1
|
Lai PM, Gong X, Chan KM. Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis. Int J Mol Sci 2024; 25:9699. [PMID: 39273649 PMCID: PMC11395991 DOI: 10.3390/ijms25179699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Histone variants are the paralogs of core histones (H2A, H2B, H3 and H4). They are stably expressed throughout the cell cycle in a replication-independent fashion and are capable of replacing canonical counterparts under different fundamental biological processes. Variants have been shown to take part in multiple processes, including DNA damage repair, transcriptional regulation and X chromosome inactivation, with some of them even specializing in lineage-specific roles like spermatogenesis. Several reports have recently identified some unprecedented variants from different histone families and exploited their prognostic value in distinct types of cancer. Among the four classes of canonical histones, the H2A family has the greatest number of variants known to date, followed by H2B, H3 and H4. In our prior review, we focused on summarizing all 19 mammalian histone H2A variants. Here in this review, we aim to complete the full summary of the roles of mammalian histone variants from the remaining histone H2B, H3, and H4 families, along with an overview of their roles in cancer biology and their prognostic value in a clinical context.
Collapse
Affiliation(s)
- Po Man Lai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaoxiang Gong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Jin D, Li C, Chen X, Wang Y, Al-Rasheid KAS, Stover NA, Shao C, Zhang T. Decryption of the survival "black box": gene family expansion promotes the encystment in ciliated protists. BMC Genomics 2024; 25:286. [PMID: 38500030 PMCID: PMC10946202 DOI: 10.1186/s12864-024-10207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Encystment is an important survival strategy extensively employed by microbial organisms to survive unfavorable conditions. Single-celled ciliated protists (ciliates) are popular model eukaryotes for studying encystment, whereby these cells degenerate their ciliary structures and develop cyst walls, then reverse the process under more favorable conditions. However, to date, the evolutionary basis and mechanism for encystment in ciliates is largely unknown. With the rapid development of high-throughput sequencing technologies, genome sequencing and comparative genomics of ciliates have become effective methods to provide insights into above questions. RESULTS Here, we profiled the MAC genome of Pseudourostyla cristata, a model hypotrich ciliate for encystment studies. Like other hypotrich MAC genomes, the P. cristata MAC genome is extremely fragmented with a single gene on most chromosomes, and encodes introns that are generally small and lack a conserved branch point for pre-mRNA splicing. Gene family expansion analyses indicate that multiple gene families involved in the encystment are expanded during the evolution of P. cristata. Furthermore, genomic comparisons with other five representative hypotrichs indicate that gene families of phosphorelay sensor kinase, which play a role in the two-component signal transduction system that is related to encystment, show significant expansion among all six hypotrichs. Additionally, cyst wall-related chitin synthase genes have experienced structural changes that increase them from single-exon to multi-exon genes during evolution. These genomic features potentially promote the encystment in hypotrichs and enhance their ability to survive in adverse environments during evolution. CONCLUSIONS We systematically investigated the genomic structure of hypotrichs and key evolutionary phenomenon, gene family expansion, for encystment promotion in ciliates. In summary, our results provided insights into the evolutionary mechanism of encystment in ciliates.
Collapse
Affiliation(s)
- Didi Jin
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Chao Li
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
| | - Yurui Wang
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, 61625, USA
| | - Chen Shao
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Tengteng Zhang
- Laboratory of Biodiversity and Evolution of Protozoa in Wetland, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
3
|
Lyu L, Zhang X, Gao Y, Zhang T, Fu J, Stover NA, Gao F. From germline genome to highly fragmented somatic genome: genome-wide DNA rearrangement during the sexual process in ciliated protists. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:31-49. [PMID: 38433968 PMCID: PMC10901763 DOI: 10.1007/s42995-023-00213-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/27/2023] [Indexed: 03/05/2024]
Abstract
Genomes are incredibly dynamic within diverse eukaryotes and programmed genome rearrangements (PGR) play important roles in generating genomic diversity. However, genomes and chromosomes in metazoans are usually large in size which prevents our understanding of the origin and evolution of PGR. To expand our knowledge of genomic diversity and the evolutionary origin of complex genome rearrangements, we focus on ciliated protists (ciliates). Ciliates are single-celled eukaryotes with highly fragmented somatic chromosomes and massively scrambled germline genomes. PGR in ciliates occurs extensively by removing massive amounts of repetitive and selfish DNA elements found in the silent germline genome during development of the somatic genome. We report the partial germline genomes of two spirotrich ciliate species, namely Strombidium cf. sulcatum and Halteria grandinella, along with the most compact and highly fragmented somatic genome for S. cf. sulcatum. We provide the first insights into the genome rearrangements of these two species and compare these features with those of other ciliates. Our analyses reveal: (1) DNA sequence loss through evolution and during PGR in S. cf. sulcatum has combined to produce the most compact and efficient nanochromosomes observed to date; (2) the compact, transcriptome-like somatic genome in both species results from extensive removal of a relatively large number of shorter germline-specific DNA sequences; (3) long chromosome breakage site motifs are duplicated and retained in the somatic genome, revealing a complex model of chromosome fragmentation in spirotrichs; (4) gene scrambling and alternative processing are found throughout the core spirotrichs, offering unique opportunities to increase genetic diversity and regulation in this group. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00213-x.
Collapse
Affiliation(s)
- Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xue Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yunyi Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Tengteng Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Jinyu Fu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, IL 61625 USA
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
4
|
Maurer-Alcalá XX, Cote-L’Heureux A, Kosakovsky Pond SL, Katz LA. Somatic genome architecture and molecular evolution are decoupled in "young" linage-specific gene families in ciliates. PLoS One 2024; 19:e0291688. [PMID: 38271450 PMCID: PMC10810533 DOI: 10.1371/journal.pone.0291688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/02/2023] [Indexed: 01/27/2024] Open
Abstract
The evolution of lineage-specific gene families remains poorly studied across the eukaryotic tree of life, with most analyses focusing on the recent evolution of de novo genes in model species. Here we explore the origins of lineage-specific genes in ciliates, a ~1 billion year old clade of microeukaryotes that are defined by their division of somatic and germline functions into distinct nuclei. Previous analyses on conserved gene families have shown the effect of ciliates' unusual genome architecture on gene family evolution: extensive genome processing-the generation of thousands of gene-sized somatic chromosomes from canonical germline chromosomes-is associated with larger and more diverse gene families. To further study the relationship between ciliate genome architecture and gene family evolution, we analyzed lineage specific gene families from a set of 46 transcriptomes and 12 genomes representing x species from eight ciliate classes. We assess how the evolution lineage-specific gene families occurs among four groups of ciliates: extensive fragmenters with gene-size somatic chromosomes, non-extensive fragmenters with "large'' multi-gene somatic chromosomes, Heterotrichea with highly polyploid somatic genomes and Karyorelictea with 'paradiploid' somatic genomes. Our analyses demonstrate that: 1) most lineage-specific gene families are found at shallow taxonomic scales; 2) extensive genome processing (i.e., gene unscrambling) during development likely influences the size and number of young lineage-specific gene families; and 3) the influence of somatic genome architecture on molecular evolution is increasingly apparent in older gene families. Altogether, these data highlight the influences of genome architecture on the evolution of lineage-specific gene families in eukaryotes.
Collapse
Affiliation(s)
- Xyrus X. Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
5
|
Bétermier M, Klobutcher LA, Orias E. Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends. Microbiol Mol Biol Rev 2023; 87:e0018422. [PMID: 38009915 PMCID: PMC10732028 DOI: 10.1128/mmbr.00184-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
SUMMARYCiliated protozoa undergo large-scale developmental rearrangement of their somatic genomes when forming a new transcriptionally active macronucleus during conjugation. This process includes the fragmentation of chromosomes derived from the germline, coupled with the efficient healing of the broken ends by de novo telomere addition. Here, we review what is known of developmental chromosome fragmentation in ciliates that have been well-studied at the molecular level (Tetrahymena, Paramecium, Euplotes, Stylonychia, and Oxytricha). These organisms differ substantially in the fidelity and precision of their fragmentation systems, as well as in the presence or absence of well-defined sequence elements that direct excision, suggesting that chromosome fragmentation systems have evolved multiple times and/or have been significantly altered during ciliate evolution. We propose a two-stage model for the evolution of the current ciliate systems, with both stages involving repetitive or transposable elements in the genome. The ancestral form of chromosome fragmentation is proposed to have been derived from the ciliate small RNA/chromatin modification process that removes transposons and other repetitive elements from the macronuclear genome during development. The evolution of this ancestral system is suggested to have potentiated its replacement in some ciliate lineages by subsequent fragmentation systems derived from mobile genetic elements.
Collapse
Affiliation(s)
- Mireille Bétermier
- Department of Genome Biology, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Lawrence A. Klobutcher
- Department of Molecular Biology and Biophysics, UCONN Health (University of Connecticut), Farmington, Connecticut, USA
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
6
|
Hechler RM, Yates MC, Chain FJJ, Cristescu ME. Environmental transcriptomics under heat stress: Can environmental RNA reveal changes in gene expression of aquatic organisms? Mol Ecol 2023. [PMID: 37792902 DOI: 10.1111/mec.17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 08/10/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
To safeguard biodiversity in a changing climate, taxonomic information about species turnover and insights into the health of organisms are required. Environmental DNA approaches are increasingly used for species identification, but cannot provide functional insights. Transcriptomic methods reveal the physiological states of macroorganisms, but are currently species-specific and require tissue sampling or animal sacrifice, making community-wide assessments challenging. Here, we test whether broad functional information (expression level of the transcribed genes) can be harnessed from environmental RNA (eRNA), which includes extra-organismal RNA from macroorganisms along with whole microorganisms. We exposed Daphnia pulex as well as phytoplankton prey and microorganism colonizers to control (20°C) and heat stress (28°C) conditions for 7 days. We sequenced eRNA from tank water (after complete removal of Daphnia) as well as RNA from Daphnia tissue, enabling comparisons of extra-organismal and organismal RNA-based gene expression profiles. Both RNA types detected similar heat stress responses of Daphnia. Using eRNA, we identified 32 Daphnia genes to be differentially expressed following heat stress. Of these, 17 were also differentially expressed and exhibited similar levels of relative expression in organismal RNA. In addition to the extra-organismal Daphnia response, eRNA detected community-wide heat stress responses consisting of distinct functional profiles and 121 differentially expressed genes across eight taxa. Our study demonstrates that environmental transcriptomics based on extra-organismal eRNA can noninvasively reveal gene expression responses of macroorganisms following environmental changes, with broad potential implications for the biomonitoring of health across the trophic chain.
