officinalis expanded by 565 gene families and shrank by 56 gene families. The contacted gene families were associated with response to stimulus, nucleotide binding, and small molecule binding. Thus, it is related to a family of genes associated with peptidase activity, which could lead to better stress tolerance in plants. CONCLUSIONS In this study, the latest PacBio technology was used to assemble and sequence the genome of the Melilotus officinalis and annotate its protein-coding genes. These results will expand the genomic resources available for Melilotus officinalis and should assist in subsequent research on sweet yellow clover plants.
Collapse
Affiliation(s)
- Aoran Meng
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, 266109, Qingdao, China
| | - Xinru Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, 266109, Qingdao, China
| | - Zhiguang Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, 266109, Qingdao, China
| | - Fuhong Miao
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, 266109, Qingdao, China
| | - Lichao Ma
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, 266109, Qingdao, China
| | - Shuo Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, 266109, Qingdao, China
| | - Wenfei Sun
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, 266109, Qingdao, China
| | | | - Guofeng Yang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, 266109, Qingdao, China.
| |
Collapse
|
4
|
Jiang J, Xu YC, Zhang ZQ, Chen JF, Niu XM, Hou XH, Li XT, Wang L, Zhang YE, Ge S, Guo YL. Forces driving transposable element load variation during Arabidopsis range expansion. THE PLANT CELL 2024; 36:840-862. [PMID: 38036296 PMCID: PMC10980350 DOI: 10.1093/plcell/koad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Genetic load refers to the accumulated and potentially life-threatening deleterious mutations in populations. Understanding the mechanisms underlying genetic load variation of transposable element (TE) insertion, a major large-effect mutation, during range expansion is an intriguing question in biology. Here, we used 1,115 global natural accessions of Arabidopsis (Arabidopsis thaliana) to study the driving forces of TE load variation during its range expansion. TE load increased with range expansion, especially in the recently established Yangtze River basin population. Effective population size, which explains 62.0% of the variance in TE load, high transposition rate, and selective sweeps contributed to TE accumulation in the expanded populations. We genetically mapped and identified multiple candidate causal genes and TEs, and revealed the genetic architecture of TE load variation. Overall, this study reveals the variation in TE genetic load during Arabidopsis expansion and highlights the causes of TE load variation from the perspectives of both population genetics and quantitative genetics.
Collapse
Affiliation(s)
- Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Fu Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xin-Tong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wang
- Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Scanlan JL, Robin C. Phylogenomics of the Ecdysteroid Kinase-like (EcKL) Gene Family in Insects Highlights Roles in Both Steroid Hormone Metabolism and Detoxification. Genome Biol Evol 2024; 16:evae019. [PMID: 38291829 PMCID: PMC10859841 DOI: 10.1093/gbe/evae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
The evolutionary dynamics of large gene families can offer important insights into the functions of their individual members. While the ecdysteroid kinase-like (EcKL) gene family has previously been linked to the metabolism of both steroid molting hormones and xenobiotic toxins, the functions of nearly all EcKL genes are unknown, and there is little information on their evolution across all insects. Here, we perform comprehensive phylogenetic analyses on a manually annotated set of EcKL genes from 140 insect genomes, revealing the gene family is comprised of at least 13 subfamilies that differ in retention and stability. Our results show the only two genes known to encode ecdysteroid kinases belong to different subfamilies and therefore ecdysteroid metabolism functions must be spread throughout the EcKL family. We provide comparative phylogenomic evidence that EcKLs are involved in detoxification across insects, with positive associations between family size and dietary chemical complexity, and we also find similar evidence for the cytochrome P450 and glutathione S-transferase gene families. Unexpectedly, we find that the size of the clade containing a known ecdysteroid kinase is positively associated with host plant taxonomic diversity in Lepidoptera, possibly suggesting multiple functional shifts between hormone and xenobiotic metabolism. Our evolutionary analyses provide hypotheses of function and a robust framework for future experimental studies of the EcKL gene family. They also open promising new avenues for exploring the genomic basis of dietary adaptation in insects, including the classically studied coevolution of butterflies with their host plants.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
6
|
Hung TH, Wu ETY, Zeltiņš P, Jansons Ā, Ullah A, Erbilgin N, Bohlmann J, Bousquet J, Birol I, Clegg SM, MacKay JJ. Long-insert sequence capture detects high copy numbers in a defence-related beta-glucosidase gene βglu-1 with large variations in white spruce but not Norway spruce. BMC Genomics 2024; 25:118. [PMID: 38281030 PMCID: PMC10821269 DOI: 10.1186/s12864-024-09978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and βglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of βglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of βglu-1 and Ugt5 genes. We observed very large copy numbers of βglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of βglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.
Collapse
Affiliation(s)
- Tin Hang Hung
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| | - Ernest T Y Wu
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Pauls Zeltiņš
- Latvian State Forest Research Institute "Silava", Salaspils, 2169, Latvia
| | - Āris Jansons
- Latvian State Forest Research Institute "Silava", Salaspils, 2169, Latvia
| | - Aziz Ullah
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Sonya M Clegg
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK.
| |
Collapse
|
7
|
Deshpande A, Rivera-Vicéns RE, Thakur NL, Wörheide G. Transcriptomic response of Cinachyrella cf. cavernosa sponges to spatial competition. Mol Ecol 2023. [PMID: 37715558 DOI: 10.1111/mec.17122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/15/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
Spatial competition in the intertidal zones drives the community structure in marine benthic habitats. Organisms inhabiting these areas not only need to withstand fluctuations in temperature, water level, pH, and salinity but also need to compete for the best available space. Sponges are key members of the intertidal zones, and their life history processes (e.g. growth, reproduction, and regeneration) are affected by competition. Here, we used transcriptomics to investigate the effects of interspecific competition between the tetillid sponge Cinachyrella cf. cavernosa, the zoantharid Zoanthus sansibaricus and the macroalgae Dictyota ciliolata in the field. The analysis of differentially expressed genes showed that Z. sansibaricus was the more stressful competitor to C. cf. cavernosa, which showed an upregulation of cellular respiration under stress of competition. Similarly, an upregulation of energy metabolism, lipid metabolism and the heat-shock protein (HSP) 70 was also observed along with an increase in viral load and decreased ability to synthesize protein. A downregulation of purine and pyrimidine metabolism indicated a reduction in the physiological activities of the competing sponges. Moreover, a putative case of possible kleptocnidism, not previously reported in C. cf. cavernosa, was also observed. This study offers a glimpse into the inner workings of marine organisms competing for spatial resources using transcriptome data.
