1
|
Urui T, Mizutani Y. Origin of the Difference in Proton Transport Direction between Inward and Outward Proton-Pumping Rhodopsins. Acc Chem Res 2024; 57:3292-3302. [PMID: 39509145 DOI: 10.1021/acs.accounts.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
ConspectusActive transport is a vital and ubiquitous process in biological phenomena. Ion-pumping rhodopsins are light-driven active ion transporters that share a heptahelical transmembrane structural scaffold in which the all-trans retinal chromophore is covalently bonded through a Schiff base to a conserved lysine residue in the seventh transmembrane helix. Bacteriorhodopsin from Halobacterium salinarum was the first ion-pumping rhodopsin to be discovered and was identified as an outward proton-pumping rhodopsin. Since the discovery of bacteriorhodopsin in 1971, many more ion-pumping rhodopsins have been isolated from diverse microorganisms spanning three domains (bacteria, archaea, and eukaryotes) and giant viruses. In addition to proton-pumping rhodopsins, chloride ion- and sodium ion-pumping rhodopsins have also been discovered. Furthermore, diversity of ion-pumping rhodopsins was found in the direction of ion transport; i.e., rhodopsins that pump protons inward have recently been discovered. Very intriguingly, the inward proton-pumping rhodopsins share structural features and many conserved key residues with the outward proton-pumping rhodopsins. However, a central question remains unchanged despite the increasing variety: how and why do the ion-pumping rhodopsins undergo interlocking conformational changes that allow unidirectional ion transfer within proteins? In this regard, it is an effective strategy to compare the structures and their evolutions in the proton-pumping processes of both inward and outward proton-pumping rhodopsins because the comparison sheds light on key elements for the unidirectional proton transport. We elucidated the proton-pumping mechanism of the inward and outward proton-pumping rhodopsins by time-resolved resonance Raman spectroscopy, a powerful technique for tracking the structural evolutions of proteins at work that are otherwise inaccessible.In this Account, we primarily review our endeavors in the elucidation of the proton-pumping mechanisms and determination factors for the transport directions of inward and outward proton-pumping rhodopsins. We begin with a brief summary of previous findings on outward proton-pumping rhodopsins revealed by vibrational spectroscopy. Next, we provide insights into the mechanism of inward proton-pumping rhodopsins, schizorhodopsins, obtained in our studies. Time-resolved resonance Raman spectroscopy provided valuable information about the structures of the retinal chromophore in the unphotolyzed state and intermediates of schizorhodopsins. As we ventured further into our investigations, we succeeded in uncovering the factors determining the directions of proton release and uptake in the retinal Schiff base. While it is intriguing that the proton-pumping rhodopsins actively transport protons against a concentration gradient, it is even more curious that proteins with structural similarities transport protons in opposite directions. Solving the second mystery led to solving the first. When we considered our findings, we realized that we would probably not have been able to elucidate the mechanism if we had studied only the outward pump. Our Account concludes by outlining future opportunities and challenges in the growing research field of ion-pumping rhodopsins, with a particular emphasis on elucidating their sequence-structure-function relationships. We aim to inspire further advances toward the understanding and creation of light-driven active ion transporters.
Collapse
Affiliation(s)
- Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Trofimova AM, Amakhin DV, Postnikova TY, Tiselko VS, Alekseev A, Podoliak E, Gordeliy VI, Chizhov AV, Zaitsev AV. Light-Driven Sodium Pump as a Potential Tool for the Control of Seizures in Epilepsy. Mol Neurobiol 2024; 61:4691-4704. [PMID: 38114761 DOI: 10.1007/s12035-023-03865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The marine flavobacterium Krokinobactereikastus light-driven sodium pump (KR2) generates an outward sodium ion current under 530 nm light stimulation, representing a promising optogenetic tool for seizure control. However, the specifics of KR2 application to suppress epileptic activity have not yet been addressed. In the present study, we investigated the possibility of KR2 photostimulation to suppress epileptiform activity in mouse brain slices using the 4-aminopyrindine (4-AP) model. We injected the adeno-associated viral vector (AAV-PHP.eB-hSyn-KR2-YFP) containing the KR2 sodium pump gene enhanced with appropriate trafficking tags. KR2 expression was observed in the lateral entorhinal cortex and CA1 hippocampus. Using whole-cell patch clamp in mouse brain slices, we show that KR2, when stimulated with LED light, induces a substantial hyperpolarization of entorhinal neurons. However, continuous photostimulation of KR2 does not interrupt ictal discharges in mouse entorhinal cortex slices induced by a solution containing 4-AP. KR2-induced hyperpolarization strongly activates neuronal HCN channels. Consequently, turning off photostimulation resulted in HCN channel-mediated rebound depolarization accompanied by a transient increase in spontaneous network activity. Using low-frequency pulsed photostimulation, we induced the generation of short HCN channel-mediated discharges that occurred in response to the light stimulus being turned off; these discharges reliably interrupt ictal activity. Thus, low-frequency pulsed photostimulation of KR2 can be considered as a potential tool for controlling epileptic seizures.
Collapse
Affiliation(s)
- Alina M Trofimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Dmitry V Amakhin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Tatyana Y Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Vasilii S Tiselko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Elizaveta Podoliak
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Anton V Chizhov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
- MathNeuro Team, Inria Centre at Université Côte d'Azur, Sophia Antipolis, France
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia.
| |
Collapse
|
3
|
Fujisawa T, Kinoue K, Seike R, Kikukawa T, Unno M. Configurational Changes of Retinal Schiff Base during Membrane Na + Transport by a Sodium Pumping Rhodopsin. J Phys Chem Lett 2024; 15:1993-1998. [PMID: 38349321 DOI: 10.1021/acs.jpclett.3c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Microbial rhodopsins are photoreceptors containing the retinal Schiff base chromophore and are ubiquitous among microorganisms. The Schiff base configuration of the chromophore, 15-anti (C═N trans) or 15-syn (C═N cis), is structurally important for their functions, such as membrane ion transport, because this configuration dictates the orientation of the positively charged NH group that interacts with substrate ions. The 15-anti/syn configuration is thus essential for elucidating the ion-transport mechanisms in microbial rhodopsins. Here, we identified the Schiff base configuration during the photoreaction of a sodium pumping rhodopsin from Indibacter alkaliphilus using Raman spectroscopy. We found that the unique configurational change from the 13-cis, 15-anti to all-trans, 15-syn form occurs between the photointermediates termed O1 and O2, which accomplish the Na+ uptake and release, respectively. This isomerization is considered to give rise to the highly irreversible O1 → O2 step that is crucial for unidirectional Na+ transport.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kouta Kinoue
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Ryouhei Seike
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
4
|
Xiao L, Yang Q, Tan J, Ma B, Chen D. Engineering a Cl - -Modulated Light-Driven Na + Pump. Chemistry 2023; 29:e202302543. [PMID: 37833829 DOI: 10.1002/chem.202302543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Microbial Na+ -pumping rhodopsin (NaR) is a promising optogenetic tool due to its unique ability to transport Na+ . Like most rhodopsin-based tools, NaR is limited to light-based control. In this study, our objective was to develop a novel mode of modulation for NaR beyond light control. By introducing a potential Cl- binding site near the putative Na+ release cavity, we engineered Nonlabens dokdonensis rhodopsin 2 (NdR2) to be modulated by Cl- , an essential chemical in organisms. The engineered NdR2 demonstrated an approximately two-fold increase in Na+ pump activity in the presence of 100 mM Cl- compared to Cl- -free solution. Increasing Cl- concentration decreased the lifetimes of the M and O intermediates accordingly. The analysis of competitive ion uptake suggested the bound Cl- may increase the Na+ affinity and selectivity. This chemical modulation allows for more diverse and precise control over cellular processes, advancing the development of next-generation optogenetic tools. Notably, our Cl- -modulated NdR2 establishes an innovative mechanism for linking Cl- to Na+ -related processes, with potential applications in optogenetic therapies for related diseases.