Collapse
Affiliation(s)
- Robert M Hechler
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Matthew C Yates
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | | |
Collapse
|
7
|
Jin D, Li C, Chen X, Byerly A, Stover NA, Zhang T, Shao C, Wang Y. Comparative genome analysis of three euplotid protists provides insights into the evolution of nanochromosomes in unicellular eukaryotic organisms. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:300-315. [PMID: 37637252 PMCID: PMC10449743 DOI: 10.1007/s42995-023-00175-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/12/2023] [Indexed: 08/29/2023]
Abstract
One of the most diverse clades of ciliated protozoa, the class Spirotrichea, displays a series of unique characters in terms of eukaryotic macronuclear (MAC) genome, including high fragmentation that produces nanochromosomes. However, the genomic diversity and evolution of nanochromosomes and gene families for spirotrich MAC genomes are poorly understood. In this study, we assemble the MAC genome of a representative euplotid (a new model organism in Spirotrichea) species, Euplotes aediculatus. Our results indicate that: (a) the MAC genome includes 35,465 contigs with a total length of 97.3 Mb and a contig N50 of 3.4 kb, and contains 13,145 complete nanochromosomes and 43,194 predicted genes, with the majority of these nanochromosomes containing tiny introns and harboring only one gene; (b) genomic comparisons between E. aediculatus and other reported spirotrichs indicate that average GC content and genome fragmentation levels exhibit interspecific variation, and chromosome breaking sites (CBSs) might be lost during evolution, resulting in the increase of multi-gene nanochromosome; (c) gene families associated with chitin metabolism and FoxO signaling pathway are expanded in E. aediculatus, suggesting their potential roles in environment adaptation and survival strategies of E. aediculatus; and (d) a programmed ribosomal frameshift (PRF) with a conservative motif 5'-AAATAR-3' tends to occur in longer genes with more exons, and PRF genes play an important role in many cellular regulation processes. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00175-0.
Collapse
Affiliation(s)
- Didi Jin
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Chao Li
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209 China
| | - Adam Byerly
- Department of Computer Science and Information Systems, Bradley University, Peoria, 61625 USA
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, 61625 USA
| | - Tengteng Zhang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Chen Shao
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| | - Yurui Wang
- Laboratory of Protozoological Biodiversity and Evolution in Wetland, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119 China
| |
Collapse
|
8
|
Chen W, Geng Y, Zhang B, Yan Y, Zhao F, Miao M. Stop or Not: Genome-Wide Profiling of Reassigned Stop Codons in Ciliates. Mol Biol Evol 2023; 40:msad064. [PMID: 36952281 PMCID: PMC10089648 DOI: 10.1093/molbev/msad064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Bifunctional stop codons that have both translation and termination functions in the same species are important for understanding the evolution and function of genetic codes in living organisms. Considering the high frequency of bifunctional codons but limited number of available genomes in ciliates, we de novo sequenced seven representative ciliate genomes to explore the evolutionary history of stop codons. We further propose a stop codon reassignment quantification method (stopCR) that can identify bifunctional codons and measure their frequencies in various eukaryotic organisms. Using our newly developed method, we found two previously undescribed genetic codes, illustrating the prevalence of bifunctional stop codons in ciliates. Overall, evolutionary genomic analyses suggest that gain or loss of reassigned stop codons in ciliates is shaped by their living environment, the eukaryotic release factor 1, and suppressor tRNAs. This study provides novel clues about the functional diversity and evolutionary history of stop codons in eukaryotic organisms.
Collapse
Affiliation(s)
- Wenbing Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yupeng Geng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Bing Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Ying Yan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fangqing Zhao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Miao Miao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Lyu L, Asghar U, Fu J, Gao Y, Zhang X, Al-Farraj SA, Chen Z, Gao F. Comparative analysis of single-cell genome sequencing techniques toward the characterization of germline and somatic genomes in ciliated protists. Eur J Protistol 2023; 88:125969. [PMID: 36822126 DOI: 10.1016/j.ejop.2023.125969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Ciliated protists contain both germline micronucleus (MIC) and somatic macronucleus (MAC) in a single cytoplasm. Programmed genome rearrangements occur in ciliates during sexual processes, and the extent of rearrangements varies dramatically among species, which lead to significant differences in genomic architectures. However, genomic sequences remain largely unknown for most ciliates due to the difficulty in culturing and in separating the germline from the somatic genome in a single cell. Single-cell whole genome amplification (WGA) has emerged as a powerful technology to characterize the genomic heterogeneity at the single-cell level. In this study, we compared two single-cell WGA, multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in characterizing the germline and somatic genomes in ciliates with different genomic architectures. Our results showed that: 1) MALBAC exhibits strong amplification bias towards MAC genome while MDA shows bias towards MIC genome of ciliates with extensively fragmented MAC genome; 2) both MDA and MALBAC could amplify MAC genome more efficiently in ciliates with moderately fragmented MAC genome. Moreover, we found that more sample replicates could help to obtain more genomic data. Our work provides a reference for selecting the appropriate method to characterize germline and somatic genomes of ciliates.
Collapse
Affiliation(s)
- Liping Lyu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China
| | - Usman Asghar
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China
| | - Jinyu Fu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China
| | - Yunyi Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China
| | - Xue Zhang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zigui Chen
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Feng Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Key Laboratory of Mariculture (OUC), Ministry of Education, Qingdao 266003, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
10
|
Lu MW, Beh LY, Yerlici VT, Fang W, Kulej K, Garcia BA, Landweber LF. Exploration of the Nuclear Proteomes in the Ciliate Oxytricha trifallax. Microorganisms 2023; 11:microorganisms11020343. [PMID: 36838311 PMCID: PMC9958989 DOI: 10.3390/microorganisms11020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Nuclear dimorphism is a fundamental feature of ciliated protozoa, which have separate somatic and germline genomes in two distinct organelles within a single cell. The transcriptionally active somatic genome, contained within the physically larger macronucleus, is both structurally and functionally different from the silent germline genome housed in the smaller micronucleus. This difference in genome architecture is particularly exaggerated in Oxytricha trifallax, in which the somatic genome comprises tens of thousands of gene-sized nanochromosomes maintained at a high and variable ploidy, while the germline has a diploid set of megabase-scale chromosomes. To examine the compositional differences between the nuclear structures housing the genomes, we performed a proteomic survey of both types of nuclei and of macronuclear histones using quantitative mass spectrometry. We note distinct differences between the somatic and germline nuclei, with many functional proteins being highly enriched in one of the two nuclei. To validate our conclusions and the efficacy of nuclear separation, we used protein localization through a combination of transformations and immunofluorescence. We also note that the macronuclear histones strikingly display only activating marks, consistent with the conclusion that the macronucleus is the hub of transcription. These observations suggest that the compartmentalization of different genome features into separate structures has been accompanied by a similar specialization of nuclear components that maintain and facilitate the functions of the genomes specific to each nucleus.
Collapse
Affiliation(s)
- Michael W. Lu
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA
| | - Leslie Y. Beh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - V. Talya Yerlici
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wenwen Fang
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Laura F. Landweber
- Department of Biological Sciences, Columbia University, New York, NY 10025, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Correspondence:
| |
Collapse
|
11
|
Origins of genome-editing excisases as illuminated by the somatic genome of the ciliate Blepharisma. Proc Natl Acad Sci U S A 2023; 120:e2213887120. [PMID: 36669098 PMCID: PMC9942806 DOI: 10.1073/pnas.2213887120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Massive DNA excision occurs regularly in ciliates, ubiquitous microbial eukaryotes with somatic and germline nuclei in the same cell. Tens of thousands of internally eliminated sequences (IESs) scattered throughout the ciliate germline genome are deleted during the development of the streamlined somatic genome. The genus Blepharisma represents one of the two high-level ciliate clades (subphylum Postciliodesmatophora) and, unusually, has dual pathways of somatic nuclear and genome development. This makes it ideal for investigating the functioning and evolution of these processes. Here we report the somatic genome assembly of Blepharisma stoltei strain ATCC 30299 (41 Mbp), arranged as numerous telomere-capped minichromosomal isoforms. This genome encodes eight PiggyBac transposase homologs no longer harbored by transposons. All appear subject to purifying selection, but just one, the putative IES excisase, has a complete catalytic triad. We hypothesize that PiggyBac homologs were ancestral excisases that enabled the evolution of extensive natural genome editing.