Collapse
Affiliation(s)
- Aabha Deshpande
- CSIR - National Institute of Oceanography, Dona Paula, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramón E Rivera-Vicéns
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | | | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, München, Germany
- SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
8
|
Dietz L, Eberle J, Mayer C, Kukowka S, Bohacz C, Baur H, Espeland M, Huber BA, Hutter C, Mengual X, Peters RS, Vences M, Wesener T, Willmott K, Misof B, Niehuis O, Ahrens D. Standardized nuclear markers improve and homogenize species delimitation in Metazoa. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lars Dietz
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Jonas Eberle
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
- Paris‐Lodron‐University Salzburg Austria
| | - Christoph Mayer
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Sandra Kukowka
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Claudia Bohacz
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Hannes Baur
- Naturhistorisches Museum Bern/Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Marianne Espeland
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Bernhard A. Huber
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Carl Hutter
- Museum of Natural Sciences and Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Ximo Mengual
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Ralph S. Peters
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Miguel Vences
- Technische Universität Braunschweig Braunschweig Germany
| | - Thomas Wesener
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| | - Keith Willmott
- Florida Museum of Natural History University of Florida Gainesville Florida USA
| | - Bernhard Misof
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
- Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
| | - Oliver Niehuis
- Abt. Evolutionsbiologie und Ökologie, Institut für Biologie I, Albert‐Ludwigs‐Universität Freiburg Freiburg im Breisgau Germany
| | - Dirk Ahrens
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB) Bonn Germany
| |
Collapse
|
9
|
De novo metatranscriptomic exploration of gene function in the millipede holobiont. Sci Rep 2022; 12:16173. [PMID: 36171216 PMCID: PMC9519908 DOI: 10.1038/s41598-022-19565-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Invertebrate-microbial associations are widespread in the biosphere and are often related to the function of novel genes, fitness advantages, and even speciation events. Despite ~ 13,000 species of millipedes identified across the world, millipedes and their gut microbiota are markedly understudied compared to other arthropods. Exploring the contribution of individual host-associated microbes is often challenging as many are uncultivable. In this study, we conducted metatranscriptomic profiling of different body segments of a millipede at the holobiont level. This is the first reported transcriptome assembly of a tropical millipede Telodeinopus aoutii (Demange, 1971), as well as the first study on any Myriapoda holobiont. High-throughput RNA sequencing revealed that Telodeinopus aoutii contained > 90% of the core Arthropoda genes. Proteobacteria, Bacteroidetes, Firmicutes, and Euryarchaeota represented dominant and functionally active phyla in the millipede gut, among which 97% of Bacteroidetes and 98% of Firmicutes were present exclusively in the hindgut. A total of 37,831 predicted protein-coding genes of millipede holobiont belonged to six enzyme classes. Around 35% of these proteins were produced by microbiota in the hindgut and 21% by the host in the midgut. Our results indicated that although major metabolic pathways operate at the holobiont level, the involvement of some host and microbial genes are mutually exclusive and microbes predominantly contribute to essential amino acid biosynthesis, short-chain fatty acid metabolism, and fermentation.
Collapse
|
10
|
Abstract
Neuropeptides are a diverse class of signaling molecules in metazoans. They occur in all animals with a nervous system and also in neuron-less placozoans. However, their origin has remained unclear because no neuropeptide shows deep homology across lineages, and none have been found in sponges. Here, we identify two neuropeptide precursors, phoenixin (PNX) and nesfatin, with broad evolutionary conservation. By database searches, sequence alignments, and gene-structure comparisons, we show that both precursors are present in bilaterians, cnidarians, ctenophores, and sponges. We also found PNX and a secreted nesfatin precursor homolog in the choanoflagellate Salpingoeca rosetta. PNX, in particular, is highly conserved, including its cleavage sites, suggesting that prohormone processing occurs also in choanoflagellates. In addition, based on phyletic patterns and negative pharmacological assays, we question the originally proposed GPR-173 (SREB3) as a PNX receptor. Our findings revealed that secreted neuropeptide homologs derived from longer precursors have premetazoan origins and thus evolved before neurons.
Collapse
Affiliation(s)
| | - Daniel Thiel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| |
Collapse
|
11
|
Feyereisen R. The P450 genes of the cat flea, Ctenocephalides felis: a CYPome in flux. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100032. [PMID: 36003260 PMCID: PMC9387431 DOI: 10.1016/j.cris.2022.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 10/26/2022]
Abstract
The genome of the cat flea, an ectoparasite of major veterinary importance and the first representative of the Siphonaptera, is highly unusual among arthropod genomes in showing a variable size and a very large number of gene duplications (Driscoll et al., 2020). The cat flea is the target of several classes of insecticides, justifying the description of its CYPome, the complement of P450s that are an important family of detoxification enzymes. 103 P450 genes were annotated on the nine chromosomes, with an additional 12 genes on small, extrachromosomal scaffolds. Only 34 genes were found as single sequences, with 47 duplicated two to four-fold. This included duplication of genes that are mostly single copy P450 genes in other arthropods. Large clusters of mitochondrial clan P450s were observed, resulting in a CYP12 bloom within this clan to 34 genes, a number of mitochondrial P450s not seen in other animals so far. The variable geometry of the cat flea CYPome poses a challenge to the study of P450 function in this species, and raises the question of the underlying causes of single copy control versus multicopy licence of P450 genes.
Collapse
Affiliation(s)
- René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| |
Collapse
|
12
|
Lee YCG. Synergistic epistasis of the deleterious effects of transposable elements. Genetics 2022; 220:iyab211. [PMID: 34888644 PMCID: PMC9097265 DOI: 10.1093/genetics/iyab211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022] Open
Abstract
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs' deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Rivera-Vicéns RE, Garcia-Escudero CA, Conci N, Eitel M, Wörheide G. TransPi - a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly. Mol Ecol Resour 2022; 22:2070-2086. [PMID: 35119207 DOI: 10.1111/1755-0998.13593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
The use of RNA-Seq data and the generation of de novo transcriptome assemblies have been pivotal for studies in ecology and evolution. This is distinctly true for non-model organisms, where no genome information is available. In such organisms, studies of differential gene expression, DNA enrichment baits design, and phylogenetics can all be accomplished with de novo transcriptome assemblies. Multiple tools are available for transcriptome assembly, however, no single tool can provide the best assembly for all datasets. Therefore, a multi assembler approach, followed by a reduction step, is often sought to generate an improved representation of the assembly. To reduce errors in these complex analyses while at the same time attaining reproducibility and scalability, automated workflows have been essential in the analysis of RNA-Seq data. However, most of these tools are designed for species where genome data is used as reference for the assembly process, limiting their use in non-model organisms. We present TransPi, a comprehensive pipeline for de novo transcriptome assembly, with minimum user input but without losing the ability of a thorough analysis. A combination of different model organisms, k-mer sets, read lengths, and read quantities were used for assessing the tool. Furthermore, a total of 49 non-model organisms, spanning different phyla, were also analysed. Compared to approaches using single assemblers only, TransPi produces higher BUSCO completeness percentages, and a concurrent significant reduction in duplication rates. TransPi is easy to configure and can be deployed seamlessly using Conda, Docker and Singularity.
Collapse
Affiliation(s)
- R E Rivera-Vicéns
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany
| | - C A Garcia-Escudero
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany.,Graduate School for Evolution, Ecology and Systematics, Faculty of Biology, Ludwig-Maximilians-Universität München, Biozentrum Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - N Conci
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany
| | - M Eitel
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany
| | - G Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333, München, Germany.,SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, 80333, München, Germany
| |
Collapse
|
14
|
Ruzzante L, Feron R, Reijnders MJMF, Thiébaut A, Waterhouse RM. Functional constraints on insect immune system components govern their evolutionary trajectories. Mol Biol Evol 2021; 39:6459179. [PMID: 34893861 PMCID: PMC8788225 DOI: 10.1093/molbev/msab352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.
Collapse
Affiliation(s)
- Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Antonin Thiébaut
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| |
Collapse
|
15
|
Kumimoto RW, Ellison CT, Toruño TY, Bak A, Zhang H, Casteel CL, Coaker G, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER Affects Both DNA Damage Responses and Immune Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:707923. [PMID: 34659282 PMCID: PMC8517334 DOI: 10.3389/fpls.2021.707923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
Numerous links have been reported between immune response and DNA damage repair pathways in both plants and animals but the precise nature of the relationship between these fundamental processes is not entirely clear. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT), a protein highly conserved across eukaryotes, acts as a negative regulator of immunity in Arabidopsis thaliana and plays a positive role in responses to DNA damaging radiation. We find xct mutants have enhanced resistance to infection by a virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000, and are hyper-responsive to the defense-activating hormone salicylic acid (SA) when compared to wild-type. Unlike most mutants with constitutive effector-triggered immunity (ETI), xct plants do not have increased levels of SA and retain enhanced immunity at elevated temperatures. Genetic analysis indicates XCT acts independently of NONEXPRESSOR OF PATHOGENESIS RELATED GENES1 (NPR1), which encodes a known SA receptor. Since DNA damage has been reported to potentiate immune responses, we next investigated the DNA damage response in our mutants. We found xct seedlings to be hypersensitive to UV-C and γ radiation and deficient in phosphorylation of the histone variant H2A.X, one of the earliest known responses to DNA damage. These data demonstrate that loss of XCT causes a defect in an early step of the DNA damage response pathway. Together, our data suggest that alterations in DNA damage response pathways may underlie the enhanced immunity seen in xct mutants.