Collapse
Affiliation(s)
- Lan Xiao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingjing Tan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Xu J, Yang Q, Ma B, Li L, Kong F, Xiao L, Chen D. K +-Dependent Photocycle and Photocurrent Reveal the Uptake of K + in Light-Driven Sodium Pump. Int J Mol Sci 2023; 24:14414. [PMID: 37833864 PMCID: PMC10572131 DOI: 10.3390/ijms241914414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Engineering light-controlled K+ pumps from Na+-pumping rhodopsins (NaR) greatly expands the scope of optogenetic applications. However, the limited knowledge regarding the kinetic and selective mechanism of K+ uptake has significantly impeded the modification and design of light-controlled K+ pumps, as well as their practical applications in various fields, including neuroscience. In this study, we presented K+-dependent photocycle kinetics and photocurrent of a light-driven Na+ pump called Nonlabens dokdonensis rhodopsin 2 (NdR2). As the concentration of K+ increased, we observed the accelerated decay of M intermediate in the wild type (WT) through flash photolysis. In 100 mM KCl, the lifetime of the M decay was approximately 1.0 s, which shortened to around 0.6 s in 1 M KCl. Additionally, the K+-dependent M decay kinetics were also observed in the G263W/N61P mutant, which transports K+. In 100 mM KCl, the lifetime of the M decay was approximately 2.5 s, which shortened to around 0.2 s in 1 M KCl. According to the competitive model, in high KCl, K+ may be taken up from the cytoplasmic surface, competing with Na+ or H+ during M decay. This was further confirmed by the K+-dependent photocurrent of WT liposome. As the concentration of K+ increased to 500 mM, the amplitude of peak current significantly dropped to approximately ~60%. Titration experiments revealed that the ratio of the rate constant of H+ uptake (kH) to that of K+ uptake (kK) is >108. Compared to the WT, the G263W/N61P mutant exhibited a decrease of approximately 40-fold in kH/kK. Previous studies focused on transforming NaR into K+ pumps have primarily targeted the intracellular ion uptake region of Krokinobacter eikastus rhodopsin 2 (KR2) to enhance K+ uptake. However, our results demonstrate that the naturally occurring WT NdR2 is capable of intracellular K+ uptake without requiring structural modifications on the intracellular region. This discovery provides diverse options for future K+ pump designs. Furthermore, we propose a novel photocurrent-based approach to evaluate K+ uptake, which can serve as a reference for similar studies on other ion pumps. In conclusion, our research not only provides new insights into the mechanism of K+ uptake but also offers a valuable point of reference for the development of optogenetic tools and other applications in this field.
Collapse
Affiliation(s)
- Jikang Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Longjie Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Fei Kong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Lan Xiao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Kim M, Cha IT, Lee KE, Li M, Park SJ. Pangenome analysis provides insights into the genetic diversity, metabolic versatility, and evolution of the genus Flavobacterium. Microbiol Spectr 2023; 11:e0100323. [PMID: 37594286 PMCID: PMC10655711 DOI: 10.1128/spectrum.01003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Members of the genus Flavobacterium are widely distributed and produce various polysaccharide-degrading enzymes. Many species in the genus have been isolated and characterized. However, few studies have focused on marine isolates or fish pathogens, and in-depth genomic analyses, particularly comparative analyses of isolates from different habitat types, are lacking. Here, we isolated 20 strains of the genus from various environments in South Korea and sequenced their full-length genomes. Combined with published sequence data, we examined genomic traits, evolution, environmental adaptation, and putative metabolic functions in total 187 genomes of isolated species in Flavobacterium categorized as marine, host-associated, and terrestrial including freshwater. A pangenome analysis revealed a correlation between genome size and coding or noncoding density. Flavobacterium spp. had high levels of diversity, allowing for novel gene repertories via recombination events. Defense-related genes only accounted for approximately 3% of predicted genes in all Flavobacterium genomes. While genes involved in metabolic pathways did not differ with respect to isolation source, there was substantial variation in genomic traits; in particular, the abundances of tRNAs and rRNAs were higher in the host-associdated group than in other groups. One genome in the host-associated group contained a Microviridae prophage closely related to an enterobacteria phage. The proteorhodopsin gene was only identified in four terrestrial strains isolated for this study. Furthermore, recombination events clearly influenced genomic diversity and may contribute to the response to environmental stress. These findings shed light on the high genetic variation in Flavobacterium and functional roles in diverse ecosystems as a result of their metabolic versatility. IMPORTANCE The genus Flavobacterium is a diverse group of bacteria that are found in a variety of environments. While most species of this genus are harmless and utilize organic substrates such as proteins and polysaccharides, some members may play a significant role in the cycling for organic substances within their environments. Nevertheless, little is known about the genomic dynamics and/or metabolic capacity of Flavobacterium. Here, we found that Flavobacterium species may have an open pangenome, containing a variety of diverse and novel gene repertoires. Intriguingly, we discovered that one genome (classified into host-associated group) contained a Microviridae prophage closely related to that of enterobacteria. Proteorhodopsin may be expressed under conditions of light or oxygen pressure in some strains isolated for this study. Our findings significantly contribute to the understanding of the members of the genus Flavobacterium diversity exploration and will provide a framework for the way for future ecological characterizations.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju, South Korea
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju, South Korea
| |
Collapse
|
7
|
Bang YJ. Vitamin A: a key coordinator of host-microbe interactions in the intestine. BMB Rep 2023; 56:133-139. [PMID: 36751944 PMCID: PMC10068342 DOI: 10.5483/bmbrep.2023-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 09/29/2023] Open
Abstract
The human intestine is home to a dense community of microbiota that plays a key role in human health and disease. Nutrients are essential regulators of both host and microbial physiology and function as key coordinators of host-microbe interactions. Therefore, understanding the specific roles and underlying mechanisms of each nutrient in regulating the host-microbe interactions will be essential in developing new strategies for improving human health through microbiota and nutrient intervention. This review will give a basic overview of the role of vitamin A, an essential micronutrient, on human health, and highlight recent findings on the mechanisms by which it regulates the host-microbe interactions. [BMB Reports 2023; 56(3): 133-139].
Collapse
Affiliation(s)
- Ye-Ji Bang
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
8
|
He S, Linz AM, Stevens SLR, Tran PQ, Moya-Flores F, Oyserman BO, Dwulit-Smith JR, Forest KT, McMahon KD. Diversity, distribution, and expression of opsin genes in freshwater lakes. Mol Ecol 2023; 32:2798-2817. [PMID: 36799010 DOI: 10.1111/mec.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Microbial rhodopsins are widely distributed in aquatic environments and may significantly contribute to phototrophy and energy budgets in global oceans. However, the study of freshwater rhodopsins has been largely limited. Here, we explored the diversity, ecological distribution, and expression of opsin genes that encode the apoproteins of type I rhodopsins in humic and clearwater lakes with contrasting physicochemical and optical characteristics. Using metagenomes and metagenome-assembled genomes, we recovered opsin genes from a wide range of taxa, mostly predicted to encode green light-absorbing proton pumps. Viral opsin and novel bacterial opsin clades were recovered. Opsin genes occurred more frequently in taxa from clearwater than from humic water, and opsins in some taxa have nontypical ion-pumping motifs that might be associated with physicochemical conditions of these two freshwater types. Analyses of the surface layer of 33 freshwater systems revealed an inverse correlation between opsin gene abundance and lake dissolved organic carbon (DOC). In humic water with high terrestrial DOC and light-absorbing humic substances, opsin gene abundance was low and dramatically declined within the first few meters, whereas the abundance remained relatively high along the bulk water column in clearwater lakes with low DOC, suggesting opsin gene distribution is influenced by lake optical properties and DOC. Gene expression analysis confirmed the significance of rhodopsin-based phototrophy in clearwater lakes and revealed different diel expressional patterns among major phyla. Overall, our analyses revealed freshwater opsin diversity, distribution and expression patterns, and suggested the significance of rhodopsin-based phototrophy in freshwater energy budgets, especially in clearwater lakes.
Collapse
Affiliation(s)
- Shaomei He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra M Linz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah L R Stevens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ben O Oyserman
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey R Dwulit-Smith
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Alonso-Reyes DG, Galván FS, Irazoqui JM, Amadio A, Tschoeke D, Thompson F, Albarracín VH, Farias ME. Dissecting Light Sensing and Metabolic Pathways on the Millimeter Scale in High-Altitude Modern Stromatolites. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02112-7. [PMID: 36161499 DOI: 10.1007/s00248-022-02112-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Modern non-lithifying stromatolites on the shore of the volcanic lake Socompa (SST) in the Puna are affected by several extreme conditions. The present study assesses for the first time light utilization and functional metabolic stratification of SST on a millimeter scale through shotgun metagenomics. In addition, a scanning-electron-microscopy approach was used to explore the community. The analysis on SST unveiled the profile of a photosynthetic mat, with cyanobacteria not directly exposed to light, but placed just below a high-UV-resistant community. Calvin-Benson and 3-hydroxypropinate cycles for carbon fixation were abundant in upper, oxic layers, while the Wood-Ljungdahl pathway was dominant in the deeper anoxic strata. The high abundance of genes for UV-screening and oxidant-quenching pigments and CPF (photoreactivation) in the UV-stressed layers could indicate that the zone itself works as a UV shield. There is a remarkable density of sequences associated with photoreceptors in the first two layers. Also, genetic evidence of photosynthesis split in eukaryotic (layer 1) and prokaryotic (layer 2). Photoheterotrophic bacteria, aerobic photoautotrophic bacteria, and anaerobic photoautotrophic bacteria coexist by selectively absorbing different parts of the light spectrum (blue, red, and IR respectively) at different positions of the mat. Genes for oxygen, nitrogen, and sulfur metabolism account for the microelectrode chemical data and pigment measurements performed in previous publications. We also provide here an explanation for the vertical microbial mobility within the SST described previously. Finally, our study points to SST as ideal modern analogues of ancient ST.