Collapse
|
12
|
Kaur H, Richardson E, Kamra K, Dacks JB. Molecular evolutionary analysis of the SM and SNARE vesicle fusion machinery in ciliates shows concurrent expansions in late secretory machinery. J Eukaryot Microbiol 2022; 69:e12919. [PMID: 35460134 DOI: 10.1111/jeu.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Protists in the phylum Ciliophora possess a complex membrane-trafficking system, including osmoregulatory Contractile Vacuoles and specialized secretory organelles. Molecular cell biological investigations in Tetrahymena thermophila have identified components of the protein machinery associated with the secretory organelles, mucocysts. The Qa-SNARE Syn7lp plays a role in mucocyst biogenesis as do subunits of the CORVET tethering complex (specifically Vps8). Indeed, Tetrahymena thermophila possesses expanded gene complements of several CORVET components, including Vps33 which is also a Sec1/Munc18 (SM) protein that binds Qa-SNAREs. Moreover, the Qa-SNAREs in Paramecium tetraurelia have been localized to various endomembrane organelles. Here, we use comparative genomics and phylogenetics to determine the evolutionary history of the SM and Qa-SNARE proteins across the Ciliophora. We identify that the last ciliate common ancestor possessed the four SM proteins and six Qa-SNAREs common to eukaryotes, including the uncommonly retained Syntaxin 17. We furthermore identify independent expansion of these protein families in several ciliate classes, including concurrent expansions of the SM protein-Qa SNARE partners Sec1:SynPM in the oligohymenophorean ciliates lineage, consistent with novel Contractile Vacuole specific innovations. Overall, these data are consistent with SM proteins and Qa-SNAREs being a common set of components for endomembrane modulation in the ciliates.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Zoology, University of Delhi, Delhi, India.,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Ciliate Biology Lab, SGTB Khalsa College, University of Delhi, Delhi, India
| | - Elisabeth Richardson
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Komal Kamra
- Ciliate Biology Lab, SGTB Khalsa College, University of Delhi, Delhi, India
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
13
|
Wang Y, Yao L, Fan J, Zhao X, Zhang Q, Chen Y, Guo C. The Codon Usage Bias Analysis of Free-Living Ciliates' Macronuclear Genomes and Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Vector Construction of Stylonychia lemnae. Front Microbiol 2022; 13:785889. [PMID: 35308388 PMCID: PMC8927777 DOI: 10.3389/fmicb.2022.785889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Ciliates represent higher unicellular animals, and several species are also important model organisms for molecular biology research. Analyses of codon usage bias (CUB) of the macronuclear (MAC) genome in ciliates can not only promote a better understanding of the genetic mode and evolution history of these organisms but also help optimize codons to improve the gene editing efficiency of model ciliates. In this study, macronuclear genome sequences of nine free-living ciliates were analyzed with CodonW software to calculate the following indices: the guanine-cytosine content (GC); the frequency of the nucleotides U, C, A, and G at the third position of codons (U3s, C3s, A3s, G3s); the effective number of codons (ENC); the correlation between GC at the first and second positions (GC12); the frequency of the nucleotides G + C at the third position of synonymous codons (GC3s); the relative synonymous codon usage (RSCU). Parity rule 2 plot analysis, neutrality plot analysis, and correlation analysis were performed to explore the factors that influence codon preference. The results showed that the GC contents in nine ciliates' MAC genomes were lower than 50% and appeared AT-rich. The base compositions of GC12 and GC3s are markedly distinct and the codon usage pattern and evolution of ciliates are affected by genetic mutation and natural selection. According to the synonymous codon analysis, the codons of most ciliates ended with A or U and eight codons were the general optimal codons of nine ciliates. A clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) expression vector of Stylonychia lemnae was constructed by optimizing the macronuclear genome codon and was successfully used to knock out the Adss gene. This is the first such extensive investigation of the MAC genome CUB of ciliates and the initial successful application of the CRISPR/Cas9 technique in free-living ciliates.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Lin Yao
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China.,Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, China
| | - Jinfeng Fan
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Xue Zhao
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Qing Zhang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China
| | - Ying Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, China.,School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, China
| |
Collapse
|
14
|
Li C, Chen X, Zheng W, Doak TG, Fan G, Song W, Yan Y. Chromosome organization and gene expansion in the highly fragmented genome of the ciliate Strombidium stylifer. J Genet Genomics 2021; 48:908-916. [PMID: 34452852 DOI: 10.1016/j.jgg.2021.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/01/2023]
Abstract
Chromosomes are well-organized carriers of genetic information in eukaryotes and are usually quite long, carrying hundreds and thousands of genes. Intriguingly, a clade of single-celled ciliates, Spirotrichea, feature nanochromosomes-also called "gene-sized chromosomes". These chromosomes predominantly carry only one gene, flanked by short telomere sequences. However, the organization and copy number variation of the chromosomes in these highly fragmented genomes remain unexplored in many groups of Spirotrichea, including the marine Strombidium. Using deep genome sequencing, we assembled the macronuclear genome of Strombidium stylifer into more than 18,000 nanochromosomes (~2.4 Kb long on average). Our results show that S. stylifer occupies an intermediate position during the evolutionary history of Strombidium lineage and experienced significant expansions in several gene families related to guanyl ribonucleotide binding. Based on the nucleotide distribution bias analysis and conserved motifs search in non-genic regions, we found that the subtelomeric regions have a conserved adenine-thymine (AT)-rich sequence motif. We also found that the copy number of nanochromosomes lacks precise regulation. This work sheds light on the unique features of chromosome structure in eukaryotes with highly fragmented genomes and reveals that a rather specialized evolutionary strategy at the genomic level has resulted in great diversity within the ciliated lineages.
Collapse
Affiliation(s)
- Chao Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiao Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Weibo Zheng
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47405, USA
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
15
|
Mozzicafreddo M, Pucciarelli S, Swart EC, Piersanti A, Emmerich C, Migliorelli G, Ballarini P, Miceli C. The macronuclear genome of the Antarctic psychrophilic marine ciliate Euplotes focardii reveals new insights on molecular cold adaptation. Sci Rep 2021; 11:18782. [PMID: 34548559 PMCID: PMC8455672 DOI: 10.1038/s41598-021-98168-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022] Open
Abstract
The macronuclear (MAC) genomes of ciliates belonging to the genus Euplotes species are comprised of numerous small DNA molecules, nanochromosomes, each typically encoding a single gene. These genomes are responsible for all gene expression during vegetative cell growth. Here, we report the analysis of the MAC genome from the Antarctic psychrophile Euplotes focardii. Nanochromosomes containing bacterial sequences were not found, suggesting that phenomena of horizontal gene transfer did not occur recently, even though this ciliate species has a substantial associated bacterial consortium. As in other euplotid species, E. focardii MAC genes are characterized by a high frequency of translational frameshifting. Furthermore, in order to characterize differences that may be consequent to cold adaptation and defense to oxidative stress, the main constraints of the Antarctic marine microorganisms, we compared E. focardii MAC genome with those available from mesophilic Euplotes species. We focussed mainly on the comparison of tubulin, antioxidant enzymes and heat shock protein (HSP) 70 families, molecules which possess peculiar characteristic correlated with cold adaptation in E. focardii. We found that α-tubulin genes and those encoding SODs and CATs antioxidant enzymes are more numerous than in the mesophilic Euplotes species. Furthermore, the phylogenetic trees showed that these molecules are divergent in the Antarctic species. In contrast, there are fewer hsp70 genes in E. focardii compared to mesophilic Euplotes and these genes do not respond to thermal stress but only to oxidative stress. Our results suggest that molecular adaptation to cold and oxidative stress in the Antarctic environment may not only be due to particular amino acid substitutions but also due to duplication and divergence of paralogous genes.
Collapse
Affiliation(s)
- Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy.
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Estienne C Swart
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | | | - Giovanna Migliorelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Patrizia Ballarini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| |
Collapse
|
16
|
Park T, Wijeratne S, Meulia T, Firkins JL, Yu Z. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 2021; 113:1416-1427. [PMID: 33722656 DOI: 10.1016/j.ygeno.2021.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Entodinium caudatum is an anaerobic binucleated ciliate representing the most dominant protozoal species in the rumen. However, its biological features are largely unknown due to the inability to establish an axenic culture. In this study, we primally sequenced its macronucleus (MAC) genome to aid the understanding of its metabolism, physiology, ecology. We isolated the MAC of E. caudatum strain MZG-1 and sequenced the MAC genome using Illumina MiSeq, MinION, and PacBio RSII systems. De novo assembly of the MiSeq sequence reads followed with subsequent scaffolding with MinION and PacBio reads resulted in a draft MAC genome about 117 Mbp. A large number of carbohydrate-active enzymes were likely acquired through horizontal gene transfer. About 8.74% of the E. caudatum predicted proteome was predicted as proteases. The MAC genome of E. caudatum will help better understand its important roles in rumen carbohydrate metabolism, and interaction with other members of the rumen microbiome.
Collapse
Affiliation(s)
- Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, 44691, USA; Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
17
|
The Compact Macronuclear Genome of the Ciliate Halteria grandinella: A Transcriptome-Like Genome with 23,000 Nanochromosomes. mBio 2021; 12:mBio.01964-20. [PMID: 33500338 PMCID: PMC7858049 DOI: 10.1128/mbio.01964-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
How to achieve protein diversity by genome and transcriptome processing is essential for organismal complexity and adaptation. The present work identifies that the macronuclear genome of Halteria grandinella, a cosmopolitan unicellular eukaryote, is composed almost entirely of gene-sized nanochromosomes with extremely short nongenic regions. How to achieve protein diversity by genome and transcriptome processing is essential for organismal complexity and adaptation. The present work identifies that the macronuclear genome of Halteria grandinella, a cosmopolitan unicellular eukaryote, is composed almost entirely of gene-sized nanochromosomes with extremely short nongenic regions. This challenges our usual understanding of chromosomal structure and suggests the possibility of novel mechvanisms in transcriptional regulation. Comprehensive analysis of multiple data sets reveals that Halteria transcription dynamics are influenced by: (i) nonuniform nanochromosome copy numbers correlated with gene-expression level; (ii) dynamic alterations at both the DNA and RNA levels, including alternative internal eliminated sequence (IES) deletions during macronucleus formation and large-scale alternative splicing in transcript maturation; and (iii) extremely short 5′ and 3′ untranslated regions (UTRs) and universal TATA box-like motifs in the compact 5′ subtelomeric regions of most chromosomes. This study broadens the view of ciliate biology and the evolution of unicellular eukaryotes, and identifies Halteria as one of the most compact known eukaryotic genomes, indicating that complex cell structure does not require complex gene architecture.
Collapse
|
18
|
Rzeszutek I, Maurer-Alcalá XX, Nowacki M. Programmed genome rearrangements in ciliates. Cell Mol Life Sci 2020; 77:4615-4629. [PMID: 32462406 PMCID: PMC7599177 DOI: 10.1007/s00018-020-03555-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Ciliates are a highly divergent group of unicellular eukaryotes with separate somatic and germline genomes found in distinct dimorphic nuclei. This characteristic feature is tightly linked to extremely laborious developmentally regulated genome rearrangements in the development of a new somatic genome/nuclei following sex. The transformation from germline to soma genome involves massive DNA elimination mediated by non-coding RNAs, chromosome fragmentation, as well as DNA amplification. In this review, we discuss the similarities and differences in the genome reorganization processes of the model ciliates Paramecium and Tetrahymena (class Oligohymenophorea), and the distantly related Euplotes, Stylonychia, and Oxytricha (class Spirotrichea).