Collapse
Affiliation(s)
- Roderick W. Kumimoto
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Cory T. Ellison
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Tania Y. Toruño
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Aurélie Bak
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Hongtao Zhang
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Clare L. Casteel
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, United States
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Stacey L. Harmer
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
İbrahimova U, Kumari P, Yadav S, Rastogi A, Antala M, Suleymanova Z, Zivcak M, Tahjib-Ul-Arif M, Hussain S, Abdelhamid M, Hajihashemi S, Yang X, Brestic M. Progress in understanding salt stress response in plants using biotechnological tools. J Biotechnol 2021; 329:180-191. [PMID: 33610656 DOI: 10.1016/j.jbiotec.2021.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/06/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.
Collapse
Affiliation(s)
- Ulkar İbrahimova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Pragati Kumari
- Department of Life Science, Singhania University, Jhunjhunu, Rajasthan 333515, India; Scientist Hostel-S-02, Chauras campus, Srinagar Garhwal, Uttarakhand 246174, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal (Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland.
| | - Michal Antala
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Zarifa Suleymanova
- Institute of Molecular Biology and Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku, AZ 1073, Azerbaijan
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry & Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Sajad Hussain
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | | | - Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616, Iran
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic.
| |
Collapse
|
17
|
Zdobnov EM, Kuznetsov D, Tegenfeldt F, Manni M, Berkeley M, Kriventseva EV. OrthoDB in 2020: evolutionary and functional annotations of orthologs. Nucleic Acids Res 2021; 49:D389-D393. [PMID: 33196836 PMCID: PMC7779051 DOI: 10.1093/nar/gkaa1009] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
OrthoDB provides evolutionary and functional annotations of orthologs, inferred for a vast number of available organisms. OrthoDB is leading in the coverage and genomic diversity sampling of Eukaryotes, Prokaryotes and Viruses, and the sampling of Bacteria is further set to increase three-fold. The user interface has been enhanced in response to the massive growth in data. OrthoDB provides three views on the data: (i) a list of orthologous groups related to a user query, which are now arranged to visualize their hierarchical relations, (ii) a detailed view of an orthologous group, now featuring a Sankey diagram to facilitate navigation between the levels of orthology, from more finely-resolved to more general groups of orthologs, as well as an arrangement of orthologs into an interactive organism taxonomy structure, and (iii) we added a gene-centric view, showing the gene functional annotations and the pair-wise orthologs in example species. The OrthoDB standalone software for delineation of orthologs, Orthologer, is freely available. Online BUSCO assessments and mapping to OrthoDB of user-uploaded data enable interactive exploration of related annotations and generation of comparative charts. OrthoDB strives to predict orthologs from the broadest coverage of species, as well as to extensively collate available functional annotations, and to compute evolutionary annotations such as evolutionary rate and phyletic profile. OrthoDB data can be assessed via SPARQL RDF, REST API, downloaded or browsed online from https://orthodb.org.
Collapse
Affiliation(s)
- Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Dmitry Kuznetsov
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Fredrik Tegenfeldt
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Mosè Manni
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Matthew Berkeley
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Evgenia V Kriventseva
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
18
|
Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simão FA, Zdobnov EM. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res 2020; 47:D807-D811. [PMID: 30395283 PMCID: PMC6323947 DOI: 10.1093/nar/gky1053] [Citation(s) in RCA: 535] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
OrthoDB (https://www.orthodb.org) provides evolutionary and functional annotations of orthologs. This update features a major scaling up of the resource coverage, sampling the genomic diversity of 1271 eukaryotes, 6013 prokaryotes and 6488 viruses. These include putative orthologs among 448 metazoan, 117 plant, 549 fungal, 148 protist, 5609 bacterial, and 404 archaeal genomes, picking up the best sequenced and annotated representatives for each species or operational taxonomic unit. OrthoDB relies on a concept of hierarchy of levels-of-orthology to enable more finely resolved gene orthologies for more closely related species. Since orthologs are the most likely candidates to retain functions of their ancestor gene, OrthoDB is aimed at narrowing down hypotheses about gene functions and enabling comparative evolutionary studies. Optional registered-user sessions allow on-line BUSCO assessments of gene set completeness and mapping of the uploaded data to OrthoDB to enable further interactive exploration of related annotations and generation of comparative charts. The accelerating expansion of genomics data continues to add valuable information, and OrthoDB strives to provide orthologs from the broadest coverage of species, as well as to extensively collate available functional annotations and to compute evolutionary annotations. The data can be browsed online, downloaded or assessed via REST API or SPARQL RDF compatible with both UniProt and Ensembl.
Collapse
Affiliation(s)
- Evgenia V Kriventseva
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland.,Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Dmitry Kuznetsov
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland.,Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Fredrik Tegenfeldt
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland.,Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Mosè Manni
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland.,Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Renata Dias
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland.,Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland.,Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland.,Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
19
|
Kwak Y. Complete Mitochondrial Genome of the Fungal Biocontrol Agent Trichoderma atroviride: Genomic Features, Comparative Analysis and Insight Into the Mitochondrial Evolution in Trichoderma. Front Microbiol 2020; 11:785. [PMID: 32457712 PMCID: PMC7228111 DOI: 10.3389/fmicb.2020.00785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
The improvement of biopesticides for use in the agriculture industry requires an understanding of the biological- and ecological principles underlying their behavior in natural environments. The nuclear genomes of members of the genus Trichoderma, which are representative fungal biocontrol agents, have been actively studied in relation to the unique characteristics of these species as effective producers of CAZymes/secondary metabolites and biopesticides, but their mitochondrial genomes have received much less attention. In this study, the mitochondrial genome of Trichoderma atroviride (Hypocreales, Sordariomycetes), which targets wood-decaying fungal pathogens and has the ability to degrade chemical fungicides, was assembled de novo. A 32,758 bp circular DNA molecule was revealed with specific features, such as a few more protein CDS and trn genes, two homing endonucleases (LAGLIDADG-/GIY-YIG-type), and even a putative overlapping tRNA gene, on a closer phylogenetic relationship with T. gamsii among hypocrealean fungi. Particularly, introns were observed with several footprints likely to be evolutionarily associated with the intron dynamics of the Trichoderma mitochondrial genomes. This study is the first to report the complete de novo mitochondrial genome of T. atroviride, while comparative analyses of Trichoderma mitochondrial genomes were also conducted from the perspective of mitochondrial evolution for the first time.