Collapse
Affiliation(s)
- Daniel Gonzalo Alonso-Reyes
- Laboratorio de Microbiología Ultraestructural Y Molecular, Centro Integral de Microscopía Electrónica (CIME,), CONICET-Universidad Nacional de Tucumán, Camino de Sirga s/n, Finca El Manantial, Yerba Buena (4107), San Miguel de Tucumán, Tucumán, Argentina
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| | - Fátima Silvina Galván
- Laboratorio de Microbiología Ultraestructural Y Molecular, Centro Integral de Microscopía Electrónica (CIME,), CONICET-Universidad Nacional de Tucumán, Camino de Sirga s/n, Finca El Manantial, Yerba Buena (4107), San Miguel de Tucumán, Tucumán, Argentina
| | - José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Rafaela, Argentina
| | - Ariel Amadio
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Rafaela, Argentina
| | - Diogo Tschoeke
- Institute of Biology and Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Institute of Biology and Coppe, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Virginia Helena Albarracín
- Laboratorio de Microbiología Ultraestructural Y Molecular, Centro Integral de Microscopía Electrónica (CIME,), CONICET-Universidad Nacional de Tucumán, Camino de Sirga s/n, Finca El Manantial, Yerba Buena (4107), San Miguel de Tucumán, Tucumán, Argentina.
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina.
| | - María Eugenia Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| |
Collapse
|
10
|
Bogachev AV, Baykov AA, Bertsova YV, Mamedov MD. Mechanism of Ion Translocation by Na+-Rhodopsin. BIOCHEMISTRY (MOSCOW) 2022; 87:731-741. [DOI: 10.1134/s0006297922080053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Kawaka F. Characterization of symbiotic and nitrogen fixing bacteria. AMB Express 2022; 12:99. [PMID: 35907164 PMCID: PMC9339069 DOI: 10.1186/s13568-022-01441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Symbiotic nitrogen fixing bacteria comprise of diverse species associated with the root nodules of leguminous plants. Using an appropriate taxonomic method to confirm the identity of superior and elite strains to fix nitrogen in legume crops can improve sustainable global food and nutrition security. The current review describes taxonomic methods preferred and commonly used to characterize symbiotic bacteria in the rhizosphere. Peer reviewed, published and unpublished articles on techniques used for detection, classification and identification of symbiotic bacteria were evaluated by exploring their advantages and limitations. The findings showed that phenotypic and cultural techniques are still affordable and remain the primary basis of species classification despite their challenges. Development of new, robust and informative taxonomic techniques has really improved characterization and identification of symbiotic bacteria and discovery of novel and new species that are effective in biological nitrogen fixation (BNF) in diverse conditions and environments.
Collapse
Affiliation(s)
- Fanuel Kawaka
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo, Kenya.
| |
Collapse
|
12
|
Assessment of Hydrocarbon Degradation Potential in Microbial Communities in Arctic Sea Ice. Microorganisms 2022; 10:microorganisms10020328. [PMID: 35208784 PMCID: PMC8879337 DOI: 10.3390/microorganisms10020328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The anthropogenic release of oil hydrocarbons into the cold marine environment is an increasing concern due to the elevated usage of sea routes and the exploration of new oil drilling sites in Arctic areas. The aim of this study was to evaluate prokaryotic community structures and the genetic potential of hydrocarbon degradation in the metagenomes of seawater, sea ice, and crude oil encapsulating the sea ice of the Norwegian fjord, Ofotfjorden. Although the results indicated substantial differences between the structure of prokaryotic communities in seawater and sea ice, the crude oil encapsulating sea ice (SIO) showed increased abundances of many genera-containing hydrocarbon-degrading organisms, including Bermanella, Colwellia, and Glaciecola. Although the metagenome of seawater was rich in a variety of hydrocarbon degradation-related functional genes (HDGs) associated with the metabolism of n-alkanes, and mono- and polyaromatic hydrocarbons, most of the normalized gene counts were highest in the clean sea ice metagenome, whereas in SIO, these counts were the lowest. The long-chain alkane degradation gene almA was detected from all the studied metagenomes and its counts exceeded ladA and alkB counts in both sea ice metagenomes. In addition, almA was related to the most diverse group of prokaryotic genera. Almost all 18 good- and high-quality metagenome-assembled genomes (MAGs) had diverse HDGs profiles. The MAGs recovered from the SIO metagenome belonged to the abundant taxa, such as Glaciecola, Bermanella, and Rhodobacteracea, in this environment. The genera associated with HDGs were often previously known as hydrocarbon-degrading genera. However, a substantial number of new associations, either between already known hydrocarbon-degrading genera and new HDGs or between genera not known to contain hydrocarbon degraders and multiple HDGs, were found. The superimposition of the results of comparing HDG associations with taxonomy, the HDG profiles of MAGs, and the full genomes of organisms in the KEGG database suggest that the found relationships need further investigation and verification.
Collapse
|
13
|
Mizutani Y. Concerted Motions and Molecular Function: What Physical Chemistry We Can Learn from Light-Driven Ion-Pumping Rhodopsins. J Phys Chem B 2021; 125:11812-11819. [PMID: 34672596 DOI: 10.1021/acs.jpcb.1c06698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmembrane ion gradients are generated and maintained by ion-pumping proteins in cells. Light-driven ion-pumping rhodopsins are retinal-containing proteins found in archaea, bacteria, and eukarya. Photoisomerization of the retinal chromophore induces structural changes in the protein, allowing the transport of ions in a particular direction. Understanding unidirectional ion transport by ion-pumping rhodopsins is an exciting challenge for biophysical chemistry. Concerted changes in ion-binding affinities of the ion-binding sites in proteins are key to unidirectional ion transport, as is the coupling between the chromophore and the protein moiety to drive the concerted motions regulating ion-binding affinities. The commonality of ion-pumping rhodopsin protein structures and the diversity of their ion-pumping functions suggest universal principles governing ion transport, which would be widely applicable to molecular systems. In this Perspective, I review the insights obtained from previous studies on rhodopsins and discuss future perspectives.
Collapse
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
14
|
Abstract
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan;
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| |
Collapse
|
15
|
Nakamizo Y, Fujisawa T, Kikukawa T, Okamura A, Baba H, Unno M. Low-temperature Raman spectroscopy of sodium-pump rhodopsin from Indibacter alkaliphilus: insight of Na + binding for active Na + transport. Phys Chem Chem Phys 2021; 23:2072-2079. [PMID: 33433533 DOI: 10.1039/d0cp05652a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We carried out the low-temperature Raman measurement of a sodium pump rhodopsin from Indibacter alkaliphilus (IaNaR) and examined the primary structural change for the light-driven Na+ pump. We observed that photoexcitation of IaNaR produced the distorted 13-cis retinal chromophore in the presence of Na+, while the structural distortion was significantly relaxed in the absence of Na+. This structural difference of the chromophore with/without Na+ was attributed to the Na+ binding to the protein, which alters the active site. Using the spectral sensitivity to the ion binding, we found that IaNaR had a second Na+ binding site in addition to the one already specified on the extracellular surface. To date, the Na+ binding has not been considered as a prerequisite for Na+ transport. However, this study provides insight that the protein structural change induced by the ion binding involved the formation of an R108-D250 salt bridge, which has critical importance in the active transport of Na+.
Collapse
Affiliation(s)
- Yushi Nakamizo
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Kurth D, Elias D, Rasuk MC, Contreras M, Farías ME. Carbon fixation and rhodopsin systems in microbial mats from hypersaline lakes Brava and Tebenquiche, Salar de Atacama, Chile. PLoS One 2021; 16:e0246656. [PMID: 33561170 PMCID: PMC7872239 DOI: 10.1371/journal.pone.0246656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
In this work, molecular diversity of two hypersaline microbial mats was compared by Whole Genome Shotgun (WGS) sequencing of environmental DNA from the mats. Brava and Tebenquiche are lakes in the Salar de Atacama, Chile, where microbial communities are growing in extreme conditions, including high salinity, high solar irradiance, and high levels of toxic metals and metaloids. Evaporation creates hypersaline conditions in these lakes and mineral precipitation is a characteristic geomicrobiological feature of these benthic ecosystems. The mat from Brava was more rich and diverse, with a higher number of different taxa and with species more evenly distributed. At the phylum level, Proteobacteria, Cyanobacteria, Chloroflexi, Bacteroidetes and Firmicutes were the most abundant, including ~75% of total sequences. At the genus level, the most abundant sequences were affilitated to anoxygenic phototropic and cyanobacterial genera. In Tebenquiche mats, Proteobacteria and Bacteroidetes covered ~70% of the sequences, and 13% of the sequences were affiliated to Salinibacter genus, thus addressing the lower diversity. Regardless of the differences at the taxonomic level, functionally the two mats were similar. Thus, similar roles could be fulfilled by different organisms. Carbon fixation through the Wood-Ljungdahl pathway was well represented in these datasets, and also in other mats from Andean lakes. In spite of presenting less taxonomic diversity, Tebenquiche mats showed increased abundance and variety of rhodopsin genes. Comparison with other metagenomes allowed identifying xantorhodopsins as hallmark genes not only from Brava and Tebenquiche mats, but also for other mats developing at high altitudes in similar environmental conditions.