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Xyrus X Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
19
|
Li Y, Chen X, Wu K, Pan J, Long H, Yan Y. Characterization of Simple Sequence Repeats (SSRs) in Ciliated Protists Inferred by Comparative Genomics. Microorganisms 2020; 8:microorganisms8050662. [PMID: 32370063 PMCID: PMC7285179 DOI: 10.3390/microorganisms8050662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/02/2023] Open
Abstract
Simple sequence repeats (SSRs) are prevalent in the genomes of all organisms. They are widely used as genetic markers, and are insertion/deletion mutation hotspots, which directly influence genome evolution. However, little is known about such important genomic components in ciliated protists, a large group of unicellular eukaryotes with extremely long evolutionary history and genome diversity. With recent publications of multiple ciliate genomes, we start to get a chance to explore perfect SSRs with motif size 1-100 bp and at least three motif repeats in nine species of two ciliate classes, Oligohymenophorea and Spirotrichea. We found that homopolymers are the most prevalent SSRs in these A/T-rich species, with AAA (lysine, charged amino acid; also seen as an SSR with one-adenine motif repeated three times) being the codons repeated at the highest frequencies in coding SSR regions, consistent with the widespread alveolin proteins rich in lysine repeats as found in Tetrahymena. Micronuclear SSRs are universally more abundant than the macronuclear ones of the same motif-size, except for the 8-bp-motif SSRs in extensively fragmented chromosomes. Both the abundance and A/T content of SSRs decrease as motif-size increases, while the abundance is positively correlated with the A/T content of the genome. Also, smaller genomes have lower proportions of coding SSRs out of all SSRs in Paramecium species. This genome-wide and cross-species analysis reveals the high diversity of SSRs and reflects the rapid evolution of these simple repetitive elements in ciliate genomes.
Collapse
|
20
|
Yan Y, Maurer-Alcalá XX, Knight R, Kosakovsky Pond SL, Katz LA. Single-Cell Transcriptomics Reveal a Correlation between Genome Architecture and Gene Family Evolution in Ciliates. mBio 2019; 10:e02524-19. [PMID: 31874915 PMCID: PMC6935857 DOI: 10.1128/mbio.02524-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Ciliates, a eukaryotic clade that is over 1 billion years old, are defined by division of genome function between transcriptionally inactive germline micronuclei and functional somatic macronuclei. To date, most analyses of gene family evolution have been limited to cultivable model lineages (e.g., Tetrahymena, Paramecium, Oxytricha, and Stylonychia). Here, we focus on the uncultivable Karyorelictea and its understudied sister class Heterotrichea, which represent two extremes in genome architecture. Somatic macronuclei within the Karyorelictea are described as nearly diploid, while the Heterotrichea have hyperpolyploid somatic genomes. Previous analyses indicate that genome architecture impacts ciliate gene family evolution as the most diverse and largest gene families are found in lineages with extensively processed somatic genomes (i.e., possessing thousands of gene-sized chromosomes). To further assess ciliate gene family evolution, we analyzed 43 single-cell transcriptomes from 33 ciliate species representing 10 classes. Focusing on conserved eukaryotic genes, we use estimates of transcript diversity as a proxy for the number of paralogs in gene families among four focal clades: Karyorelictea, Heterotrichea, extensive fragmenters (with gene-size somatic chromosomes), and non-extensive fragmenters (with more traditional somatic chromosomes), the latter two within the subphylum Intramacronucleata. Our results show that (i) the Karyorelictea have the lowest average transcript diversity, while Heterotrichea are highest among the four groups; (ii) proteins in Karyorelictea are under the highest functional constraints, and the patterns of selection in ciliates may reflect genome architecture; and (iii) stop codon reassignments vary among members of the Heterotrichea and Spirotrichea but are conserved in other classes.IMPORTANCE To further our understanding of genome evolution in eukaryotes, we assess the relationship between patterns of molecular evolution within gene families and variable genome structures found among ciliates. We combine single-cell transcriptomics with bioinformatic tools, focusing on understudied and uncultivable lineages selected from across the ciliate tree of life. Our analyses show that genome architecture correlates with patterns of protein evolution as lineages with more canonical somatic genomes, such as the class Karyorelictea, have more conserved patterns of molecular evolution compared to other classes. This study showcases the power of single-cell transcriptomics for investigating genome architecture and evolution in uncultivable microbial lineages and provides transcriptomic resources for further research on genome evolution.
Collapse
Affiliation(s)
- Ying Yan
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
| | - Xyrus X Maurer-Alcalá
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Rob Knight
- University of California San Diego, Department of Pediatrics, San Diego, California, USA
- University of California San Diego, Department of Computer Science and Engineering, San Diego, California, USA
- University of California San Diego, Center for Microbiome Innovation, San Diego, California, USA
| | - Sergei L Kosakovsky Pond
- Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, Pennsylvania, USA
| | - Laura A Katz
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| |
Collapse
|
21
|
Postberg J, Weil PP, Pembaur A. Biogenesis of Developmental Master Regulatory 27nt-RNAs in Stylonychia-Can Coding RNA Turn into Non-Coding? Genes (Basel) 2019; 10:genes10110940. [PMID: 31752243 PMCID: PMC6896033 DOI: 10.3390/genes10110940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
In the ciliate Stylonychia, somatic macronuclei differentiate from germline micronuclei during sexual reproduction, accompanied by developmental sequence reduction. Concomitantly, over 95% of micronuclear sequences adopt a heterochromatin structure characterized by the histone variant H3.4 and H3K27me3. RNAi-related genes and histone variants dominate the list of developmentally expressed genes. Simultaneously, 27nt-ncRNAs that match sequences retained in new macronuclei are synthesized and bound by PIWI1. Recently, we proposed a mechanistic model for ‘RNA-induced DNA replication interference’ (RIRI): during polytene chromosome formation PIWI1/27nt-RNA-complexes target macronucleus-destined sequences (MDS) by base-pairing and temporarily cause locally stalled replication. At polytene chromosomal segments with ongoing replication, H3.4K27me3-nucleosomes become selectively deposited, thus dictating the prospective heterochromatin structure of these areas. Consequently, these micronucleus-specific sequences become degraded, whereas 27nt-RNA-covered sites remain protected. However, the biogenesis of the 27nt-RNAs remains unclear. It was proposed earlier that in stichotrichous ciliates 27nt-RNA precursors could derive from telomere-primed bidirectional transcription of nanochromosomes and subsequent Dicer-like (DCL) activity. As a minimalistic explanation, we propose here that the 27nt-RNA precursor could rather be mRNA or pre-mRNA and that the transition of coding RNA from parental macronuclei to non-coding RNAs, which act in premature developing macronuclei, could involve RNA-dependent RNA polymerase (RDRP) activity creating dsRNA intermediates prior to a DCL-dependent pathway. Interestingly, by such mechanism the partition of a parental somatic genome and possibly also the specific nanochromosome copy numbers could be vertically transmitted to the differentiating nuclei of the offspring.
Collapse
|
22
|
Chen X, Jiang Y, Gao F, Zheng W, Krock TJ, Stover NA, Lu C, Katz LA, Song W. Genome analyses of the new model protist Euplotes vannus focusing on genome rearrangement and resistance to environmental stressors. Mol Ecol Resour 2019; 19:1292-1308. [PMID: 30985983 PMCID: PMC6764898 DOI: 10.1111/1755-0998.13023] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
As a model organism for studies of cell and environmental biology, the free-living and cosmopolitan ciliate Euplotes vannus shows intriguing features like dual genome architecture (i.e., separate germline and somatic nuclei in each cell/organism), "gene-sized" chromosomes, stop codon reassignment, programmed ribosomal frameshifting (PRF) and strong resistance to environmental stressors. However, the molecular mechanisms that account for these remarkable traits remain largely unknown. Here we report a combined analysis of de novo assembled high-quality macronuclear (MAC; i.e., somatic) and partial micronuclear (MIC; i.e., germline) genome sequences for E. vannus, and transcriptome profiling data under varying conditions. The results demonstrate that: (a) the MAC genome contains more than 25,000 complete "gene-sized" nanochromosomes (~85 Mb haploid genome size) with the N50 ~2.7 kb; (b) although there is a high frequency of frameshifting at stop codons UAA and UAG, we did not observe impaired transcript abundance as a result of PRF in this species as has been reported for other euplotids; (c) the sequence motif 5'-TA-3' is conserved at nearly all internally-eliminated sequence (IES) boundaries in the MIC genome, and chromosome breakage sites (CBSs) are duplicated and retained in the MAC genome; (d) by profiling the weighted correlation network of genes in the MAC under different environmental stressors, including nutrient scarcity, extreme temperature, salinity and the presence of ammonia, we identified gene clusters that respond to these external physical or chemical stimulations, and (e) we observed a dramatic increase in HSP70 gene transcription under salinity and chemical stresses but surprisingly, not under temperature changes; we link this temperature-resistance to the evolved loss of temperature stress-sensitive elements in regulatory regions. Together with the genome resources generated in this study, which are available online at Euplotes vannus Genome Database (http://evan.ciliate.org), these data provide molecular evidence for understanding the unique biology of highly adaptable microorganisms.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Yaohan Jiang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Weibo Zheng
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Timothy J. Krock
- Department of Computer Science and Information Systems, Bradley University, Peoria, IL 61625, USA
| | - Naomi A. Stover
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
23
|
Yang W, Jiang C, Zhu Y, Chen K, Wang G, Yuan D, Miao W, Xiong J. Tetrahymena Comparative Genomics Database (TCGD): a community resource for Tetrahymena. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5365189. [PMID: 30810209 PMCID: PMC6391650 DOI: 10.1093/database/baz029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 11/12/2022]
Abstract
Ciliates are a large and diverse group of unicellular organisms characterized by having the following two distinct type of nuclei within a single cell: micronucleus (MIC) and macronucleus (MAC). Although the genomes of several ciliates in different groups have been sequenced, comparative genomics data for multiple species within a ciliate genus are not yet available. Here we collected the genome information and comparative genomics analysis results for 10 species in the Tetrahymena genus, including the previously sequenced model organism Tetrahymena thermophila and 9 newly sequenced species, and constructed a genus-level comparative analysis platform, the Tetrahymena Comparative Genomics Database (TCGD). Genome sequences, transcriptomic data, gene models, functional annotation, ortholog groups and synteny maps were built into this database and a user-friendly interface was developed for searching, visualizing and analyzing these data. In summary, the TCGD (http://ciliate.ihb.ac.cn) will be an important and useful resource for the ciliate research community.