Collapse
Affiliation(s)
- Yunyoung Kwak
- Écologie, Systématique et Évolution, CNRS, Université Paris Sud (Paris XI), Université Paris Saclay, AgroParisTech, Orsay, France
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
- Institute for Quality and Safety Assessment of Agricultural Products, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
20
|
Eberle J, Ahrens D, Mayer C, Niehuis O, Misof B. A Plea for Standardized Nuclear Markers in Metazoan DNA Taxonomy. Trends Ecol Evol 2020; 35:336-345. [DOI: 10.1016/j.tree.2019.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
|
21
|
Saxena S, Sahu S, Kaila T, Nigam D, Chaduvla PK, Rao AR, Sanand S, Singh NK, Gaikwad K. Transcriptome profiling of differentially expressed genes in cytoplasmic male-sterile line and its fertility restorer line in pigeon pea (Cajanus cajan L.). BMC PLANT BIOLOGY 2020; 20:74. [PMID: 32054447 PMCID: PMC7020380 DOI: 10.1186/s12870-020-2284-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/07/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Pigeon pea (Cajanus cajan L.) is the sixth major legume crop widely cultivated in the Indian sub-continent, Africa, and South-east Asia. Cytoplasmic male-sterility (CMS) is the incompetence of flowering plants to produce viable pollens during anther development. CMS has been extensively utilized for commercial hybrid seeds production in pigeon pea. However, the molecular basis governing CMS in pigeon pea remains unclear and undetermined. In this study transcriptome analysis for exploring differentially expressed genes (DEGs) between cytoplasmic male-sterile line (AKCMS11) and its fertility restorer line (AKPR303) was performed using Illumina paired-end sequencing. RESULTS A total of 3167 DEGs were identified, of which 1432 were up-regulated and 1390 were down-regulated in AKCMS11 in comparison to AKPR303. By querying, all the 3167 DEGs against TAIR database, 34 pigeon pea homologous genes were identified, few involved in pollen development (EMS1, MS1, ARF17) and encoding MYB and bHLH transcription factors with lower expression in the sterile buds, implying their possible role in pollen sterility. Many of these DEGs implicated in carbon metabolism, tricarboxylic acid cycle (TCA), oxidative phosphorylation and elimination of reactive oxygen species (ROS) showed reduced expression in the AKCMS11 (sterile) buds. CONCLUSION The comparative transcriptome findings suggest the potential role of these DEGs in pollen development or abortion, pointing towards their involvement in cytoplasmic male-sterility in pigeon pea. The candidate DEGs identified in this investigation will be highly significant for further research, as they could lend a comprehensive basis in unravelling the molecular mechanism governing CMS in pigeon pea.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Deepti Nigam
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Pavan K. Chaduvla
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - A. R. Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sandhya Sanand
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - N. K. Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| |
Collapse
|
22
|
Feyereisen R. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenet Evol 2020; 143:106695. [DOI: 10.1016/j.ympev.2019.106695] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
|
23
|
De Novo assembly and characterisation of the greentail prawn (Metapenaeus bennettae) hepatopancreas transcriptome – identification of stress response and detoxification transcripts. Mar Genomics 2019; 47:100677. [DOI: 10.1016/j.margen.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 11/19/2022]
|
24
|
A Multireference-Based Whole Genome Assembly for the Obligate Ant-Following Antbird, Rhegmatorhina melanosticta (Thamnophilidae). DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current generation high-throughput sequencing technology has facilitated the generation of more genomic-scale data than ever before, thus greatly improving our understanding of avian biology across a range of disciplines. Recent developments in linked-read sequencing (Chromium 10×) and reference-based whole-genome assembly offer an exciting prospect of more accessible chromosome-level genome sequencing in the near future. We sequenced and assembled a genome of the Hairy-crested Antbird (Rhegmatorhina melanosticta), which represents the first publicly available genome for any antbird (Thamnophilidae). Our objectives were to (1) assemble scaffolds to chromosome level based on multiple reference genomes, and report on differences relative to other genomes, (2) assess genome completeness and compare content to other related genomes, and (3) assess the suitability of linked-read sequencing technology for future studies in comparative phylogenomics and population genomics studies. Our R. melanosticta assembly was both highly contiguous (de novo scaffold N50 = 3.3 Mb, reference based N50 = 53.3 Mb) and relatively complete (contained close to 90% of evolutionarily conserved single-copy avian genes and known tetrapod ultraconserved elements). The high contiguity and completeness of this assembly enabled the genome to be successfully mapped to the chromosome level, which uncovered a consistent structural difference between R. melanosticta and other avian genomes. Our results are consistent with the observation that avian genomes are structurally conserved. Additionally, our results demonstrate the utility of linked-read sequencing for non-model genomics. Finally, we demonstrate the value of our R. melanosticta genome for future researchers by mapping reduced representation sequencing data, and by accurately reconstructing the phylogenetic relationships among a sample of thamnophilid species.
Collapse
|
25
|
Seppey M, Ioannidis P, Emerson BC, Pitteloud C, Robinson-Rechavi M, Roux J, Escalona HE, McKenna DD, Misof B, Shin S, Zhou X, Waterhouse RM, Alvarez N. Genomic signatures accompanying the dietary shift to phytophagy in polyphagan beetles. Genome Biol 2019; 20:98. [PMID: 31101123 PMCID: PMC6525341 DOI: 10.1186/s13059-019-1704-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The diversity and evolutionary success of beetles (Coleoptera) are proposed to be related to the diversity of plants on which they feed. Indeed, the largest beetle suborder, Polyphaga, mostly includes plant eaters among its approximately 315,000 species. In particular, plants defend themselves with a diversity of specialized toxic chemicals. These may impose selective pressures that drive genomic diversification and speciation in phytophagous beetles. However, evidence of changes in beetle gene repertoires driven by such interactions remains largely anecdotal and without explicit hypothesis testing. RESULTS We explore the genomic consequences of beetle-plant trophic interactions by performing comparative gene family analyses across 18 species representative of the two most species-rich beetle suborders. We contrast the gene contents of species from the mostly plant-eating suborder Polyphaga with those of the mainly predatory Adephaga. We find gene repertoire evolution to be more dynamic, with significantly more adaptive lineage-specific expansions, in the more speciose Polyphaga. Testing the specific hypothesis of adaptation to plant feeding, we identify families of enzymes putatively involved in beetle-plant interactions that underwent adaptive expansions in Polyphaga. There is notable support for the selection hypothesis on large gene families for glutathione S-transferase and carboxylesterase detoxification enzymes. CONCLUSIONS Our explicit modeling of the evolution of gene repertoires across 18 species identifies putative adaptive lineage-specific gene family expansions that accompany the dietary shift towards plants in beetles. These genomic signatures support the popular hypothesis of a key role for interactions with plant chemical defenses, and for plant feeding in general, in driving beetle diversification.
Collapse
Affiliation(s)
- Mathieu Seppey
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Present address: Department of Genetic Medicine and Development, University of Geneva and Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Present address: Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology–Hellas, Heraklion, Greece
| | - Brent C. Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Camille Pitteloud
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Present address: Department of Environmental Systems Science, ETHZ, 8092 Zurich, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Julien Roux
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Present address: Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Hermes E. Escalona
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Duane D. McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38111 USA
| | - Bernhard Misof
- Center for Molecular Biodiversity Research (ZMB), Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38111 USA
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Nadir Alvarez
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Geneva Natural History Museum, 1208 Geneva, Switzerland
| |
Collapse
|
26
|
Abstract
The increasing affordability of sequencing technologies offers many new and exciting opportunities to address a diverse array of biological questions. This is evidenced in entomological research by numerous genomics and transcriptomics studies that attempt to decipher the often complex relationships among different species or orders and to build "omics" resources to drive advancement of the molecular understanding of insect biology. Being able to gauge the quality of the sequencing data is of critical importance to understanding the potential limitations on the types of questions that these data can be reliably used to address. This chapter details the use of the Benchmarking Universal Single-Copy Orthologue (BUSCO) assessment tool to estimate the completeness of transcriptomes, genome assemblies, and annotated gene sets in terms of their expected gene content.
Collapse
|
27
|
Abstract
Genomics drives the current progress in molecular biology, generating unprecedented volumes of data. The scientific value of these sequences depends on the ability to evaluate their completeness using a biologically meaningful approach. Here, we describe the use of the BUSCO tool suite to assess the completeness of genomes, gene sets, and transcriptomes, using their gene content as a complementary method to common technical metrics. The chapter introduces the concept of universal single-copy genes, which underlies the BUSCO methodology, covers the basic requirements to set up the tool, and provides guidelines to properly design the analyses, run the assessments, and interpret and utilize the results.
