1
|
Haverkamp THA, Spilsberg B, Johannessen GS, Torp M, Sekse C. Detection and characterization of Campylobacter in air samples from poultry houses using shot-gun metagenomics - a pilot study. BMC Microbiol 2024; 24:399. [PMID: 39385092 PMCID: PMC11462905 DOI: 10.1186/s12866-024-03563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Foodborne pathogens such as Campylobacter jejuni are responsible for a large proportion of the gastrointestinal infections worldwide associated with poultry meat. Campylobacter spp. can be found in the chicken fecal microbiome and can contaminate poultry meat during the slaughter process. Commonly used sampling methods to detect Campylobacter spp. at poultry farms use fecal droppings or boot swabs in combination with conventional culture techniques or PCR. In this pilot study, we have used air filtering and filters spiked with mock communities in combination with shotgun metagenomics to detect Campylobacter and test the applicability of this approach for the detection and characterization of foodborne pathogens. To the best of our knowledge is this the first study that combines air filtering with shotgun metagenomic sequencing for detection and characterization of Campylobacter. RESULTS Analysis of air filters spiked with different levels of Campylobacter, into a background of mock or poultry house communities, indicated that we could detect as little as 200 colony forming units (CFU) Campylobacter per sample using our protocols. The results indicate that even with limited sequencing effort we could detect Campylobacter in the samples analysed in this study. We observed significant amounts of Campylobacter in real-life samples from poultry houses using both real-time PCR as well as shotgun metagenomics, suggesting that the flocks in both houses were infected with Campylobacter spp. Interestingly, in both houses we find diverse microbial communities present in the indoor air which reflect the fecal microbiome of poultry. Some of the identified genera such as Staphylococcus, Escherichia and Pseudomonas are known to contain opportunistic pathogenic species. CONCLUSIONS These results show that air sampling of poultry houses in combination with shotgun metagenomics can detect and identify Campylobacter spp. present at low levels. This is important since early detection of Campylobacter enables measures to be put in place to ensure the safety of broiler products, animal health and public health. This approach has the potential to detect any pathogen present in poultry house air.
Collapse
Affiliation(s)
| | | | | | - Mona Torp
- Norwegian Veterinary Institute, Oslo, Norway
| | | |
Collapse
|
2
|
Pena-Fernández N, Kortabarria N, Hurtado A, Ocejo M, Fort M, Pérez-Cobo I, Collantes-Fernández E, Aduriz G. Biochemical and molecular characterization of Campylobacter fetus isolates from bulls subjected to bovine genital campylobacteriosis diagnosis in Spain. BMC Vet Res 2024; 20:131. [PMID: 38566185 PMCID: PMC10985941 DOI: 10.1186/s12917-024-03970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Bovine genital campylobacteriosis (BGC) is caused by Campylobacter fetus subsp. venerealis (Cfv) including its biovar intermedius (Cfvi). This sexually transmitted disease induces early reproductive failure causing considerable economic losses in the cattle industry. Using a collection of well-characterized isolates (n = 13), C. fetus field isolates (n = 64) and saprophytic isolates resembling Campylobacter (n = 75) obtained from smegma samples of breeding bulls, this study evaluated the concordance of the most used phenotypic (H2S production in cysteine medium and 1% glycine tolerance) and molecular (PCR) methods for the diagnosis of BGC and assessed possible cross-reactions in the molecular diagnostic methods. RESULTS Characterization at the subspecies level (fetus vs. venerealis) of C. fetus isolated from bull preputial samples using phenotypic and molecular (PCR targeting nahE and ISCfe1) methods showed moderate concordance (κ = 0.462; CI: 0.256-0.669). No cross-reactions were observed with other saprophytic microaerophilic species or with other Campylobacter species that can be present in preputial samples. Whole genome sequencing (WGS) of discrepant isolates showed 100% agreement with PCR identification. For the differentiation of Cfv biovars, comparison of the H2S test (at 72 h and 5 days of incubation) and a PCR targeting the L-cysteine transporter genes showed higher concordance when H2S production was assessed after 5 days (72 h; κ = 0.553, 0.329-0.778 CI vs. 5 days; κ = 0.881, 0.631-1 CI), evidencing the efficacy of a longer incubation time. CONCLUSIONS This study confirmed the limitations of biochemical tests to correctly identify C. fetus subspecies and biovars. However, in the case of biovars, when extended incubation times for the H2S test (5 days) were used, phenotypic identification results were significantly improved, although PCR-based methods produced more accurate results. Perfect agreement of WGS with the PCR results and absence of cross-reactions with non-C. fetus saprophytic bacteria from the smegma demonstrated the usefulness of these methods. Nevertheless, the identification of new C. fetus subspecies-specific genes would help to improve BGC diagnosis.