Collapse
Affiliation(s)
- Daniel Kurth
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| | - Dario Elias
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, Entre Ríos, Argentina
| | - María Cecilia Rasuk
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| | | | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| |
Collapse
|
17
|
Seo YL, Jung J, Song CU, Kwon YM, Jung HS, Eyun SI, Jeon CO. Nonlabens ponticola sp. nov., isolated from seawater and reclassification of Nonlabens sediminis as a later heterotypic synonym of Nonlabens tegetincola. Int J Syst Evol Microbiol 2020; 71. [PMID: 33332255 DOI: 10.1099/ijsem.0.004603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, orange-pigmented and strictly aerobic bacterium, designated strain MJ115T, was isolated from seawater in Pohang, South Korea. Cells were non-motile rods and showed positive reactions for catalase and oxidase tests. Growth of strain MJ115T was observed at 4-35 °C (optimum, 30 °C), pH 6.0-7.0 (optimum, pH 6.5) and in the presence of 0-8.0 % (w/v) NaCl (optimum, 2.0%). Strain MJ115T contained iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 1 ω9c, C17 : 0 2-OH, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) as major cellular fatty acids and menaquinone-6 as the major respiratory quinone. Phosphatidylethanolamine, two unidentified aminolipids and four unidentified lipids were detected as major polar lipids. The G+C content of the genomic DNA was 40.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MJ115T formed a phyletic lineage with Nonlabens marinus S1-08T, Nonlabens agnitus JC2678T and Nonlabens antarcticus AKS 622T within the genus Nonlabens. Strain MJ115T was also most closely related to N. marinus S1-08T, N. agnitus JC2678T and N. antarcticus AKS 622T with 96.5, 96.4 and 96.0 % 16S rRNA sequence similarities, respectively. Here it is proposed that strain MJ115T represents a new species of the genus Nonlabens, for which the name Nonlabens ponticola sp. nov. is proposed. The type strain is MJ115T (=KCTC 72237T=NBRC 113963T). In addition, the comparison of the whole genome sequences and phenotypic features suggested that Nonlabens tegetincola and Nonlabens sediminis belong to the same species. Therefore, it is proposed that N. sediminis is reclassified as a later heterotypic synonym of N. tegetincola.
Collapse
Affiliation(s)
- Ye Lin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chi-Une Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yong Min Kwon
- National Biodiversity Institute of Korea, Seocheon, Chungcheongnam-do 33662, Republic of Korea
| | - Hye Su Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Besaw JE, Ou WL, Morizumi T, Eger BT, Sanchez Vasquez JD, Chu JHY, Harris A, Brown LS, Miller RJD, Ernst OP. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. J Biol Chem 2020; 295:14793-14804. [PMID: 32703899 DOI: 10.1074/jbc.ra120.014118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Juan D Sanchez Vasquez
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica H Y Chu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Kwon SK, Jun SH, Kim JF. Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins. J Microbiol Biotechnol 2020; 30:633-641. [PMID: 32482928 PMCID: PMC9728251 DOI: 10.4014/jmb.1912.12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Microbial rhodopsins are a superfamily of photoactive membrane proteins with covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the 3 omega motif. This motif forms a stack of three nonconsecutive aromatic amino acids that correlates with the B-C loop orientation, and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these omega rhodopsins, and speculated on their evolutionary origin of functional diversity..
Collapse
Affiliation(s)
- Soon-Kyeong Kwon
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Hoon Jun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 8119, Republic of Korea
| | - Jihyun F. Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 0722, Republic of Korea
| |
Collapse
|
20
|
Xue CX, Zhang H, Lin HY, Sun Y, Luo D, Huang Y, Zhang XH, Luo H. Ancestral niche separation and evolutionary rate differentiation between sister marine flavobacteria lineages. Environ Microbiol 2020; 22:3234-3247. [PMID: 32390223 DOI: 10.1111/1462-2920.15065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022]
Abstract
Marine flavobacteria are specialists for polysaccharide degradation. They dominate in habitats enriched with polysaccharides, but are also prevalent in pelagic environments where polysaccharides are less available. These niches are likely occupied by distinct lineages, but evolutionary processes underlying their niche differentiation remain elusive. Here, genomic analyses and physiological assays indicate that the sister flavobacteria lineages Leeuwenhoekiella and Nonlabens likely explore polysaccharide-rich macroalgae and polysaccharide-poor pelagic niches respectively. Phylogenomic analyses inferred that the niche separation likely occurred anciently and coincided with increased sequence evolutionary rate in Nonlabens compared with Leeuwenhoekiella. Further analyses ruled out the known mechanisms likely driving evolutionary rate acceleration, including reduced selection efficiency, decreased generation time and increased mutation rate. In particular, the mutation rates were determined using an unbiased experimental method, which measures the present-day populations and may not reflect ancestral populations. These data collectively lead to a new hypothesis that an ancestral and transient mutation rate increase resulted in evolutionary rate increase in Nonlabens. This hypothesis was supported by inferring that gains and losses of genes involved in SOS response, a mechanism known to drive transiently increased mutation rate, coincided with evolutionary rate acceleration. Our analyses highlight the evolutionary mechanisms underlying niche differentiation of flavobacteria lineages.
Collapse
Affiliation(s)
- Chun-Xu Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - He-Yu Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Danli Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Yongjie Huang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
21
|
Zhou LY, Meng X, Zhong YL, Li GY, Du ZJ, Mu DS. Dokdonia sinensis sp. nov., a flavobacterium isolated from surface seawater. Int J Syst Evol Microbiol 2020; 70:1617-1622. [PMID: 32228747 DOI: 10.1099/ijsem.0.003949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A taxonomic study was carried out on strain SH27T, which was isolated from seawater collected around Xiaoshi Island, PR China. Cells of strain SH27T were Gram-stain-negative, non-motile, rod-shaped, orange-pigmented and grew at 15-37 °C (optimum, 28 °C), at pH 6.0-8.0 (pH 7.0) and in 1.0-7.0 % (w/v) NaCl (2.0-3.0 %). The isolate was positive for catalase, but negative for nitrate reduction, oxidase, indole production and urease. Carotenoid pigment was produced. Phylogenetic analysis based on the 16S rRNA gene placed strain SH27T in the genus Dokdonia with the closest relative being Dokdonia donghaensis KCTC 12391T, exhibiting 96.7 % 16S rRNA gene pairwise similarity. The results of genomic comparisons, including average nucleotide identity and digital DNA-DNA hybridization, showed 72.9 and 19.2 % identity to D. donghaensis KCTC 12391T, respectively. The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The major polar lipids were phosphatidylethanolamine and two unidentified lipids. Menaquinone-6 was the only respiratory quinone. The G+C content of the genomic DNA was 32.9 mol%. On the basis of the phenotypic and phylogenetic data, strain SH27T represents a novel species of the genus Dokdonia, for which the name Dokdonia sinensis sp. nov. is proposed, with the type strain SH27T (MCCC 1H00358T=CCTCC AB 2018323T=KCTC 62962T).