Collapse
Affiliation(s)
- Mathieu Seppey
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Geneva, Switzerland
| | - Mosè Manni
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Geneva, Switzerland
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, Swiss Institute of Bioinformatics, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
28
|
Genomic and Transcriptomic Basis of Hanseniaspora vineae's Impact on Flavor Diversity and Wine Quality. Appl Environ Microbiol 2018; 85:AEM.01959-18. [PMID: 30366992 DOI: 10.1128/aem.01959-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/13/2018] [Indexed: 12/30/2022] Open
Abstract
Hanseniaspora is the main genus of the apiculate yeast group that represents approximately 70% of the grape-associated microflora. Hanseniaspora vineae is emerging as a promising species for quality wine production compared to other non-Saccharomyces species. Wines produced by H. vineae with Saccharomyces cerevisiae consistently exhibit more intense fruity flavors and complexity than wines produced by S. cerevisiae alone. In this work, genome sequencing, assembling, and phylogenetic analysis of two strains of H. vineae showed that it is a member of the Saccharomyces complex and it diverged before the whole-genome duplication (WGD) event from this clade. Specific flavor gene duplications and absences were identified in the H. vineae genome compared to 14 fully sequenced industrial S. cerevisiae genomes. The increased formation of 2-phenylethyl acetate and phenylpropanoids such as 2-phenylethyl and benzyl alcohols might be explained by gene duplications of H. vineae aromatic amino acid aminotransferases (ARO8 and ARO9) and phenylpyruvate decarboxylases (ARO10). Transcriptome and aroma profiles under fermentation conditions confirmed these genes were highly expressed at the beginning of stationary phase coupled to the production of their related compounds. The extremely high level of acetate esters produced by H. vineae compared to that by S. cerevisiae is consistent with the identification of six novel proteins with alcohol acetyltransferase (AATase) domains. The absence of the branched-chain amino acid transaminases (BAT2) and acyl coenzyme A (acyl-CoA)/ethanol O-acyltransferases (EEB1) genes correlates with H. vineae's reduced production of branched-chain higher alcohols, fatty acids, and ethyl esters, respectively. Our study provides sustenance for understanding and potentially utilizing genes that determine fermentation aromas.IMPORTANCE The huge diversity of non-Saccharomyces yeasts in grapes is dominated by the apiculate genus Hanseniaspora Two native strains of Hanseniaspora vineae applied to winemaking because of their high oenological potential in aroma and fermentation performance were selected to obtain high-quality genomes. Here, we present a phylogenetic analysis and the complete transcriptome and aroma metabolome of H. vineae during three fermentation steps. This species produced significantly richer flavor compound diversity than Saccharomyces, including benzenoids, phenylpropanoids, and acetate-derived compounds. The identification of six proteins, different from S. cerevisiae ATF, with diverse acetyltransferase domains in H. vineae offers a relevant source of native genetic variants for this enzymatic activity. The discovery of benzenoid synthesis capacity in H. vineae provides a new eukaryotic model to dilucidate an alternative pathway to that catalyzed by plants' phenylalanine lyases.
Collapse
|
29
|
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol Biol Evol 2018; 35:543-548. [PMID: 29220515 PMCID: PMC5850278 DOI: 10.1093/molbev/msx319] [Citation(s) in RCA: 1320] [Impact Index Per Article: 220.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genomics promises comprehensive surveying of genomes and metagenomes, but rapidly changing technologies and expanding data volumes make evaluation of completeness a challenging task. Technical sequencing quality metrics can be complemented by quantifying completeness of genomic data sets in terms of the expected gene content of Benchmarking Universal Single-Copy Orthologs (BUSCO, http://busco.ezlab.org). The latest software release implements a complete refactoring of the code to make it more flexible and extendable to facilitate high-throughput assessments. The original six lineage assessment data sets have been updated with improved species sampling, 34 new subsets have been built for vertebrates, arthropods, fungi, and prokaryotes that greatly enhance resolution, and data sets are now also available for nematodes, protists, and plants. Here, we present BUSCO v3 with example analyses that highlight the wide-ranging utility of BUSCO assessments, which extend beyond quality control of genomics data sets to applications in comparative genomics analyses, gene predictor training, metagenomics, and phylogenomics.
Collapse
Affiliation(s)
- Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mathieu Seppey
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mosè Manni
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Guennadi Klioutchnikov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Evgenia V Kriventseva
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
30
|
Li Z, De La Torre AR, Sterck L, Cánovas FM, Avila C, Merino I, Cabezas JA, Cervera MT, Ingvarsson PK, Van de Peer Y. Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants. Genome Biol Evol 2017; 9:1130-1147. [PMID: 28460034 PMCID: PMC5414570 DOI: 10.1093/gbe/evx070] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 01/02/2023] Open
Abstract
Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angiosperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny.
Collapse
Affiliation(s)
- Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Amanda R De La Torre
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Sciences, University of California-Davis, Davis, CA
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Concepción Avila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, Málaga, Spain
| | - Irene Merino
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent, Belgium.,Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
31
|
Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simão FA, Ioannidis P, Seppey M, Loetscher A, Kriventseva EV. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res 2016; 45:D744-D749. [PMID: 27899580 PMCID: PMC5210582 DOI: 10.1093/nar/gkw1119] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022] Open
Abstract
OrthoDB is a comprehensive catalog of orthologs, genes inherited by extant species from a single gene in their last common ancestor. In 2016 OrthoDB reached its 9th release, growing to over 22 million genes from over 5000 species, now adding plants, archaea and viruses. In this update we focused on usability of this fast-growing wealth of data: updating the user and programmatic interfaces to browse and query the data, and further enhancing the already extensive integration of available gene functional annotations. Collating functional annotations from over 100 resources, and enabled us to propose descriptive titles for 87% of ortholog groups. Additionally, OrthoDB continues to provide computed evolutionary annotations and to allow user queries by sequence homology. The OrthoDB resource now enables users to generate publication-quality comparative genomics charts, as well as to upload, analyze and interactively explore their own private data. OrthoDB is available from http://orthodb.org.
Collapse
Affiliation(s)
- Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Fredrik Tegenfeldt
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Dmitry Kuznetsov
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Mathieu Seppey
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Alexis Loetscher
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Evgenia V Kriventseva
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland, and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
32
|
Alvarez-Ponce D, Sabater-Muñoz B, Toft C, Ruiz-González MX, Fares MA. Essentiality Is a Strong Determinant of Protein Rates of Evolution during Mutation Accumulation Experiments in Escherichia coli. Genome Biol Evol 2016; 8:2914-2927. [PMID: 27566759 PMCID: PMC5630975 DOI: 10.1093/gbe/evw205] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins. One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for, whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two parallel mutation accumulation experiments in Escherichia coli, during 5,500–5,750 generations, and compared the genomes at different points of the experiments. Our approach (a short-term experiment, under highly controlled conditions) enabled us to overcome many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length.
Collapse
Affiliation(s)
| | - Beatriz Sabater-Muñoz
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Christina Toft
- Department of Genetics, University of Valencia, Valencia, Spain Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Mario X Ruiz-González
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain Current Address: Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Proyecto Prometeo; Departamento de Ciencias Biológicas, Universidad Tócnica Particular de Loja, Loja, Ecuador
| | - Mario A Fares
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Hoy MA, Waterhouse RM, Wu K, Estep AS, Ioannidis P, Palmer WJ, Pomerantz AF, Simão FA, Thomas J, Jiggins FM, Murphy TD, Pritham EJ, Robertson HM, Zdobnov EM, Gibbs RA, Richards S. Genome Sequencing of the Phytoseiid Predatory Mite Metaseiulus occidentalis Reveals Completely Atomized Hox Genes and Superdynamic Intron Evolution. Genome Biol Evol 2016; 8:1762-75. [PMID: 26951779 PMCID: PMC4943173 DOI: 10.1093/gbe/evw048] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/16/2022] Open
Abstract
Metaseiulus occidentalis is an eyeless phytoseiid predatory mite employed for the biological control of agricultural pests including spider mites. Despite appearances, these predator and prey mites are separated by some 400 Myr of evolution and radically different lifestyles. We present a 152-Mb draft assembly of the M. occidentalis genome: Larger than that of its favored prey, Tetranychus urticae, but considerably smaller than those of many other chelicerates, enabling an extremely contiguous and complete assembly to be built-the best arachnid to date. Aided by transcriptome data, genome annotation cataloged 18,338 protein-coding genes and identified large numbers of Helitron transposable elements. Comparisons with other arthropods revealed a particularly dynamic and turbulent genomic evolutionary history. Its genes exhibit elevated molecular evolution, with strikingly high numbers of intron gains and losses, in stark contrast to the deer tick Ixodes scapularis Uniquely among examined arthropods, this predatory mite's Hox genes are completely atomized, dispersed across the genome, and it encodes five copies of the normally single-copy RNA processing Dicer-2 gene. Examining gene families linked to characteristic biological traits of this tiny predator provides initial insights into processes of sex determination, development, immune defense, and how it detects, disables, and digests its prey. As the first reference genome for the Phytoseiidae, and for any species with the rare sex determination system of parahaploidy, the genome of the western orchard predatory mite improves genomic sampling of chelicerates and provides invaluable new resources for functional genomic analyses of this family of agriculturally important mites.