Collapse
Affiliation(s)
- Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Zhu
- Nextomics Biosciences Institute, Wuhan, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, China.,CAS Center for Excellence in Animal Evolution and Genetics, Kunming, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
24
|
Expression and molecular characterization of stress-responsive genes (hsp70 and Mn-sod) and evaluation of antioxidant enzymes (CAT and GPx) in heavy metal exposed freshwater ciliate, Tetmemena sp. Mol Biol Rep 2019; 46:4921-4931. [PMID: 31273612 DOI: 10.1007/s11033-019-04942-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Abstract
Response of heavy metals namely cadmium (Cd) and copper (Cu) on the expression of stress responsive genes in the fresh water ciliate, Tetmemena sp. (single cell eukaryote) was studied. Stress responsive genes include heat shock protein genes and genes involved in antioxidant defence system. Quantitative real time PCR (qRT-PCR) was employed to evaluate the effects of Cd and Cu on the expression of cytosolic hsp70 and Mn-sod genes. Increase in the expression of these genes was observed after exposure with the heavy metals. The macronuclear cytosolic hsp70 and Mn-sod (SOD2) genes were also sequenced and characterized using various bioinformatics tools. In antioxidant defence system, the superoxide dismutase (SOD) family is a first line antioxidant enzyme group involved in catalysing reactive oxygen species (ROS) to hydrogen peroxide and molecular oxygen. Influence of Cd and Cu on the activity of SOD has already been reported by our group. Therefore, the enzymatic activities of antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were studied in the presence of Cd and Cu and there was significant increase in activity of these enzymes in concentration dependent manner. This study suggests that cytosolic hsp70, Mn-sod and the antioxidant enzymes such as CAT and GPx can be used as effective molecular biomarkers for heavy metal toxicity and Tetmemena sp. can be used as potential model for understanding the molecular response to heavy metal contamination in aquatic ecosystems.
Collapse
|
25
|
Affiliation(s)
- María E. Elguero
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara B. Nudel
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro D. Nusblat
- Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
26
|
Zheng W, Wang C, Yan Y, Gao F, Doak TG, Song W. Insights into an Extensively Fragmented Eukaryotic Genome: De Novo Genome Sequencing of the Multinuclear Ciliate Uroleptopsis citrina. Genome Biol Evol 2018; 10:883-894. [PMID: 29608728 PMCID: PMC5863220 DOI: 10.1093/gbe/evy055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 02/04/2023] Open
Abstract
Ciliated protists are a large group of single-celled eukaryotes with separate germline and somatic nuclei in each cell. The somatic genome is developed from the zygotic nucleus through a series of chromosomal rearrangements, including fragmentation, DNA elimination, de novo telomere addition, and DNA amplification. This unique feature makes them perfect models for research in genome biology and evolution. However, genomic research of ciliates has been limited to a few species, owing to problems with DNA contamination and obstacles in cultivation. Here, we introduce a method combining telomere-primer PCR amplification and high-throughput sequencing, which can reduce DNA contamination and obtain genomic data efficiently. Based on this method, we report a draft somatic genome of a multimacronuclear ciliate, Uroleptopsis citrina. 1) The telomeric sequence in U. citrina is confirmed to be C4A4C4A4C4 by directly blunt-end cloning. 2) Genomic analysis of the resulting chromosomes shows a "one-gene one-chromosome" pattern, with a small number of multiple-gene chromosomes. 3) Amino acid usage is analyzed, and reassignment of stop codons is confirmed. 4) Chromosomal analysis shows an obvious asymmetrical GC skew and high bias between A and T in the subtelomeric regions of the sense-strand, with the detection of an 11-bp high AT motif region in the 3' subtelomeric region. 5) The subtelomeric sequence also has an obvious 40 nt strand oscillation of nucleotide ratio. 6) In the 5' subtelomeric region of the coding strand, the distribution of potential TATA-box regions is illustrated, which accumulate between 30 and 50 nt. This work provides a valuable reference for genomic research and furthers our understanding of the dynamic nature of unicellular eukaryotic genomes.
Collapse
Affiliation(s)
- Weibo Zheng
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Center for Mechanisms of Evolution, Arizona State University, Tempe, USA
| | - Chundi Wang
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ying Yan
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Feng Gao
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China
| | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington.,National Center for Genome Analysis Support, Indiana University, Bloomington
| | - Weibo Song
- Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Ricci F, Candelori A, Brandi A, Alimenti C, Luporini P, Vallesi A. The Sub-Chromosomic Macronuclear Pheromone Genes of the Ciliate Euplotes raikovi: Comparative Structural Analysis and Insights into the Mechanism of Expression. J Eukaryot Microbiol 2018; 66:376-384. [PMID: 30076754 DOI: 10.1111/jeu.12677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/23/2022]
Abstract
In Euplotes raikovi, we have determined the full-length sequences of a family of macronuclear genes that are the transcriptionally active versions of codominant alleles inherited at the mating-type (mat) locus of the micronuclear genome, and encode cell type-distinctive signaling pheromones. These genes include a 225-231-bp coding region flanked by a conserved 544-bp 5'-leader region and a more variable 3'-trailer region. Two transcription initiation start sites and two polyadenylation sites associated with nonconventional signals cooperate with a splicing phenomenon of a 326-bp intron residing in the 5'-leader region in the generation of multiple transcripts from the same gene. In two of them, the synthesis of functional products depends on the reassignment to a sense codon, or readthrough of a strictly conserved leaky UAG stop codon. That this reassignment may take place is suggested by the position this codon occupies in the transcripts, close to the transcript extremity and far from the poly(A) tail. In such a case, one product is a 69-amino acid protein in search of function and the second product is a 126-amino acid protein that represents a membrane-bound pheromone isoform candidate to function as a cell type-specific binding site (receptor) of the soluble pheromones.
Collapse
Affiliation(s)
- Francesca Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Annalisa Candelori
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Anna Brandi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Claudio Alimenti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Pierangelo Luporini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| |
Collapse
|
28
|
Maurer-Alcalá XX, Yan Y, Pilling OA, Knight R, Katz LA. Twisted Tales: Insights into Genome Diversity of Ciliates Using Single-Cell 'Omics. Genome Biol Evol 2018; 10:1927-1939. [PMID: 29945193 PMCID: PMC6101598 DOI: 10.1093/gbe/evy133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
The emergence of robust single-cell 'omics techniques enables studies of uncultivable species, allowing for the (re)discovery of diverse genomic features. In this study, we combine single-cell genomics and transcriptomics to explore genome evolution in ciliates (a > 1 Gy old clade). Analysis of the data resulting from these single-cell 'omics approaches show: 1) the description of the ciliates in the class Karyorelictea as "primitive" is inaccurate because their somatic macronuclei contain loci of varying copy number (i.e., they have been processed by genome rearrangements from the zygotic nucleus); 2) gene-sized somatic chromosomes exist in the class Litostomatea, consistent with Balbiani's (1890) observation of giant chromosomes in this lineage; and 3) gene scrambling exists in the underexplored Postciliodesmatophora (the classes Heterotrichea and Karyorelictea, abbreviated here as the Po-clade), one of two major clades of ciliates. Together these data highlight the complex evolutionary patterns underlying germline genome architectures in ciliates and provide a basis for further exploration of principles of genome evolution in diverse microbial lineages.
Collapse
Affiliation(s)
- Xyrus X Maurer-Alcalá
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst.,Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Olivia A Pilling
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego.,Department of Computer Science and Engineering, University of California San Diego, San Diego.,Center for Microbiome Innovation, University of California San Diego, San Diego
| | - Laura A Katz
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| |
Collapse
|
29
|
Postberg J, Jönsson F, Weil PP, Bulic A, Juranek SA, Lipps HJ. 27nt-RNAs guide histone variant deposition via 'RNA-induced DNA replication interference' and thus transmit parental genome partitioning in Stylonychia. Epigenetics Chromatin 2018; 11:31. [PMID: 29895326 PMCID: PMC5996456 DOI: 10.1186/s13072-018-0201-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During sexual reproduction in the unicellular ciliate Stylonychia somatic macronuclei differentiate from germline micronuclei. Thereby, programmed sequence reduction takes place, leading to the elimination of > 95% of germline sequences, which priorly adopt heterochromatin structure via H3K27me3. Simultaneously, 27nt-ncRNAs become synthesized from parental transcripts and are bound by the Argonaute protein PIWI1. RESULTS These 27nt-ncRNAs cover sequences destined to the developing macronucleus and are thought to protect them from degradation. We provide evidence and propose that RNA/DNA base-pairing guides PIWI1/27nt-RNA complexes to complementary macronucleus-destined DNA target sequences, hence transiently causing locally stalled replication during polytene chromosome formation. This spatiotemporal delay enables the selective deposition of temporarily available histone H3.4K27me3 nucleosomes at all other sequences being continuously replicated, thus dictating their prospective heterochromatin structure before becoming developmentally eliminated. Concomitantly, 27nt-RNA-covered sites remain protected. CONCLUSIONS We introduce the concept of 'RNA-induced DNA replication interference' and explain how the parental functional genome partition could become transmitted to the progeny.