Collapse
Affiliation(s)
- Liu-Yan Zhou
- Marine College, Shandong University, Weihai 264209, PR China
| | - Xue Meng
- Marine College, Shandong University, Weihai 264209, PR China
| | - Yan-Lin Zhong
- Marine College, Shandong University, Weihai 264209, PR China
| | - Guang-Yu Li
- Third Institute of Oceanography, Ministry of Natural Resources, XiaMen 361000, PR China
| | - Zong-Jun Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.,Marine College, Shandong University, Weihai 264209, PR China
| | - Da-Shuai Mu
- Marine College, Shandong University, Weihai 264209, PR China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
22
|
Tarlachkov SV, Shevchuk TV, Montero-Calasanz MDC, Starodumova IP. Diversity of rhodopsins in cultivated bacteria of the family Geodermatophilaceae associated with non-aquatic environments. Bioinformatics 2020; 36:1668-1672. [PMID: 31711117 DOI: 10.1093/bioinformatics/btz840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION A small amount of research is focused on investigation of rhodopsins in cultivated bacteria isolated from non-aquatic environments. Furthermore, the abundance of these proteins in strains from hot and arid habitats was not reported previously. Since there is an insignificant amount of such isolates, the enigmatic role of the rhodopsins in dry ecological niches is still poorly understood. The members of the family Geodermatophilaceae could be used as interesting objects to search for new rhodopsin genes that will provide novel insights into versatility and importance of these proteins in non-aquatic conditions. RESULTS This is the first report of the abundance of different rhodopsins in cultivated bacteria isolated from hot and arid ecological niches. A total of 31 rhodopsin genes were identified in 51 analyzed genomes of strains belonging to the family Geodermatophilaceae. Overall, 88% of the strains harbouring rhodopsins are isolated from non-aquatic environments. It was found that 82% of strains belonging to the genus Geodermatophilus have at least one gene as compared to 38% of strains of other genera which contain rhodopsins. Analysis of key amino acids revealed two types of the studied proteins: DTE type (putative proton pump) and NDQ type (putative sodium pump). Proton pumps were divided into two subtypes (DTEW and DTEF) according to phylogenetic analysis and the presence of highly conserved tryptophan or phenylalanine at position 182. Among all studied rhodopsins DTEF subtype is the most unique one, identified only in this family. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sergey V Tarlachkov
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Center for Biological Research.,Department of Plant Molecular Biology and Biotechnology, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Taras V Shevchuk
- Department of Plant Molecular Biology and Biotechnology, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria Del Carmen Montero-Calasanz
- Plant and Microbial Biology Research Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Irina P Starodumova
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Scientific Center for Biological Research
| |
Collapse
|
23
|
Kovalev K, Volkov D, Astashkin R, Alekseev A, Gushchin I, Haro-Moreno JM, Chizhov I, Siletsky S, Mamedov M, Rogachev A, Balandin T, Borshchevskiy V, Popov A, Bourenkov G, Bamberg E, Rodriguez-Valera F, Büldt G, Gordeliy V. High-resolution structural insights into the heliorhodopsin family. Proc Natl Acad Sci U S A 2020; 117:4131-4141. [PMID: 32034096 PMCID: PMC7049168 DOI: 10.1073/pnas.1915888117] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhodopsins are the most abundant light-harvesting proteins. A new family of rhodopsins, heliorhodopsins (HeRs), has recently been discovered. Unlike in the known rhodopsins, in HeRs the N termini face the cytoplasm. The function of HeRs remains unknown. We present the structures of the bacterial HeR-48C12 in two states at the resolution of 1.5 Å, which highlight its remarkable difference from all known rhodopsins. The interior of HeR's extracellular part is completely hydrophobic, while the cytoplasmic part comprises a cavity (Schiff base cavity [SBC]) surrounded by charged amino acids and containing a cluster of water molecules, presumably being a primary proton acceptor from the Schiff base. At acidic pH, a planar triangular molecule (acetate) is present in the SBC. Structure-based bioinformatic analysis identified 10 subfamilies of HeRs, suggesting their diverse biological functions. The structures and available data suggest an enzymatic activity of HeR-48C12 subfamily and their possible involvement in fundamental redox biological processes.
Collapse
Affiliation(s)
- K Kovalev
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-Commission for Atomic Energy (CEA)-CNRS, 38000 Grenoble, France
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Institute of Crystallography, University of Aachen (Rheinisch-Westfälische Technische Hochschule Aachen [RWTH]), 52062 Aachen, Germany
| | - D Volkov
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - R Astashkin
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-Commission for Atomic Energy (CEA)-CNRS, 38000 Grenoble, France
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - A Alekseev
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Institute of Crystallography, University of Aachen (Rheinisch-Westfälische Technische Hochschule Aachen [RWTH]), 52062 Aachen, Germany
| | - I Gushchin
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - J M Haro-Moreno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03202 San Juan de Alicante, Spain
| | - I Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - S Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - M Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A Rogachev
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - T Balandin
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - V Borshchevskiy
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - A Popov
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - G Bourenkov
- Hamburg Unit care of Deutsches Elektronen-Synchrotron (DESY), European Molecular Biology Laboratory, 22607 Hamburg, Germany
| | - E Bamberg
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Biophysical Chemistry, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - F Rodriguez-Valera
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, 03202 San Juan de Alicante, Spain
| | - G Büldt
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| | - V Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-Commission for Atomic Energy (CEA)-CNRS, 38000 Grenoble, France;
- Institute of Biological Information Processing (Institute of Biological Information Processing: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Research Center for Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny 141701, Russia
| |
Collapse
|
24
|
Abstract
Recently, two groups of rhodopsin genes were identified in large double-stranded DNA viruses. The structure and function of viral rhodopsins are unknown. We present functional characterization and high-resolution structure of an Organic Lake Phycodnavirus rhodopsin II (OLPVRII) of group 2. It forms a pentamer, with a symmetrical, bottle-like central channel with the narrow vestibule in the cytoplasmic part covered by a ring of 5 arginines, whereas 5 phenylalanines form a hydrophobic barrier in its exit. The proton donor E42 is placed in the helix B. The structure is unique among the known rhodopsins. Structural and functional data and molecular dynamics suggest that OLPVRII might be a light-gated pentameric ion channel analogous to pentameric ligand-gated ion channels, however, future patch clamp experiments should prove this directly. The data shed light on a fundamentally distinct branch of rhodopsins and may contribute to the understanding of virus-host interactions in ecologically important marine protists.
Collapse
|
25
|
Kim S, Kim EJ, Park JB, Kim SW, Kim KJ. Crystal structure of geranylgeranyl pyrophosphate synthase (crtE) from Nonlabens dokdonensis DSW-6. Biochem Biophys Res Commun 2019; 518:479-485. [PMID: 31427080 DOI: 10.1016/j.bbrc.2019.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Isoprenoids comprise a diverse group of natural products with a broad range of metabolic functions. Isoprenoids are synthesized from prenyl pyrophosphates by prenyltransferases that catalyze the isoprenoid chain-elongation process to different chain lengths. We hereby present the crystal structure of geranylgeranyl pyrophosphate synthase from the marine flavobacterium Nonlabens dokdonensis DSW-6 (NdGGPPS). NdGGPPS forms a hexamer composed of homodimeric trimer, and the monomeric structure is composed of 15 α-helices (α1-α15). In this structure, we observed the binding of one pyrophosphate molecule and two glycerol molecules that mimicked substrate binding to the enzyme. The substrate binding site of NdGGPPS contains large hydrophobic residues such as Phe, His and Tyr, and structural and amino acids sequence analyses thereof suggest that the protein belongs to the short-chain prenyltransferase family.
Collapse
Affiliation(s)
- Sangwoo Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 41566, Republic of Korea
| | - Eun-Jung Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea
| | - Ji-Bin Park
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu 41566, Republic of Korea.
| |
Collapse
|
26
|
Engineered Passive Potassium Conductance in the KR2 Sodium Pump. Biophys J 2019; 116:1941-1951. [PMID: 31036257 DOI: 10.1016/j.bpj.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 11/23/2022] Open
Abstract
Light-driven sodium pumps (NaRs) are microbial rhodopsins that utilize light energy to actively transport sodium ions out of the cell. Here, we used targeted mutagenesis and electrophysiological methods in living cells to demonstrate that NaRs can be converted into light-activated cation channels by molecular engineering. Specifically, introduction of the R109Q mutation into the sodium ion pump of Dokdonia eikasta (KR2) results in passive ion conductance, with a high preference for potassium over sodium ions. However, in this mutant, residual active outward pumping of sodium ions competes with passive inward transport of potassium. Channel-like behavior could also be achieved by introduction of other mutations into the KR2 counterion complex, and further, these modifications were transferrable to other NaRs. Combining the R109Q replacement with modifications at position S70 removed the residual sodium pumping and greatly enhanced the channel-like activity. However, passive photocurrents were only observed in leak mutants if the KR2 counterions, D116 and D251, were deprotonated, which was only observed under alkaline conditions. Overall, our results reveal that interactions between R109 and the nearby residues, L75, S70, D116, and D251, prevent passive backflow during ion transport in NaRs.
Collapse
|
27
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
28
|
Yun JH, Li X, Park JH, Wang Y, Ohki M, Jin Z, Lee W, Park SY, Hu H, Li C, Zatsepin N, Hunter MS, Sierra RG, Koralek J, Yoon CH, Cho HS, Weierstall U, Tang L, Liu H, Lee W. Non-cryogenic structure of a chloride pump provides crucial clues to temperature-dependent channel transport efficiency. J Biol Chem 2018; 294:794-804. [PMID: 30455349 DOI: 10.1074/jbc.ra118.004038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/12/2018] [Indexed: 11/06/2022] Open
Abstract
Non-cryogenic protein structures determined at ambient temperature may disclose significant information about protein activity. Chloride-pumping rhodopsin (ClR) exhibits a trend to hyperactivity induced by a change in the photoreaction rate because of a gradual decrease in temperature. Here, to track the structural changes that explain the differences in CIR activity resulting from these temperature changes, we used serial femtosecond crystallography (SFX) with an X-ray free electron laser (XFEL) to determine the non-cryogenic structure of ClR at a resolution of 1.85 Å, and compared this structure with a cryogenic ClR structure obtained with synchrotron X-ray crystallography. The XFEL-derived ClR structure revealed that the all-trans retinal (ATR) region and positions of two coordinated chloride ions slightly differed from those of the synchrotron-derived structure. Moreover, the XFEL structure enabled identification of one additional water molecule forming a hydrogen bond network with a chloride ion. Analysis of the channel cavity and a difference distance matrix plot (DDMP) clearly revealed additional structural differences. B-factor information obtained from the non-cryogenic structure supported a motility change on the residual main and side chains as well as of chloride and water molecules because of temperature effects. Our results indicate that non-cryogenic structures and time-resolved XFEL experiments could contribute to a better understanding of the chloride-pumping mechanism of ClR and other ion pumps.