Collapse
Affiliation(s)
- Marjorie A Hoy
- Department of Entomology and Nematology, University of Florida
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland Swiss Institute of Bioinformatics, Geneva, Switzerland Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ke Wu
- Department of Entomology and Nematology, University of Florida
| | - Alden S Estep
- Department of Entomology and Nematology, University of Florida
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland Swiss Institute of Bioinformatics, Geneva, Switzerland
| | | | | | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Jainy Thomas
- Department of Human Genetics, University of Utah
| | | | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | | | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine
| |
Collapse
|
34
|
Wang G, Sun S, Zhang Z. Randomness in Sequence Evolution Increases over Time. PLoS One 2016; 11:e0155935. [PMID: 27224236 PMCID: PMC4880282 DOI: 10.1371/journal.pone.0155935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/06/2016] [Indexed: 12/02/2022] Open
Abstract
The second law of thermodynamics states that entropy, as a measure of randomness in a system, increases over time. Although studies have investigated biological sequence randomness from different aspects, it remains unknown whether sequence randomness changes over time and whether this change consists with the second law of thermodynamics. To capture the dynamics of randomness in molecular sequence evolution, here we detect sequence randomness based on a collection of eight statistical random tests and investigate the randomness variation of coding sequences with an application to Escherichia coli. Given that core/essential genes are more ancient than specific/non-essential genes, our results clearly show that core/essential genes are more random than specific/non-essential genes and accordingly indicate that sequence randomness indeed increases over time, consistent well with the second law of thermodynamics. We further find that an increase in sequence randomness leads to increasing randomness of GC content and longer sequence length. Taken together, our study presents an important finding, for the first time, that sequence randomness increases over time, which may provide profound insights for unveiling the underlying mechanisms of molecular sequence evolution.
Collapse
Affiliation(s)
- Guangyu Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China
- BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiang Sun
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China
- BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China
- BIG Data Center, Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Hsu CH, Chiang AWT, Hwang MJ, Liao BY. Proteins with Highly Evolvable Domain Architectures Are Nonessential but Highly Retained. Mol Biol Evol 2016; 33:1219-30. [DOI: 10.1093/molbev/msw006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
36
|
Bomblies K, Higgins JD, Yant L. Meiosis evolves: adaptation to external and internal environments. THE NEW PHYTOLOGIST 2015; 208:306-23. [PMID: 26075313 DOI: 10.1111/nph.13499] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/03/2015] [Indexed: 05/23/2023]
Abstract
306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - James D Higgins
- Department of Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Levi Yant
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
37
|
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015. [PMID: 26243257 DOI: 10.1186/s13059-015-0721-722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Identifying homology relationships between sequences is fundamental to biological research. Here we provide a novel orthogroup inference algorithm called OrthoFinder that solves a previously undetected gene length bias in orthogroup inference, resulting in significant improvements in accuracy. Using real benchmark datasets we demonstrate that OrthoFinder is more accurate than other orthogroup inference methods by between 8 % and 33 %. Furthermore, we demonstrate the utility of OrthoFinder by providing a complete classification of transcription factor gene families in plants revealing 6.9 million previously unobserved relationships.
Collapse
Affiliation(s)
- David M Emms
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
38
|
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157. [PMID: 26243257 PMCID: PMC4531804 DOI: 10.1186/s13059-015-0721-2] [Citation(s) in RCA: 2090] [Impact Index Per Article: 232.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/08/2015] [Indexed: 01/12/2023] Open
Abstract
Identifying homology relationships between sequences is fundamental to biological research. Here we provide a novel orthogroup inference algorithm called OrthoFinder that solves a previously undetected gene length bias in orthogroup inference, resulting in significant improvements in accuracy. Using real benchmark datasets we demonstrate that OrthoFinder is more accurate than other orthogroup inference methods by between 8 % and 33 %. Furthermore, we demonstrate the utility of OrthoFinder by providing a complete classification of transcription factor gene families in plants revealing 6.9 million previously unobserved relationships.
Collapse
Affiliation(s)
- David M Emms
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
39
|
Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep 2015; 5:11600. [PMID: 26111882 PMCID: PMC4481378 DOI: 10.1038/srep11600] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/26/2015] [Indexed: 11/17/2022] Open
Abstract
Single nucleotide polymorphism (SNP) is the most abundant DNA sequence variation present in plant genomes. Here, we report the design and validation of a unique genic-SNP genotyping chip for genetic and evolutionary studies as well as molecular breeding applications in rice. The chip incorporates 50,051 SNPs from 18,980 different genes spanning 12 rice chromosomes, including 3,710 single-copy (SC) genes conserved between wheat and rice, 14,959 SC genes unique to rice, 194 agronomically important cloned rice genes and 117 multi-copy rice genes. Assays with this chip showed high success rate and reproducibility because of the SC gene based array with no sequence redundancy and cross-hybridisation problems. The usefulness of the chip in genetic diversity and phylogenetic studies of cultivated and wild rice germplasm was demonstrated. Furthermore, its efficacy was validated for analysing background recovery in improved mega rice varieties with submergence tolerance developed through marker-assisted backcross breeding.
Collapse
|
40
|
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210-2. [PMID: 26059717 DOI: 10.1093/bioinformatics/btv351] [Citation(s) in RCA: 7498] [Impact Index Per Article: 833.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/21/2015] [Indexed: 01/27/2023] Open
Abstract
MOTIVATION Genomics has revolutionized biological research, but quality assessment of the resulting assembled sequences is complicated and remains mostly limited to technical measures like N50. RESULTS We propose a measure for quantitative assessment of genome assembly and annotation completeness based on evolutionarily informed expectations of gene content. We implemented the assessment procedure in open-source software, with sets of Benchmarking Universal Single-Copy Orthologs, named BUSCO. AVAILABILITY AND IMPLEMENTATION Software implemented in Python and datasets available for download from http://busco.ezlab.org. CONTACT evgeny.zdobnov@unige.ch SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Evgenia V Kriventseva
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
41
|
Richards S. It's more than stamp collecting: how genome sequencing can unify biological research. Trends Genet 2015; 31:411-21. [PMID: 26003218 DOI: 10.1016/j.tig.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to 'big science' survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need.