Collapse
Affiliation(s)
- Jan Postberg
- Clinical Molecular Genetics and Epigenetics, Centre for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
- HELIOS University Hospital Wuppertal, Centre for Clinical and Translational Research (CCTR), HELIOS Medical Centre Wuppertal, Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany
| | - Franziska Jönsson
- Institute of Cell Biology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Patrick Philipp Weil
- Clinical Molecular Genetics and Epigenetics, Centre for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
- HELIOS University Hospital Wuppertal, Centre for Clinical and Translational Research (CCTR), HELIOS Medical Centre Wuppertal, Witten/Herdecke University, Heusnerstr. 40, 42283 Wuppertal, Germany
| | - Aneta Bulic
- Institute of Cell Biology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Stefan Andreas Juranek
- iPSC CRISPR Facility, European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, The Netherlands
| | - Hans-Joachim Lipps
- Institute of Cell Biology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| |
Collapse
|
30
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
31
|
Kuchtová A, Gentry MS, Janeček Š. The unique evolution of the carbohydrate-binding module CBM20 in laforin. FEBS Lett 2018; 592:586-598. [PMID: 29389008 DOI: 10.1002/1873-3468.12994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
Abstract
Laforin catalyses glycogen dephosphorylation. Mutations in its gene result in Lafora disease, a fatal progressive myoclonus epilepsy, the hallmark being water-insoluble, hyperphosphorylated carbohydrate inclusions called Lafora bodies. Human laforin consists of an N-terminal carbohydrate-binding module (CBM) from family CBM20 and a C-terminal dual-specificity phosphatase domain. Laforin is conserved in all vertebrates, some basal metazoans and a small group of protozoans. The present in silico study defines the evolutionary relationships among the CBM20s of laforin with an emphasis on newly identified laforin orthologues. The study reveals putative laforin orthologues in Trichinella, a parasitic nematode, and identifies two sequence inserts in the CBM20 of laforin from parasitic coccidia. Finally, we identify that the putative laforin orthologues from some protozoa and algae possess more than one CBM20.
Collapse
Affiliation(s)
- Andrea Kuchtová
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Trnava, Slovakia
| |
Collapse
|
32
|
Exploration of the Germline Genome of the Ciliate Chilodonella uncinata through Single-Cell Omics (Transcriptomics and Genomics). mBio 2018; 9:mBio.01836-17. [PMID: 29317511 PMCID: PMC5760741 DOI: 10.1128/mbio.01836-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Separate germline and somatic genomes are found in numerous lineages across the eukaryotic tree of life, often separated into distinct tissues (e.g., in plants, animals, and fungi) or distinct nuclei sharing a common cytoplasm (e.g., in ciliates and some foraminifera). In ciliates, germline-limited (i.e., micronuclear-specific) DNA is eliminated during the development of a new somatic (i.e., macronuclear) genome in a process that is tightly linked to large-scale genome rearrangements, such as deletions and reordering of protein-coding sequences. Most studies of germline genome architecture in ciliates have focused on the model ciliates Oxytricha trifallax, Paramecium tetraurelia, and Tetrahymena thermophila, for which the complete germline genome sequences are known. Outside of these model taxa, only a few dozen germline loci have been characterized from a limited number of cultivable species, which is likely due to difficulties in obtaining sufficient quantities of “purified” germline DNA in these taxa. Combining single-cell transcriptomics and genomics, we have overcome these limitations and provide the first insights into the structure of the germline genome of the ciliate Chilodonella uncinata, a member of the understudied class Phyllopharyngea. Our analyses reveal the following: (i) large gene families contain a disproportionate number of genes from scrambled germline loci; (ii) germline-soma boundaries in the germline genome are demarcated by substantial shifts in GC content; (iii) single-cell omics techniques provide large-scale quality germline genome data with limited effort, at least for ciliates with extensively fragmented somatic genomes. Our approach provides an efficient means to understand better the evolution of genome rearrangements between germline and soma in ciliates. Our understanding of the distinctions between germline and somatic genomes in ciliates has largely relied on studies of a few model genera (e.g., Oxytricha, Paramecium, Tetrahymena). We have used single-cell omics to explore germline-soma distinctions in the ciliate Chilodonella uncinata, which likely diverged from the better-studied ciliates ~700 million years ago. The analyses presented here indicate that developmentally regulated genome rearrangements between germline and soma are demarcated by rapid transitions in local GC composition and lead to diversification of protein families. The approaches used here provide the basis for future work aimed at discerning the evolutionary impacts of germline-soma distinctions among diverse ciliates.
Collapse
|
33
|
Kim BM, Rhee JS, Choi IY, Lee YM. Transcriptional profiling of antioxidant defense system and heat shock protein (Hsp) families in the cadmium- and copper-exposed marine ciliate Euplotes crassu. Genes Genomics 2017; 40:85-98. [PMID: 29892903 DOI: 10.1007/s13258-017-0611-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022]
Abstract
To understand the transcriptional response of antioxidant defense system and heat shock protein (Hsp) families of the marine ciliate Euplotes crassus, we analyzed the transcriptome profile using RNA-seq technology after exposure to cadmium (Cd) and copper (Cu). De novo sequence assembly produced 61,240 unigenes with 21,330 BLAST hits and showed high sequence orthology with transcriptomes of other ciliates. Gene annotation and gene ontology (GO) comparison revealed that E. crassus expressed highly diversified but conserved stress-responsive gene families of the antioxidant defense system and Hsps. After waterborne exposure to 250 μg/L of Cd and 25 μg/L of Cu, transcriptional responses of the gene families were significantly modulated, suggesting that even the unicellular E. crassus has a conserved molecular defense mechanism, such as modulating mRNA expression, for homeostasis. These transcriptional responses make E. crassus a potential model for understanding the molecular response of single cell ciliates to heavy metal contamination.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
34
|
Wang C, Zhang T, Wang Y, Katz LA, Gao F, Song W. Disentangling sources of variation in SSU rDNA sequences from single cell analyses of ciliates: impact of copy number variation and experimental error. Proc Biol Sci 2017; 284:20170425. [PMID: 28747472 PMCID: PMC5543213 DOI: 10.1098/rspb.2017.0425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/19/2017] [Indexed: 12/25/2022] Open
Abstract
Small subunit ribosomal DNA (SSU rDNA) is widely used for phylogenetic inference, barcoding and other taxonomy-based analyses. Recent studies indicate that SSU rDNA of ciliates may have a high level of sequence variation within a single cell, which impacts the interpretation of rDNA-based surveys. However, sequence variation can come from a variety of sources including experimental errors, especially the mutations generated by DNA polymerase in PCR. In the present study, we explore the impact of four DNA polymerases on sequence variation and find that low-fidelity polymerases exaggerate the estimates of single-cell sequence variation. Therefore, using a polymerase with high fidelity is essential for surveys of sequence variation. Another source of variation results from errors during amplification of SSU rDNA within the polyploidy somatic macronuclei of ciliates. To investigate further the impact of SSU rDNA copy number variation, we use a high-fidelity polymerase to examine the intra-individual SSU rDNA polymorphism in ciliates with varying levels of macronuclear amplification: Halteria grandinella, Blepharisma americanum and Strombidium stylifer We estimate the rDNA copy numbers of these three species by single-cell quantitative PCR. The results indicate that: (i) sequence variation of SSU rDNA within a single cell is authentic in ciliates, but the level of intra-individual SSU rDNA polymorphism varies greatly among species; (ii) rDNA copy numbers vary greatly among species, even those within the same class; (iii) the average rDNA copy number of Halteria grandinella is about 567 893 (s.d. = 165 481), which is the highest record of rDNA copy number in ciliates to date; and (iv) based on our data and the records from previous studies, it is not always true in ciliates that rDNA copy numbers are positively correlated with cell or genome size.
Collapse
Affiliation(s)
- Chundi Wang
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tengteng Zhang
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yurui Wang
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Feng Gao
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Weibo Song
- Insititute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
35
|
Cid NG, Sanchez Granel ML, Montes MG, Elguero ME, Nudel CB, Nusblat AD. Phylogenomic analysis of integral diiron membrane histidine motif-containing enzymes in ciliates provides insights into their function and evolutionary relationships. Mol Phylogenet Evol 2017; 114:1-13. [PMID: 28559213 DOI: 10.1016/j.ympev.2017.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023]
Abstract
The Integral Membrane Histidine Motif-containing Enzymes (IMHME) are a class of binuclear non-heme iron proteins widely distributed among prokaryotes and eukaryotes. They are characterized by a conserved tripartite motif consisting of eight to ten histidine residues. Their known function is the activation of the dioxygen moiety to serve as efficient catalysts for reactions of hydroxylation, desaturation or reduction. To date most studies on IMHME were carried out in metazoan, phototrophic or parasitic organisms, whereas genome-wide analysis in heterotrophic free living protozoa, such as the Ciliophora phylum, has not been undertaken. In the seven fully sequenced genomes available we retrieved 118 putative sequences of the IMHME type, albeit with large differences in number among the ciliates: 11 sequences in Euplotes octocarinatus, 7 in Ichthyophthirius multifiliis, 13 in Oxytricha trifallax, 18 in Stylonychia lemnae, 25 in Tetrahymena thermophila, 31 in Paramecium tetraurelia and 13 in Pseudocohnilembus persalinus. The pool of putative sequences was classified in 16 orthologous groups from which 11 were related to fatty acid desaturase (FAD) and 5 to the fatty acid hydroxylase (FAH) superfamilies. Noteworthy, a large diversity on the number and type of FAD / FAH proteins were found among the ciliates, a feature that, in principle, may be attributed to peculiarities of the evolutionary process, such as gene expansion and reduction, but also to horizontal gene transfer, as we demonstrate in this work. We identified twelve putative enzymatic activities, from which four were newly assigned activities: sphingolipid Δ4-desaturase, ω3/Δ15 fatty acid desaturase, a large group of alkane 1-monooxygenases, and acylamide-delta-3(E)-desaturase, although unequivocal allocation would require additional experiments. We also combined the phylogenetics analysis with lipids analysis, thereby allowing the detection of two enzymatic activities not previously reported: a C-5 sterol desaturase in P. tetraurelia and a delta-9 fatty acid desaturase in Cohnilembus reniformis. The analysis revealed a significant lower number of FAD's sequences in the spirotrichea ciliates than in the oligohymenophorea, emphasizing the importance of fatty acids trophic transfer among aquatic organisms as a source of variation in metabolic activity, individual and population growth rates, and reproduction.