Collapse
Affiliation(s)
- Ji-Hye Yun
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Xuanxuan Li
- Complex Systems Division, Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China.,Department of Engineering Physics, Tsinghua University, Beijing 100086, China
| | - Jae-Hyun Park
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Yang Wang
- Complex Systems Division, Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Zeyu Jin
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Wonbin Lee
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama 230-0045, Japan
| | - Hao Hu
- Physics Department, and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287
| | - Chufeng Li
- Physics Department, and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287
| | - Nadia Zatsepin
- Physics Department, and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, and
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, and
| | - Jake Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, and
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, and
| | - Hyun-Soo Cho
- Department of Systems Biology and Division of Life Sciences, Yonsei University, Seoul 03722, South Korea
| | - Uwe Weierstall
- Physics Department, and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona 85287
| | - Leihan Tang
- Complex Systems Division, Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China
| | - Haiguang Liu
- Complex Systems Division, Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China,
| | - Weontae Lee
- From the Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, South Korea,
| |
Collapse
|
29
|
Park JM, Hong JW, Son JS, Hwang YJ, Cho HM, You YH, Ghim SY. A strategy for securing unique microbial resources – focusing on Dokdo islands-derived microbial resources. Isr J Ecol Evol 2018. [DOI: 10.1163/22244662-20181024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review focuses on the state of research on the microbial resources of Dokdo, Korea, as a strategy for securing national microbial resources. In the Korean peninsula, studies aimed at securing microbial resources are carried out across diverse natural environments, especially in the Dokdo islands. Until 2017, a total of 61 novel microbial genera, species, or newly recorded strains have been reported. Among these, 10 new taxa have had their whole genome sequenced and published, in order to find novel useful genes. Additionally, there have been multiple reports of bacteria with novel characteristics, including promoting plant growth or inducing systemic resistance in plants, calcite-forming ability, electrical activation, and production of novel enzymes. Furthermore, fundamental studies on microbial communities help to secure and define microbial resources in the Dokdo islands. This study will propose several tactics, based on ecological principles, for securing more microbial resources to cope with the current increase in international competition for biological resources.
Collapse
Affiliation(s)
- Jong Myong Park
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
- b Department of Infectious Disease Diagnosis, Incheon Institute of Public Health and Environment, Incheon 22320, Republic of Korea
| | - Ji Won Hong
- c Marine Plants Team, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jin-Soo Son
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Ji Hwang
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Min Cho
- d LOTTE Group R&D Center, Seoul 07594, Republic of Korea
| | - Young-Hyun You
- e Microoganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Sa-Youl Ghim
- a School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Research Institute for Ulleungdo & Dokdo Islands, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
30
|
Maresca JA, Miller KJ, Keffer JL, Sabanayagam CR, Campbell BJ. Distribution and Diversity of Rhodopsin-Producing Microbes in the Chesapeake Bay. Appl Environ Microbiol 2018; 84:e00137-18. [PMID: 29703736 PMCID: PMC6007120 DOI: 10.1128/aem.00137-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Although sunlight is an abundant source of energy in surface environments, less than 0.5% of the available photons are captured by (bacterio)chlorophyll-dependent photosynthesis in plants and bacteria. Metagenomic data indicate that 30 to 60% of the bacterial genomes in some environments encode rhodopsins, retinal-based photosystems found in heterotrophs, suggesting that sunlight may provide energy for more life than previously suspected. However, quantitative data on the number of cells that produce rhodopsins in environmental systems are limited. Here, we use total internal reflection fluorescence microscopy to show that the number of free-living microbes that produce rhodopsins increases along the salinity gradient in the Chesapeake Bay. We correlate this functional data with environmental data to show that rhodopsin abundance is positively correlated with salinity and with indicators of active heterotrophy during the day. Metagenomic and metatranscriptomic data suggest that the microbial rhodopsins in the low-salinity samples are primarily found in Actinobacteria and Bacteroidetes, while those in the high-salinity samples are associated with SAR-11 type AlphaproteobacteriaIMPORTANCE Microbial rhodopsins are common light-activated ion pumps in heterotrophs, and previous work has proposed that heterotrophic microbes use them to conserve energy when organic carbon is limiting. If this hypothesis is correct, rhodopsin-producing cells should be most abundant where nutrients are most limited. Our results indicate that in the Chesapeake Bay, rhodopsin gene abundance is correlated with salinity, and functional rhodopsin production is correlated with nitrate, bacterial production, and chlorophyll a We propose that in this environment, where carbon and nitrogen are likely not limiting, heterotrophs do not need to use rhodopsins to supplement ATP synthesis. Rather, the light-generated proton motive force in nutrient-rich environments could be used to power energy-dependent membrane-associated processes, such as active transport of organic carbon and cofactors, enabling these organisms to more efficiently utilize exudates from primary producers.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelsey J Miller
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | | | - Barbara J Campbell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
31
|
Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2. Sci Rep 2018; 8:9316. [PMID: 29915394 PMCID: PMC6006383 DOI: 10.1038/s41598-018-27690-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 01/22/2023] Open
Abstract
A new microbial rhodopsin class that actively transports sodium out of the cell upon illumination was described in 2013. However, poor membrane targeting of the first-identified sodium pump KR2 in mammalian cells has hindered the direct electrical investigation of its transport mechanism and optogenetic application to date. Accordingly, we designed enhanced KR2 (eKR2), which exhibits improved membrane targeting and higher photocurrents in mammalian cells to facilitate molecular characterization and future optogenetic applications. Our selectivity measurements revealed that stationary photocurrents are primarily carried by sodium, whereas protons only play a minor role, if any. Combining laser-induced photocurrent and absorption measurements, we found that spectral changes were not necessarily related to changes in transport activity. Finally, we showed that eKR2 can be expressed in cultured hippocampal mouse neurons and induce reversible inhibition of action potential firing with millisecond precision upon illumination with moderate green-light. Hence, the light-driven sodium pump eKR2 is a reliable inhibitory optogenetic tool applicable to situations in which the proton and chloride gradients should not be altered.
Collapse
|
32
|
Kandori H, Inoue K, Tsunoda SP. Light-Driven Sodium-Pumping Rhodopsin: A New Concept of Active Transport. Chem Rev 2018. [DOI: 10.1021/acs.chemrev.7b00548] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi P. Tsunoda
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
33
|
Abstract
Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins, found in microorganisms belonging to all kingdoms of life, with new members being constantly discovered. Among the MRs are light-driven proton, cation and anion pumps, light-gated cation and anion channels, and various photoreceptors. Due to their abundance and amenability to studies, MRs served as model systems for a great variety of biophysical techniques, and recently found a great application as optogenetic tools. While the basic aspects of microbial rhodopsins functioning have been known for some time, there is still a plenty of unanswered questions. This chapter presents and summarizes the available knowledge, focusing on the functional and structural studies.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia.
- University of Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France.
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
34
|
Casey JR, Ferrón S, Karl DM. Light-Enhanced Microbial Organic Carbon Yield. Front Microbiol 2017; 8:2157. [PMID: 29250035 PMCID: PMC5715323 DOI: 10.3389/fmicb.2017.02157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022] Open
Abstract
Molecular evidence for proteorhodopsin- and bacteriochlorophyll-based photoheterotrophy is widespread in oligotrophic marine microbial community metagenomes, and has been implicated in light-enhanced growth rates, substrate uptake rates, and anapleurotic carbon fixation, thus complicating the web of interactions within the ‘microbial loop.’ We quantified photoheterotrophic metabolism of the oxidized organic acid glycolate, a fast-turnover and exclusively phytoplankton-derived substrate at an oligotrophic site in the subtropical North Pacific Ocean. As expected, concentration-dependent changes in uptake rates were observed over the diel cycle, with maxima occurring at midday. Although no light-enhanced substrate uptake rates were observed, samples exposed to light altered the balance between assimilation and respiration, resulting in an approximately four-fold increase in glycolate-specific assimilation efficiency. Energy demand for such a metabolic adjustment was linearly related to light, consistent with photoheterotrophy.
Collapse
Affiliation(s)
- John R Casey
- Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Sara Ferrón
- Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| | - David M Karl
- Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
35
|
Guerrero LD, Vikram S, Makhalanyane TP, Cowan DA. Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems. Environ Microbiol 2017; 19:3755-3767. [PMID: 28752953 DOI: 10.1111/1462-2920.13877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022]
Abstract
Microorganisms able to synthesize rhodopsins have the capacity to translocate ions through their membranes, using solar energy to generate a proton motive force. Rhodopsins are the most abundant phototrophic proteins in oceanic surface waters and are key constituents in marine bacterial ecology. However, it remains unclear how rhodopsins are used in most microorganisms. Despite their abundance in marine and fresh-water systems, the presence of functional rhodopsin systems in edaphic habitats has never been reported. Here, we show the presence of several new putative H+ , Na+ and Cl+ pumping rhodopsins identified by metagenomic analysis of Antarctic desert hypolithic communities. Reconstruction of two Proteobacteria genomes harboring xanthorhodopsin-like proteins and one Bacteroidetes genome with a Na-pumping-like rhodopsin indicated that these bacteria were aerobic heterotrophs possessing the apparent capacity for the functional expression of rhodopsins. The existence of these protein systems in hypolithic bacteria expands the known role of rhodopsins to include terrestrial environments and suggests a possible predominant function as heterotrophic energy supply proteins, a feasible microbial adaptation to the harsh conditions prevalent in Antarctic edaphic systems.