Collapse
Affiliation(s)
- Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Abstract
Species tree reconstruction has been a subject of substantial research due to its central role across biology and medicine. A species tree is often reconstructed using a set of gene trees or by directly using sequence data. In either of these cases, one of the main confounding phenomena is the discordance between a species tree and a gene tree due to evolutionary events such as duplications and losses. Probabilistic methods can resolve the discordance by coestimating gene trees and the species tree but this approach poses a scalability problem for larger data sets. We present MixTreEM-DLRS: A two-phase approach for reconstructing a species tree in the presence of gene duplications and losses. In the first phase, MixTreEM, a novel structural expectation maximization algorithm based on a mixture model is used to reconstruct a set of candidate species trees, given sequence data for monocopy gene families from the genomes under study. In the second phase, PrIME-DLRS, a method based on the DLRS model (Åkerborg O, Sennblad B, Arvestad L, Lagergren J. 2009. Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci U S A. 106(14):5714-5719), is used for selecting the best species tree. PrIME-DLRS can handle multicopy gene families since DLRS, apart from modeling sequence evolution, models gene duplication and loss using a gene evolution model (Arvestad L, Lagergren J, Sennblad B. 2009. The gene evolution model and computing its associated probabilities. J ACM. 56(2):1-44). We evaluate MixTreEM-DLRS using synthetic and biological data, and compare its performance with a recent genome-scale species tree reconstruction method PHYLDOG (Boussau B, Szöllősi GJ, Duret L, Gouy M, Tannier E, Daubin V. 2013. Genome-scale coestimation of species and gene trees. Genome Res. 23(2):323-330) as well as with a fast parsimony-based algorithm Duptree (Wehe A, Bansal MS, Burleigh JG, Eulenstein O. 2008. Duptree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics 24(13):1540-1541). Our method is competitive with PHYLDOG in terms of accuracy and runs significantly faster and our method outperforms Duptree in accuracy. The analysis constituted by MixTreEM without DLRS may also be used for selecting the target species tree, yielding a fast and yet accurate algorithm for larger data sets. MixTreEM is freely available at http://prime.scilifelab.se/mixtreem/.
Collapse
Affiliation(s)
- Ikram Ullah
- School of Computer Science and Communication, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Pekka Parviainen
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Espoo, Finland
| | - Jens Lagergren
- School of Computer Science and Communication, Science for Life Laboratory, Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
43
|
Acharya D, Mukherjee D, Podder S, Ghosh TC. Investigating different duplication pattern of essential genes in mouse and human. PLoS One 2015; 10:e0120784. [PMID: 25751152 PMCID: PMC4353620 DOI: 10.1371/journal.pone.0120784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is one of the major driving forces shaping genome and organism evolution and thought to be itself regulated by some intrinsic properties of the gene. Comparing the essential genes among mouse and human, we observed that the essential genes avoid duplication in mouse while prefer to remain duplicated in humans. In this study, we wanted to explore the reasons behind such differences in gene essentiality by cross-species comparison of human and mouse. Moreover, we examined essential genes that are duplicated in humans are functionally more redundant than that in mouse. The proportion of paralog pseudogenization of essential genes is higher in mouse than that of humans. These duplicates of essential genes are under stringent dosage regulation in human than in mouse. We also observed slower evolutionary rate in the paralogs of human essential genes than the mouse counterpart. Together, these results clearly indicate that human essential genes are retained as duplicates to serve as backed up copies that may shield themselves from harmful mutations.
Collapse
Affiliation(s)
- Debarun Acharya
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Dola Mukherjee
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Soumita Podder
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Tapash C. Ghosh
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
44
|
Waterhouse RM. A maturing understanding of the composition of the insect gene repertoire. CURRENT OPINION IN INSECT SCIENCE 2015; 7:15-23. [PMID: 32846661 DOI: 10.1016/j.cois.2015.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/07/2015] [Indexed: 06/11/2023]
Abstract
Recent insect genome sequencing initiatives have dramatically accelerated the accumulation of genomics data resources sampling species from different lineages to explore the incredible diversity of insect biology. These efforts have built a comprehensive catalogue of the insect gene repertoire, which is expanded with each newly-sequenced genome and continually refined using knowledge from cross-species comparisons and new sources of evidence. Since the sequencing of the very first insect genomes, comparative analyses have identified shared (homologous) and equivalent (orthologous) genes, as well as subsets of genes that appear to be unique. With the number of available insect genomes fast approaching one hundred, a maturing understanding of the composition of the insect gene repertoire broadly partitions it into an expected core of universally-present orthologues and a diverse array of lineage-specific and species-specific genes. While homology and orthology help to build evolutionarily-informed functional hypotheses for many genes from these newly-sequenced genomes, experimental interrogations are required to test such hypotheses and to probe the functions of genes for which homology offers no clues. Such taxonomically-restricted genes may represent the current contents of an evolutionary melting pot, out of which novel adaptations have emerged to make insects the most successful group of animals on Earth.
Collapse
Affiliation(s)
- Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland; Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
45
|
Hodgins KA, Bock DG, Hahn MA, Heredia SM, Turner KG, Rieseberg LH. Comparative genomics in the Asteraceae reveals little evidence for parallel evolutionary change in invasive taxa. Mol Ecol 2015; 24:2226-40. [PMID: 25439241 DOI: 10.1111/mec.13026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 01/12/2023]
Abstract
Asteraceae, the largest family of flowering plants, has given rise to many notorious invasive species. Using publicly available transcriptome assemblies from 35 Asteraceae, including six major invasive species, we examined evidence for micro- and macro-evolutionary genomic changes associated with invasion. To detect episodes of positive selection repeated across multiple introductions, we conducted comparisons between native and introduced genotypes from six focal species and identified genes with elevated rates of amino acid change (dN/dS). We then looked for evidence of positive selection at a broader phylogenetic scale across all taxa. As invasive species may experience founder events during colonization and spread, we also looked for evidence of increased genetic load in introduced genotypes. We rarely found evidence for parallel changes in orthologous genes in the intraspecific comparisons, but in some cases we identified changes in members of the same gene family. Using among-species comparisons, we detected positive selection in 0.003-0.69% and 2.4-7.8% of the genes using site and stochastic branch-site models, respectively. These genes had diverse putative functions, including defence response, stress response and herbicide resistance, although there was no clear pattern in the GO terms. There was no indication that introduced genotypes have a higher proportion of deleterious alleles than native genotypes in the six focal species, suggesting multiple introductions and admixture mitigated the impact of drift. Our findings provide little evidence for common genomic responses in invasive taxa of the Asteraceae and hence suggest that multiple evolutionary pathways may lead to adaptation during introduction and spread in these species.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VLM, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, Han MV, Hlaing T, Hughes DST, Jenkins AM, Jiang X, Jungreis I, Kakani EG, Kamali M, Kemppainen P, Kennedy RC, Kirmitzoglou IK, Koekemoer LL, Laban N, Langridge N, Lawniczak MKN, Lirakis M, Lobo NF, Lowy E, MacCallum RM, Mao C, Maslen G, Mbogo C, McCarthy J, Michel K, Mitchell SN, Moore W, Murphy KA, Naumenko AN, Nolan T, Novoa EM, O'Loughlin S, Oringanje C, Oshaghi MA, Pakpour N, Papathanos PA, Peery AN, Povelones M, Prakash A, Price DP, Rajaraman A, Reimer LJ, Rinker DC, Rokas A, Russell TL, Sagnon N, Sharakhova MV, Shea T, Simão FA, Simard F, Slotman MA, Somboon P, Stegniy V, Struchiner CJ, Thomas GWC, Tojo M, Topalis P, Tubio JMC, Unger MF, Vontas J, Walton C, Wilding CS, Willis JH, Wu YC, Yan G, Zdobnov EM, Zhou X, Catteruccia F, Christophides GK, Collins FH, Cornman RS, Crisanti A, Donnelly MJ, Emrich SJ, Fontaine MC, Gelbart W, Hahn MW, Hansen IA, Howell PI, Kafatos FC, Kellis M, Lawson D, Louis C, Luckhart S, Muskavitch MAT, Ribeiro JM, Riehle MA, Sharakhov IV, Tu Z, Zwiebel LJ, Besansky NJ. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 2014; 347:1258522. [PMID: 25554792 DOI: 10.1126/science.1258522] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA.