Collapse
Affiliation(s)
- Nicolas G Cid
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - María L Sanchez Granel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - María G Montes
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - María E Elguero
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - Clara B Nudel
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina
| | - Alejandro D Nusblat
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| |
Collapse
|
36
|
Neeb ZT, Hogan DJ, Katzman S, Zahler AM. Preferential expression of scores of functionally and evolutionarily diverse DNA and RNA-binding proteins during Oxytricha trifallax macronuclear development. PLoS One 2017; 12:e0170870. [PMID: 28207760 PMCID: PMC5312943 DOI: 10.1371/journal.pone.0170870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/11/2017] [Indexed: 12/04/2022] Open
Abstract
During its sexual reproduction, the stichotrichous ciliate Oxytricha trifallax orchestrates a remarkable transformation of one of the newly formed germline micronuclear genomes. Hundreds of thousands of gene pieces are stitched together, excised from chromosomes, and replicated dozens of times to yield a functional somatic macronuclear genome composed of ~16,000 distinct DNA molecules that typically encode a single gene. Little is known about the proteins that carry out this process. We profiled mRNA expression as a function of macronuclear development and identified hundreds of mRNAs preferentially expressed at specific times during the program. We find that a disproportionate number of these mRNAs encode proteins that are involved in DNA and RNA functions. Many mRNAs preferentially expressed during macronuclear development have paralogs that are either expressed constitutively or are expressed at different times during macronuclear development, including many components of the RNA polymerase II machinery and homologous recombination complexes. Hundreds of macronuclear development-specific genes encode proteins that are well-conserved among multicellular eukaryotes, including many with links to germline functions or development. Our work implicates dozens of DNA and RNA-binding proteins with diverse evolutionary trajectories in macronuclear development in O. trifallax. It suggests functional connections between the process of macronuclear development in unicellular ciliates and germline specialization and differentiation in multicellular organisms, and argues that gene duplication is a key source of evolutionary innovation in this process.
Collapse
Affiliation(s)
- Zachary T. Neeb
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Daniel J. Hogan
- Tocagen Inc., San Diego, California, United States of America
- * E-mail: (DJH); (AMZ)
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Alan M. Zahler
- Department of Molecular, Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (DJH); (AMZ)
| |
Collapse
|
37
|
Aslan E, Küçükoğlu N, Arslanyolu M. A comparative in-silico analysis of autophagy proteins in ciliates. PeerJ 2017; 5:e2878. [PMID: 28123910 PMCID: PMC5244887 DOI: 10.7717/peerj.2878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/07/2016] [Indexed: 01/05/2023] Open
Abstract
Autophagy serves as a turnover mechanism for the recycling of redundant and/or damaged macromolecules present in eukaryotic cells to re-use them under starvation conditions via a double-membrane structure known as autophagosome. A set of eukaryotic genes called autophagy-related genes (ATGs) orchestrate this highly elaborative process. The existence of these genes and the role they play in different eukaryotes are well-characterized. However, little is known of their role in some eukaryotes such as ciliates. Here, we report the computational analyses of ATG genes in five ciliate genomes to understand their diversity. Our results show that Oxytricha trifallax is the sole ciliate which has a conserved Atg12 conjugation system (Atg5-Atg12-Atg16). Interestingly, Oxytricha Atg16 protein includes WD repeats in addition to its N-terminal Atg16 domain as is the case in multicellular organisms. Additionally, phylogenetic analyses revealed that E2-like conjugating protein Atg10 is only present in Tetrahymena thermophila. We fail to find critical autophagy components Atg5, Atg7 and Atg8 in the parasitic ciliate Ichthyophthirius multifiliis. Contrary to previous reports, we also find that ciliate genomes do not encode typical Atg1 since all the candidate sequences lack an Atg1-specific C-terminal domain which is essential for Atg1 complex formation. Consistent with the absence of Atg1, ciliates also lack other members of the Atg1 complex. However, the presence of Atg6 in all ciliates examined here may rise the possibility that autophagosome formation could be operated through Atg6 in ciliates, since Atg6 has been shown as an alternative autophagy inducer. In conclusion, our results highlight that Atg proteins are partially conserved in ciliates. This may provide a better understanding for the autophagic destruction of the parental macronucleus, a developmental process also known as programmed nuclear death in ciliates.
Collapse
Affiliation(s)
- Erhan Aslan
- Graduate School of Science, Department of Molecular Biology, Anadolu University, Eskişehir, Turkey
- Laboratory of Molecular Biotechnology and Enzymology, Faculty of Science, Department of Biology, Anadolu University, Eskişehir, Turkey
| | - Nurçin Küçükoğlu
- Graduate School of Science, Department of Molecular Biology, Anadolu University, Eskişehir, Turkey
- Laboratory of Molecular Biotechnology and Enzymology, Faculty of Science, Department of Biology, Anadolu University, Eskişehir, Turkey
| | - Muhittin Arslanyolu
- Laboratory of Molecular Biotechnology and Enzymology, Faculty of Science, Department of Biology, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
38
|
Bondarenko VS, Gelfand MS. Evolution of the Exon-Intron Structure in Ciliate Genomes. PLoS One 2016; 11:e0161476. [PMID: 27603699 PMCID: PMC5014332 DOI: 10.1371/journal.pone.0161476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/06/2016] [Indexed: 12/27/2022] Open
Abstract
A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33–35 bp, 47–51 bp, and 78–80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in various representatives of Ciliates.
Collapse
Affiliation(s)
- Vladyslav S. Bondarenko
- Institute of Molecular Biology and Genetics, NASU, Zabolotnogo Str. 150, Kyiv, 03680, Ukraine
- * E-mail:
| | - Mikhail S. Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorobievy Gory 1–73, Moscow GSP-1, 119234, Russia
| |
Collapse
|
39
|
Burns J, Kukushkin D, Chen X, Landweber LF, Saito M, Jonoska N. Recurring patterns among scrambled genes in the encrypted genome of the ciliate Oxytricha trifallax. J Theor Biol 2016; 410:171-180. [PMID: 27593332 DOI: 10.1016/j.jtbi.2016.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/21/2016] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
Some genera of ciliates, such as Oxytricha and Stylonychia, undergo massive genome reorganization during development and provide model organisms to study DNA rearrangement. A common feature of these ciliates is the presence of two types of nuclei: a germline micronucleus and a transcriptionally-active somatic macronucleus containing over 16,000 gene sized "nano-chromosomes". During conjugation the old parental macronucleus disintegrates and a new macronucleus forms from a copy of the zygotic micronucleus. During this process, macronuclear chromosomes assemble through DNA processing events that delete 90-98% of the DNA content of the micronucleus. This includes the deletion of noncoding DNA segments that interrupt precursor DNA regions in the micronucleus, as well as transposons and other germline-limited DNA. Each macronuclear locus may be present in the micronucleus as several nonconsecutive, permuted, and/or inverted DNA segments. Here we investigate the genome-wide range of scrambled gene architectures that describe all precursor-product relationships in Oxytricha trifallax, the first completely sequenced scrambled genome. We find that five general, recurrent patterns in the sets of scrambled micronuclear precursor pieces can describe over 80% of Oxytricha's scrambled genes. These include instances of translocations and inversions, and other specific patterns characterized by alternating stretches of consecutive odd and even DNA segments. Moreover, we find that iterating patterns of alternating odd-even segments up to four times can describe over 96% of the scrambled precursor loci. Recurrence of these highly structured genetic architectures within scrambled genes presumably reflects recurrent evolutionary events that gave rise to over 3000 of scrambled loci in the germline genome.
Collapse
Affiliation(s)
- Jonathan Burns
- Department of Mathematics & Statistics, University of South Florida, Tampa, FL 33620.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Denys Kukushkin
- Department of Mathematics & Statistics, University of South Florida, Tampa, FL 33620
| | - Xiao Chen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Laura F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Masahico Saito
- Department of Mathematics & Statistics, University of South Florida, Tampa, FL 33620
| | - Nataša Jonoska
- Department of Mathematics & Statistics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
40
|
Mu W, Wang Q, Bourland WA, Jiang C, Yuan D, Pan X, Miao W, Chen Y, Xiong J. Epidermal growth factor-induced stimulation of proliferation and gene expression changes in the hypotrichous ciliate, Stylonychia lemnae. Gene 2016; 592:186-192. [PMID: 27506312 DOI: 10.1016/j.gene.2016.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/21/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022]
Abstract
Epidermal growth factor (EGF) induces proliferation of epidermal and epithelial tissues in mammals. However, the effect of EGF on the single-celled eukaryotes is not well characterized, especially in the protists. Ciliates, an important group of protists, are well characterized as both pollution indicators and model organisms for research. Stylonychia lemnae, is one of the most common free-living ciliates, widely distributed in ponds, rivers and marshes. Here, we report the role of EGF on cell proliferation stimulation in S. lemnae. The growth curve of S. lemnae was established, and the stimulation effect of EGF on the proliferation of S. lemnae was investigated. Based on the results, potential EGF receptors were identified in S. lemnae according to the conserved domains and gene expression. Differential gene expression revealed that EGF-induced genes in other organisms (e.g. antioxidant) also up-regulated in S. lemnae cells at propagation stages. In addition, our results showed that EGF could up-regulate the signal transduction-related processes in the decline stage of S. lemnae cells, indicating its potential function in apoptosis inhibition. In summary, this study reports findings of the first investigation of EGF effects in hypotrich ciliates, and establishes an additional system for the study of the molecular mechanisms of EGF actions in eukaryotic cell division and proliferation.
Collapse
Affiliation(s)
- Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Qi Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA.