Collapse
Affiliation(s)
- Leandro D Guerrero
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Surendra Vikram
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Don A Cowan
- Centre of Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
36
|
Yang JA, Yang SH, Kim J, Kwon KK, Oh HM. Comparative genome analysis of the Flavobacteriales bacterium strain UJ101, isolated from the gut of Atergatis reticulatus. J Microbiol 2017; 55:583-591. [PMID: 28664513 DOI: 10.1007/s12275-017-7172-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Here we report the comparative genomic analysis of strain UJ101 with 15 strains from the family Flavobacteriaceae, using the CGExplorer program. Flavobacteriales bacterium strain UJ101 was isolated from a xanthid crab, Atergatis reticulatus, from the East Sea near Korea. The complete genome of strain UJ101 is a 3,074,209 bp, single, circular chromosome with 30.74% GC content. While the UJ101 genome contains a number of annotated genes for many metabolic pathways, such as the Embden-Meyerhof pathway, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle, genes for the Entner-Douddoroff pathway are not found in the UJ101 genome. Overall, carbon fixation processes were absent but nitrate reduction and denitrification pathways were conserved. The UJ101 genome was compared to genomes from other marine animals (three invertebrate strains and 5 fish strains) and other marine animal- derived genera. Notable results by genome comparisons showed that UJ101 is capable of denitrification and nitrate reduction, and that biotin-thiamine pathway participation varies among marine bacteria; fish-dwelling bacteria, freeliving bacteria, invertebrate-dwelling bacteria, and strain UJ101. Pan-genome analysis of the 16 strains in this study included 7,220 non-redundant genes that covered 62% of the pan-genome. A core-genome of 994 genes was present and consisted of 8% of the genes from the pan-genome. Strain UJ101 is a symbiotic hetero-organotroph isolated from xanthid crab, and is a metabolic generalist with nitrate-reducing abilities but without the ability to synthesize biotin. There is a general tendency of UJ101 and some fish pathogens to prefer thiamine-dependent glycolysis to gluconeogenesis. Biotin and thiamine auxotrophy or prototrophy may be used as important markers in microbial community studies.
Collapse
Affiliation(s)
- Jhung-Ahn Yang
- Departments of Marine-Bio Convergence Science, Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, 48547, Republic of Korea
| | - Sung-Hyun Yang
- Marine Biotechnology Research Division, Korea Institute of Ocean Science & Technology, Ansan, 15627, Republic of Korea
| | - Junghee Kim
- Departments of Marine-Bio Convergence Science, Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, 48547, Republic of Korea
| | - Kae Kyoung Kwon
- Marine Biotechnology Research Division, Korea Institute of Ocean Science & Technology, Ansan, 15627, Republic of Korea
| | - Hyun-Myung Oh
- Departments of Marine-Bio Convergence Science, Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, 48547, Republic of Korea.
| |
Collapse
|
37
|
Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem 2017; 86:845-872. [PMID: 28301742 PMCID: PMC5747503 DOI: 10.1146/annurev-biochem-101910-144233] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| |
Collapse
|
38
|
Lindemann SR, Mobberley JM, Cole JK, Markillie LM, Taylor RC, Huang E, Chrisler WB, Wiley HS, Lipton MS, Nelson WC, Fredrickson JK, Romine MF. Predicting Species-Resolved Macronutrient Acquisition during Succession in a Model Phototrophic Biofilm Using an Integrated 'Omics Approach. Front Microbiol 2017; 8:1020. [PMID: 28659875 PMCID: PMC5468372 DOI: 10.3389/fmicb.2017.01020] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 12/27/2022] Open
Abstract
The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species' abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.
Collapse
Affiliation(s)
- Stephen R Lindemann
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States.,Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West LafayetteIN, United States.,Department of Nutrition Science, Purdue University, West LafayetteIN, United States
| | - Jennifer M Mobberley
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Jessica K Cole
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - L M Markillie
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West LafayetteIN, United States
| | - Ronald C Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Eric Huang
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - H S Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, RichlandWA, United States
| | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - James K Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Margaret F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| |
Collapse
|
39
|
Chen Q, Arents J, Ganapathy S, de Grip WJ, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin inSynechocystissp. PCC6803. Photochem Photobiol 2017; 93:772-781. [DOI: 10.1111/php.12745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Jos Arents
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Willem J. de Grip
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
40
|
Zhao H, Ma B, Ji L, Li L, Wang H, Chen D. Coexistence of light-driven Na + and H + transport in a microbial rhodopsin from Nonlabens dokdonensis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:70-76. [PMID: 28527429 DOI: 10.1016/j.jphotobiol.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/06/2017] [Accepted: 05/04/2017] [Indexed: 02/04/2023]
Abstract
Ion pumping microbial rhodopsins are photochemically active membrane proteins, converting light energy into ion-motive-force for ATP synthesis. Nonlabens dokdonensis rhodopsin 2 (NdR2), was recently identified as a light-driven Na+ pump. However, few functional studies on NdR2 have been conducted to elucidate its mechanism of ion transport. By reconstituting NdR2 into liposomes, we proved that NdR2 functions as a light-driven Na+/H+ pump. As Na+ concentration increased, the dominant H+ pump activity switched to the Na+ pump activity at neutral pH. The inversion of pH change by the addition of CCCP at low Na+ further suggested that the transport of Na+ and H+ should coexist in NdR2. By increasing H+ concentration, the affinity for Na+ lowered, which was indicated by an increase in KM from ~31mM at pH ~7.5, to ~74mM at pH ~6.5. These results demonstrated that Na+ transport competed with H+ transport in NdR2, which was confirmed by the dominant H+ pump activity at pH ~5.7. Kinetic experiments using pyranine uncovered a transient H+ uptake, followed by an H+ release at the millisecond time scale in both Na+ and K+ solutions. Therefore, these NdR2 results may provide functional and kinetic insights into the ion transport mechanism in light-driven Na+ pumps.
Collapse
Affiliation(s)
- Hongshen Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangliang Ji
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjie Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Yoon K, Song JY, Kwak MJ, Kwon SK, Kim JF. Genome characteristics of the proteorhodopsin-containing marine flavobacterium Polaribacter dokdonensis DSW-5. J Microbiol 2017; 55:561-567. [DOI: 10.1007/s12275-017-6427-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
|
42
|
Dubinsky V, Haber M, Burgsdorf I, Saurav K, Lehahn Y, Malik A, Sher D, Aharonovich D, Steindler L. Metagenomic analysis reveals unusually high incidence of proteorhodopsin genes in the ultraoligotrophic Eastern Mediterranean Sea. Environ Microbiol 2017; 19:1077-1090. [DOI: 10.1111/1462-2920.13624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vadim Dubinsky
- Department of Marine Biology, Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Kumar Saurav
- Department of Marine Biology, Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Yoav Lehahn
- Department of Earth and Planetary Sciences; Weizmann Institute of Science; Rehovot Israel
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa; Haifa Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| |
Collapse
|
43
|
Shigeta A, Ito S, Inoue K, Okitsu T, Wada A, Kandori H, Kawamura I. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin. Biochemistry 2017; 56:543-550. [PMID: 28040890 DOI: 10.1021/acs.biochem.6b00999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recently identified Krokinobacter rhodopsin 2 (KR2) functions as a light-driven sodium ion pump. The structure of the retinal-binding pocket of KR2 offers important insights into the mechanisms of KR2, which has motif of Asn112, Asp116, and Gln123 (NDQ) that is common among sodium ion pump rhodopsins but is unique among other microbial rhodopsins. Here we present solid-state nuclear magnetic resonance (NMR) characterization of retinal and functionally important residues in the vicinity of retinal in the ground state. We assigned chemical shifts of retinal C14 and C20 atoms, and Tyr218Cζ, Lys255Cε, and the protonated Schiff base of KR2 in lipid environments at acidic and neutral pH. 15N NMR signals of the protonated Schiff base showed a twist around the N-Cε bond under neutral conditions, compared with other microbial rhodopsins. These data indicated that the location of the counterion Asp116 is one helical pitch toward the cytoplasmic side. In acidic environments, the 15N Schiff base signal was shifted to a lower field, indicating that protonation of Asp116 induces reorientation during interactions between the Schiff base and Asp116. In addition, the Tyr218 residue in the vicinity of retinal formed a weak hydrogen bond with Asp251, a temporary Na+-binding site during the photocycle. These features may indicate unique mechanisms of sodium ion pumps.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University , Hodogaya-ku, Yokohama 240-8501, Japan
| | - Shota Ito
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,PRESTO, Japan Science and Technology Agency (JST) , 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Okitsu
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University , Higashinada-ku, Kobe 658-8558, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University , Higashinada-ku, Kobe 658-8558, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology , Showa-ku, Nagoya 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University , Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
44
|
Geographic Impact on Genomic Divergence as Revealed by Comparison of Nine Citromicrobial Genomes. Appl Environ Microbiol 2016; 82:7205-7216. [PMID: 27736788 DOI: 10.1128/aem.02495-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAPB) are thought to be important players in oceanic carbon and energy cycling in the euphotic zone of the ocean. The genus Citromicrobium, widely found in oligotrophic oceans, is a member of marine alphaproteobacterial AAPB. Nine Citromicrobium strains isolated from the South China Sea, the Mediterranean Sea, or the tropical South Atlantic Ocean were found to harbor identical 16S rRNA sequences. The sequencing of their genomes revealed high synteny in major regions. Nine genetic islands (GIs) involved mainly in type IV secretion systems, flagellar biosynthesis, prophage, and integrative conjugative elements, were identified by a fine-scale comparative genomics analysis. These GIs played significant roles in genomic evolution and divergence. Interestingly, the coexistence of two different photosynthetic gene clusters (PGCs) was not only found in the analyzed genomes but also confirmed, for the first time, to our knowledge, in environmental samples. The prevalence of the coexistence of two different PGCs may suggest an adaptation mechanism for Citromicrobium members to survive in the oceans. Comparison of genomic characteristics (e.g., GIs, average nucleotide identity [ANI], single-nucleotide polymorphisms [SNPs], and phylogeny) revealed that strains within a marine region shared a similar evolutionary history that was distinct from that of strains isolated from other regions (South China Sea versus Mediterranean Sea). Geographic differences are partly responsible for driving the observed genomic divergences and allow microbes to evolve through local adaptation. Three Citromicrobium strains isolated from the Mediterranean Sea diverged millions of years ago from other strains and evolved into a novel group. IMPORTANCE Aerobic anoxygenic phototrophic bacteria are a widespread functional group in the upper ocean, and their abundance could be up to 15% of the total heterotrophic bacteria. To date, a great number of studies display AAPB biogeographic distribution patterns in the ocean; however, little is understood about the geographic isolation impact on the genome divergence of marine AAPB. In this study, we compare nine Citromicrobium genomes of strains that have identical 16S rRNA sequences but different ocean origins. Our results reveal that strains isolated from the same marine region share a similar evolutionary history that is distinct from that of strains isolated from other regions. These Citromicrobium strains diverged millions of years ago. In addition, the coexistence of two different PGCs is prevalent in the analyzed genomes and in environmental samples.