| | - Robert M Waterhouse
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Mohammad R Abai
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Sergey S Aganezov
- George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA
| | - Max A Alekseyev
- George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA
| | - James E Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James Amon
- National Vector Borne Disease Control Programme, Ministry of Health, Tafea Province, Vanuatu
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Gleb Artemov
- Tomsk State University, 36 Lenina Avenue, Tomsk, Russia
| | - Lauren A Assour
- Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hamidreza Basseri
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Aaron Berlin
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Bruce W Birren
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Stephanie A Blandin
- Inserm, U963, F-67084 Strasbourg, France. CNRS, UPR9022, IBMC, F-67084 Strasbourg, France
| | - Andrew I Brockman
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Thomas R Burkot
- Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Clara S Chan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Joanna C Chiu
- Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA
| | - Mikkel Christensen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carlo Costantini
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, 911, Avenue Agropolis, BP 64501 Montpellier, France
| | - Victoria L M Davidson
- Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Tania Dottorini
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vicky Dritsou
- Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Stacey B Gabriel
- Genomics Platform, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso
| | - Andrew B Hall
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Thaung Hlaing
- Department of Medical Research, No. 5 Ziwaka Road, Dagon Township, Yangon 11191, Myanmar
| | - Daniel S T Hughes
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adam M Jenkins
- Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Xiaofang Jiang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Evdoxia G Kakani
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Perugia, Italy
| | - Maryam Kamali
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Petri Kemppainen
- Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ryan C Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Ioannis K Kirmitzoglou
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, CY 1678 Nicosia, Cyprus
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, and Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, Johannesburg, South Africa
| | - Njoroge Laban
- National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya
| | - Nicholas Langridge
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mara K N Lawniczak
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Manolis Lirakis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece
| | - Neil F Lobo
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Robert M MacCallum
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Chunhong Mao
- Virginia Bioinformatics Institute, 1015 Life Science Circle, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Gareth Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Charles Mbogo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research - Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Jenny McCarthy
- Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA
| | - Sara N Mitchell
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA
| | - Wendy Moore
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Katherine A Murphy
- Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA
| | - Anastasia N Naumenko
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Eva M Novoa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Samantha O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Chioma Oringanje
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Mohammad A Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Philippos A Papathanos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Ashley N Peery
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Anil Prakash
- Regional Medical Research Centre NE, Indian Council of Medical Research, P.O. Box 105, Dibrugarh-786 001, Assam, India
| | - David P Price
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ashok Rajaraman
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Lisa J Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David C Rinker
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Antonis Rokas
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA. Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Tanya L Russell
- Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Terrance Shea
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Frederic Simard
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, 911, Avenue Agropolis, BP 64501 Montpellier, France
| | - Michel A Slotman
- Department of Entomology, Texas A&M University, College Station, TX 77807, USA
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Claudio J Struchiner
- Fundação Oswaldo Cruz, Avenida Brasil 4365, RJ Brazil. Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gregg W C Thomas
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Marta Tojo
- Department of Physiology, School of Medicine, Center for Research in Molecular Medicine and Chronic Diseases, Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - José M C Tubio
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Maria F Unger
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - John Vontas
- Department of Biology, University of Crete, 700 13 Heraklion, Greece
| | - Catherine Walton
- Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Craig S Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yi-Chieh Wu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Computer Science, Harvey Mudd College, Claremont, CA 91711, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Hewitt Hall, Irvine, CA 92697, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Flaminia Catteruccia
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Perugia, Italy
| | - George K Christophides
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Frank H Collins
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - Robert S Cornman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SJ, UK
| | - Scott J Emrich
- Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael C Fontaine
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. Centre of Evolutionary and Ecological Studies (Marine Evolution and Conservation group), University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
| | - William Gelbart
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA. School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Paul I Howell
- Centers for Disease Control and Prevention, 1600 Clifton Road NE MSG49, Atlanta, GA 30329, USA
| | - Fotis C Kafatos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Daniel Lawson
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christos Louis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Marc A T Muskavitch
- Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA. Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142, USA
| | - José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Michael A Riehle
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Laurence J Zwiebel
- Departments of Biological Sciences and Pharmacology, Institutes for Chemical Biology, Genetics and Global Health, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Nora J Besansky
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA.
| |
Collapse
|
47
|
Kriventseva EV, Tegenfeldt F, Petty TJ, Waterhouse RM, Simão FA, Pozdnyakov IA, Ioannidis P, Zdobnov EM. OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res 2014; 43:D250-6. [PMID: 25428351 PMCID: PMC4383991 DOI: 10.1093/nar/gku1220] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Orthology, refining the concept of homology, is the cornerstone of evolutionary comparative studies. With the ever-increasing availability of genomic data, inference of orthology has become instrumental for generating hypotheses about gene functions crucial to many studies. This update of the OrthoDB hierarchical catalog of orthologs (http://www.orthodb.org) covers 3027 complete genomes, including the most comprehensive set of 87 arthropods, 61 vertebrates, 227 fungi and 2627 bacteria (sampling the most complete and representative genomes from over 11,000 available). In addition to the most extensive integration of functional annotations from UniProt, InterPro, GO, OMIM, model organism phenotypes and COG functional categories, OrthoDB uniquely provides evolutionary annotations including rates of ortholog sequence divergence, copy-number profiles, sibling groups and gene architectures. We re-designed the entirety of the OrthoDB website from the underlying technology to the user interface, enabling the user to specify species of interest and to select the relevant orthology level by the NCBI taxonomy. The text searches allow use of complex logic with various identifiers of genes, proteins, domains, ontologies or annotation keywords and phrases. Gene copy-number profiles can also be queried. This release comes with the freely available underlying ortholog clustering pipeline (http://www.orthodb.org/software).
Collapse
Affiliation(s)
- Evgenia V Kriventseva
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Fredrik Tegenfeldt
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Tom J Petty
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Igor A Pozdnyakov
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, rue Michel-Servet 1, 1211 Geneva, Switzerland Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
48
|
Roux J, Privman E, Moretti S, Daub JT, Robinson-Rechavi M, Keller L. Patterns of positive selection in seven ant genomes. Mol Biol Evol 2014; 31:1661-85. [PMID: 24782441 PMCID: PMC4069625 DOI: 10.1093/molbev/msu141] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide data sets in bees and flies with the same methodology to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.
Collapse
Affiliation(s)
- Julien Roux
- Department of Ecology and Evolution, University of Lausanne, Lausanne, SwitzerlandSIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eyal Privman
- Department of Ecology and Evolution, University of Lausanne, Lausanne, SwitzerlandSIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sébastien Moretti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, SwitzerlandSIB Swiss Institute of Bioinformatics, Lausanne, SwitzerlandVital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Josephine T Daub
- Department of Ecology and Evolution, University of Lausanne, Lausanne, SwitzerlandSIB Swiss Institute of Bioinformatics, Lausanne, SwitzerlandCMPG, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, SwitzerlandSIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
|
50
|
Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci U S A 2013; 110:2898-903. [PMID: 23382190 DOI: 10.1073/pnas.1300127110] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The importance of gene gain through duplication has long been appreciated. In contrast, the importance of gene loss has only recently attracted attention. Indeed, studies in organisms ranging from plants to worms and humans suggest that duplication of some genes might be better tolerated than that of others. Here we have undertaken a large-scale study to investigate the existence of duplication-resistant genes in the sequenced genomes of 20 flowering plants. We demonstrate that there is a large set of genes that is convergently restored to single-copy status following multiple genome-wide and smaller scale duplication events. We rule out the possibility that such a pattern could be explained by random gene loss only and therefore propose that there is selection pressure to preserve such genes as singletons. This is further substantiated by the observation that angiosperm single-copy genes do not comprise a random fraction of the genome, but instead are often involved in essential housekeeping functions that are highly conserved across all eukaryotes. Furthermore, single-copy genes are generally expressed more highly and in more tissues than non-single-copy genes, and they exhibit higher sequence conservation. Finally, we propose different hypotheses to explain their resistance against duplication.
Collapse
|