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Ying Chen
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
41
|
Swart EC, Serra V, Petroni G, Nowacki M. Genetic Codes with No Dedicated Stop Codon: Context-Dependent Translation Termination. Cell 2016; 166:691-702. [PMID: 27426948 PMCID: PMC4967479 DOI: 10.1016/j.cell.2016.06.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 04/19/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023]
Abstract
The prevailing view of the nuclear genetic code is that it is largely frozen and unambiguous. Flexibility in the nuclear genetic code has been demonstrated in ciliates that reassign standard stop codons to amino acids, resulting in seven variant genetic codes, including three previously undescribed ones reported here. Surprisingly, in two of these species, we find efficient translation of all 64 codons as standard amino acids and recognition of either one or all three stop codons. How, therefore, does the translation machinery interpret a “stop” codon? We provide evidence, based on ribosomal profiling and “stop” codon depletion shortly before coding sequence ends, that mRNA 3′ ends may contribute to distinguishing stop from sense in a context-dependent manner. We further propose that such context-dependent termination/readthrough suppression near transcript ends enables genetic code evolution. Alternative nuclear genetic codes continue to be discovered in ciliates Genetic codes with stops and all their codons encoding standard amino acids exist Transcript ends may distinguish stop codons as such in ambiguous genetic codes The ability to resolve genetic code ambiguity may enable genetic code evolution
Collapse
Affiliation(s)
| | - Valentina Serra
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
42
|
Smith DR, Keeling PJ. Protists and the Wild, Wild West of Gene Expression: New Frontiers, Lawlessness, and Misfits. Annu Rev Microbiol 2016; 70:161-78. [PMID: 27359218 DOI: 10.1146/annurev-micro-102215-095448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA double helix has been called one of life's most elegant structures, largely because of its universality, simplicity, and symmetry. The expression of information encoded within DNA, however, can be far from simple or symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukaryotes). The nuclear and organelle genomes of protists are subject to the most tangled forms of gene expression yet identified. The complicated and extravagant picture of the underlying genetics of eukaryotic microbial life changes how we think about the flow of genetic information and the evolutionary processes shaping it. Here, we discuss the origins, diversity, and growing interest in noncanonical protist gene expression and its relationship to genomic architecture.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7;
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4;
| |
Collapse
|
43
|
Maurer-Alcalá XX, Katz LA. Nuclear Architecture and Patterns of Molecular Evolution Are Correlated in the Ciliate Chilodonella uncinata. Genome Biol Evol 2016; 8:1634-42. [PMID: 27189988 PMCID: PMC4943175 DOI: 10.1093/gbe/evw099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relationship between nuclear architecture and patterns of molecular evolution in lineages across the eukaryotic tree of life is not well understood, partly because molecular evolution is traditionally explored as changes in base pairs along a linear sequence without considering the context of nuclear position of chromosomes. The ciliate Chilodonella uncinata is an ideal system to address the relationship between nuclear architecture and patterns of molecular evolution as the somatic macronucleus of this ciliate is composed of a peripheral DNA-rich area (orthomere) and a DNA-poor central region (paramere) to form a “heteromeric” macronucleus. Moreover, because the somatic chromosomes of C. uncinata are highly processed into “gene-sized” chromosomes (i.e., nanochromosomes), we can assess fine-scale relationships between location and sequence evolution. By combining fluorescence microscopy and analyses of transcriptome data from C. uncinata, we find that highly expressed genes have the greatest codon usage bias and are enriched in DNA-poor regions. In contrast, genes with less biased sequences tend to be concentrated in DNA abundant areas, at least during vegetative growth. Our analyses are consistent with recent work in plants and animals where nuclear architecture plays a role in gene expression. At the same time, the unusual localization of nanochromosomes suggests that the highly structured nucleus in C. uncinata may create a “gene bank” that facilitates rapid changes in expression of genes required only in specific life history stages. By using “nonmodel” organisms like C. uncinata, we can explore the universality of eukaryotic features while also providing examples of novel properties (i.e., the presence of a gene bank) that build from these features.
Collapse
Affiliation(s)
- Xyrus X Maurer-Alcalá
- Department of Biological Sciences, Smith College, Northampton, MA Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst
| |
Collapse
|
44
|
Wang R, Xiong J, Wang W, Miao W, Liang A. High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus. Sci Rep 2016; 6:21139. [PMID: 26891713 PMCID: PMC4759687 DOI: 10.1038/srep21139] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/18/2016] [Indexed: 01/25/2023] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) has been identified as a mechanism to regulate the expression of many viral genes and some cellular genes. The slippery site of -1 PRF has been well characterized, whereas the +1 PRF signal and the mechanism involved in +1 PRF remain poorly understood. Previous study confirmed that +1 PRF is required for the synthesis of protein products in several genes of ciliates from the genus Euplotes. To accurately assess the frequency of genes requiring frameshift in Euplotes, the macronuclear genome and transcriptome of Euplotes octocarinatus were analyzed in this study. A total of 3,700 +1 PRF candidate genes were identified from 32,353 transcripts, and the gene products of these putative +1 PRFs were mainly identified as protein kinases. Furthermore, we reported a putative suppressor tRNA of UAA which may provide new insights into the mechanism of +1 PRF in euplotids. For the first time, our transcriptome-wide survey of +1 PRF in E. octocarinatus provided a dataset which serves as a valuable resource for the future understanding of the mechanism underlying +1 PRF.
Collapse
Affiliation(s)
- Ruanlin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
45
|
Alic AS, Ruzafa D, Dopazo J, Blanquer I. Objective review of de novostand-alone error correction methods for NGS data. WILEY INTERDISCIPLINARY REVIEWS: COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andy S. Alic
- Institute of Instrumentation for Molecular Imaging (I3M); Universitat Politècnica de València; València Spain
| | - David Ruzafa
- Departamento de Quìmica Fìsica e Instituto de Biotecnologìa, Facultad de Ciencias; Universidad de Granada; Granada Spain
| | - Joaquin Dopazo
- Department of Computational Genomics; Príncipe Felipe Research Centre (CIPF); Valencia Spain
- CIBER de Enfermedades Raras (CIBERER); Valencia Spain
- Functional Genomics Node (INB) at CIPF; Valencia Spain
| | - Ignacio Blanquer
- Institute of Instrumentation for Molecular Imaging (I3M); Universitat Politècnica de València; València Spain
- Biomedical Imaging Research Group GIBI 2; Polytechnic University Hospital La Fe; Valencia Spain
| |
Collapse
|
46
|
Diversity of extracellular proteins during the transition from the ‘proto-apicomplexan’ alveolates to the apicomplexan obligate parasites. Parasitology 2015; 143:1-17. [DOI: 10.1017/s0031182015001213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SUMMARYThe recent completion of high-coverage draft genome sequences for several alveolate protozoans – namely, the chromerids, Chromera velia and Vitrella brassicaformis; the perkinsid Perkinsus marinus; the apicomplexan, Gregarina niphandrodes, as well as high coverage transcriptome sequence information for several colpodellids, allows for new genome-scale comparisons across a rich landscape of apicomplexans and other alveolates. Genome annotations can now be used to help interpret fine ultrastructure and cell biology, and guide new studies to describe a variety of alveolate life strategies, such as symbiosis or free living, predation, and obligate intracellular parasitism, as well to provide foundations to dissect the evolutionary transitions between these niches. This review focuses on the attempt to identify extracellular proteins which might mediate the physical interface of cell–cell interactions within the above life strategies, aided by annotation of the repertoires of predicted surface and secreted proteins encoded within alveolate genomes. In particular, we discuss what descriptions of the predicted extracellular proteomes reveal regarding a hypothetical last common ancestor of a pre-apicomplexan alveolate – guided by ultrastructure, life strategies and phylogenetic relationships – in an attempt to understand the evolution of obligate parasitism in apicomplexans.
Collapse
|
47
|
Hoffmann RF, Moshkin YM, Mouton S, Grzeschik NA, Kalicharan RD, Kuipers J, Wolters AHG, Nishida K, Romashchenko AV, Postberg J, Lipps H, Berezikov E, Sibon OCM, Giepmans BNG, Lansdorp PM. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res 2015; 44:152-63. [PMID: 26384414 PMCID: PMC4705689 DOI: 10.1093/nar/gkv900] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/21/2015] [Indexed: 12/27/2022] Open
Abstract
Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation.
Collapse
Affiliation(s)
- Roland F Hoffmann
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Yuri M Moshkin
- Department of Biochemistry, Erasmus University Medical Center, Dr. Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Nicola A Grzeschik
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Ruby D Kalicharan
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Anouk H G Wolters
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Kazuki Nishida
- Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Aleksander V Romashchenko
- Department of Biochemistry, Erasmus University Medical Center, Dr. Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Jan Postberg
- Helios Medical Centre Wuppertal, Paediatrics Centre, Witten/Herdecke University, Wuppertal, Germany
| | - Hans Lipps
- Institute of Cell Biology, Centre for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ody C M Sibon
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medicine, University of British Columbia Vancouver, BC, V5Z 1L3, Canada
| |
Collapse
|
48
|
Chen X, Jung S, Beh LY, Eddy SR, Landweber LF. Combinatorial DNA Rearrangement Facilitates the Origin of New Genes in Ciliates. Genome Biol Evol 2015; 7:2859-70. [PMID: 26338187 PMCID: PMC4684698 DOI: 10.1093/gbe/evv172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Programmed genome rearrangements in the unicellular eukaryote Oxytricha trifallax produce a transcriptionally active somatic nucleus from a copy of its germline nucleus during development. This process eliminates noncoding sequences that interrupt coding regions in the germline genome, and joins over 225,000 remaining DNA segments, some of which require inversion or complex permutation to build functional genes. This dynamic genomic organization permits some single DNA segments in the germline to contribute to multiple, distinct somatic genes via alternative processing. Like alternative mRNA splicing, the combinatorial assembly of DNA segments contributes to genetic variation and facilitates the evolution of new genes. In this study, we use comparative genomic analysis to demonstrate that the emergence of alternative DNA splicing is associated with the origin of new genes. Short duplications give rise to alternative gene segments that are spliced to the shared gene segments. Alternative gene segments evolve faster than shared, constitutive segments. Genes with shared segments frequently have different expression profiles, permitting functional divergence. This study reports alternative DNA splicing as a mechanism of new gene origination, illustrating how the process of programmed genome rearrangement gives rise to evolutionary innovation.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Molecular Biology, Princeton University
| | - Seolkyoung Jung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | - Leslie Y Beh
- Department of Ecology and Evolutionary Biology, Princeton University
| | - Sean R Eddy
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia Present address: Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, and John A. Paulson School of Engineering and Applied Sciences, Harvard University
| | - Laura F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University
| |
Collapse
|
49
|
Phylogenomic analyses reveal subclass Scuticociliatia as the sister group of subclass Hymenostomatia within class Oligohymenophorea. Mol Phylogenet Evol 2015; 90:104-11. [DOI: 10.1016/j.ympev.2015.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/26/2015] [Accepted: 05/10/2015] [Indexed: 01/08/2023]
|
50
|
Origin, structure and function of millions of chromosomes present in the macronucleus of unicellular eukaryotic ciliate, Oxytricha trifallax: a model organism for transgenerationally programmed genome rearrangements. J Genet 2015; 94:171-6. [PMID: 26174664 DOI: 10.1007/s12041-015-0504-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|