Collapse
|
45
|
Kato HE, Inoue K, Kandori H, Nureki O. The light-driven sodium ion pump: A new player in rhodopsin research. Bioessays 2016; 38:1274-1282. [PMID: 27859420 DOI: 10.1002/bies.201600065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rhodopsins are one of the most studied photoreceptor protein families, and ion-translocating rhodopsins, both pumps and channels, have recently attracted broad attention because of the development of optogenetics. Recently, a new functional class of ion-pumping rhodopsins, an outward Na+ pump, was discovered, and following structural and functional studies enable us to compare three functionally different ion-pumping rhodopsins: outward proton pump, inward Cl- pump, and outward Na+ pump. Here, we review the current knowledge on structure-function relationships in these three light-driven pumps, mainly focusing on Na+ pumps. A structural and functional comparison reveals both unique and conserved features of these ion pumps, and enhances our understanding about how the structurally similar microbial rhodopsins acquired such diverse functions. We also discuss some unresolved questions and future perspectives in research of ion-pumping rhodopsins, including optogenetics application and engineering of novel rhodopsins.
Collapse
Affiliation(s)
- Hideaki E Kato
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
46
|
Abe-Yoshizumi R, Inoue K, Kato HE, Nureki O, Kandori H. Role of Asn112 in a Light-Driven Sodium Ion-Pumping Rhodopsin. Biochemistry 2016; 55:5790-5797. [DOI: 10.1021/acs.biochem.6b00741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rei Abe-Yoshizumi
- Department
of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Keiichi Inoue
- Department
of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- Frontier
Research Institute for Material Science, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hideaki E. Kato
- Department
of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Osamu Nureki
- Department
of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hideki Kandori
- Department
of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
47
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
48
|
Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif. Nat Commun 2016; 7:12677. [PMID: 27554809 PMCID: PMC4999514 DOI: 10.1038/ncomms12677] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/20/2016] [Indexed: 02/08/2023] Open
Abstract
A novel light-driven chloride-pumping rhodopsin (ClR) containing an ‘NTQ motif' in its putative ion conduction pathway has been discovered and functionally characterized in a genomic analysis study of a marine bacterium. Here we report the crystal structure of ClR from the flavobacterium Nonlabens marinus S1-08T determined under two conditions at 2.0 and 1.56 Å resolutions. The structures reveal two chloride-binding sites, one around the protonated Schiff base and the other on a cytoplasmic loop. We identify a ‘3 omega motif' formed by three non-consecutive aromatic amino acids that is correlated with the B–C loop orientation. Detailed ClR structural analyses with functional studies in E. coli reveal the chloride ion transduction pathway. Our results help understand the molecular mechanism and physiological role of ClR and provide a structural basis for optogenetic applications. The atypical rhodopsin ClR from flavobacterium Nonlabens marinus is a light-driven chloride-pumping protein. Here, the authors show that ClR crystal structure presents two chloride ion-binding sites, proposing a molecular pathway for ion transport by this light-driven pump.
Collapse
|
49
|
Mamedov MD, Mamedov AM, Bertsova YV, Bogachev AV. A single mutation converts bacterial Na(+) -transporting rhodopsin into an H(+) transporter. FEBS Lett 2016; 590:2827-35. [PMID: 27447358 DOI: 10.1002/1873-3468.12324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/10/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022]
Abstract
Na(+) -rhodopsins are light-driven pumps used by marine bacteria to extrude Na(+) ions from the cytoplasm. We show here that replacement of Gln123 on the cytoplasmic side of the ion-conductance channel with aspartate or glutamate confers H(+) transport activity to the Na(+) -rhodopsin from Dokdonia sp. PRO95. The Q123E variant could transport H(+) out of Escherichia coli cells in a medium containing 100 mm Na(+) and SCN(-) as the penetrating anion. The rates of the photocycle steps of this variant were only marginally dependent on Na(+) , and the major electrogenic steps were the decays of the K and O intermediates.
Collapse
Affiliation(s)
- Mahir D Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Adalyat M Mamedov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Yulia V Bertsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Alexander V Bogachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| |
Collapse
|
50
|
Li H, Sineshchekov OA, da Silva GFZ, Spudich JL. In Vitro Demonstration of Dual Light-Driven Na⁺/H⁺ Pumping by a Microbial Rhodopsin. Biophys J 2016; 109:1446-53. [PMID: 26445445 DOI: 10.1016/j.bpj.2015.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/31/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022] Open
Abstract
A subfamily of rhodopsin pigments was recently discovered in bacteria and proposed to function as dual-function light-driven H(+)/Na(+) pumps, ejecting sodium ions from cells in the presence of sodium and protons in its absence. This proposal was based primarily on light-induced proton flux measurements in suspensions of Escherichia coli cells expressing the pigments. However, because E. coli cells contain numerous proteins that mediate proton fluxes, indirect effects on proton movements involving endogenous bioenergetics components could not be excluded. Therefore, an in vitro system consisting of the purified pigment in the absence of other proteins was needed to assign the putative Na(+) and H(+) transport definitively. We expressed IAR, an uncharacterized member from Indibacter alkaliphilus in E. coli cell suspensions, and observed similar ion fluxes as reported for KR2 from Dokdonia eikasta. We purified and reconstituted IAR into large unilamellar vesicles (LUVs), and demonstrated the proton flux criteria of light-dependent electrogenic Na(+) pumping activity in vitro, namely, light-induced passive proton flux enhanced by protonophore. The proton flux was out of the LUV lumen, increasing lumenal pH. In contrast, illumination of the LUVs in a Na(+)-free suspension medium caused a decrease of lumenal pH, eliminated by protonophore. These results meet the criteria for electrogenic Na(+) transport and electrogenic H(+) transport, respectively, in the presence and absence of Na(+). The direction of proton fluxes indicated that IAR was inserted inside-out into our sealed LUV system, which we confirmed by site-directed spin-label electron paramagnetic resonance spectroscopy. We further demonstrate that Na(+) transport by IAR requires Na(+) only on the cytoplasmic side of the protein. The in vitro LUV system proves that the dual light-driven H(+)/Na(+) pumping function of IAR is intrinsic to the single rhodopsin protein and enables study of the transport activities without perturbation by bioenergetics ion fluxes encountered in vivo.
Collapse
Affiliation(s)
- Hai Li
- Center for Membrane Biology and Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas
| | - Oleg A Sineshchekov
- Center for Membrane Biology and Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas
| | - Giordano F Z da Silva
- Center for Membrane Biology and Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas
| | - John L Spudich
- Center for Membrane Biology and Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas.
| |
Collapse
|