Collapse
Affiliation(s)
- Nerea Pena-Fernández
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Carretera de Oviedo, S/N, Villaviciosa, 33300, Spain
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, 48160, Spain
| | - Nekane Kortabarria
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, 48160, Spain
| | - Ana Hurtado
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, 48160, Spain
| | - Medelin Ocejo
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, 48160, Spain
| | - Marcelo Fort
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria S/N, Madrid, 28040, Spain
| | - Iratxe Pérez-Cobo
- Central Veterinary-Animal Health Laboratory (LCV), Ctra. Madrid-Algete Km. 8.00, Algete, 28110, Spain
| | - Esther Collantes-Fernández
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria S/N, Madrid, 28040, Spain.
- Faculty of Veterinary Sciences, SALUVET-Innova S.L, Complutense University of Madrid, Ciudad Universitaria S/N, Madrid, 28040, Spain.
| | - Gorka Aduriz
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, Derio, 48160, Spain.
| |
Collapse
|
3
|
Cho H, Qu Y, Liu C, Tang B, Lyu R, Lin BM, Roach J, Azcarate-Peril MA, Aguiar Ribeiro A, Love MI, Divaris K, Wu D. Comprehensive evaluation of methods for differential expression analysis of metatranscriptomics data. Brief Bioinform 2023; 24:bbad279. [PMID: 37738402 PMCID: PMC10516371 DOI: 10.1093/bib/bbad279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/24/2023] Open
Abstract
Understanding the function of the human microbiome is important but the development of statistical methods specifically for the microbial gene expression (i.e. metatranscriptomics) is in its infancy. Many currently employed differential expression analysis methods have been designed for different data types and have not been evaluated in metatranscriptomics settings. To address this gap, we undertook a comprehensive evaluation and benchmarking of 10 differential analysis methods for metatranscriptomics data. We used a combination of real and simulated data to evaluate performance (i.e. type I error, false discovery rate and sensitivity) of the following methods: log-normal (LN), logistic-beta (LB), MAST, DESeq2, metagenomeSeq, ANCOM-BC, LEfSe, ALDEx2, Kruskal-Wallis and two-part Kruskal-Wallis. The simulation was informed by supragingival biofilm microbiome data from 300 preschool-age children enrolled in a study of childhood dental disease (early childhood caries, ECC), whereas validations were sought in two additional datasets from the ECC study and an inflammatory bowel disease study. The LB test showed the highest sensitivity in both small and large samples and reasonably controlled type I error. Contrarily, MAST was hampered by inflated type I error. Upon application of the LN and LB tests in the ECC study, we found that genes C8PHV7 and C8PEV7, harbored by the lactate-producing Campylobacter gracilis, had the strongest association with childhood dental disease. This comprehensive model evaluation offers practical guidance for selection of appropriate methods for rigorous analyses of differential expression in metatranscriptomics. Selection of an optimal method increases the possibility of detecting true signals while minimizing the chance of claiming false ones.
Collapse
Affiliation(s)
- Hunyong Cho
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Yixiang Qu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Chuwen Liu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Boyang Tang
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Ruiqi Lyu
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey Roach
- Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - M Andrea Azcarate-Peril
- Department of Medicine and Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Michael I Love
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Kimon Divaris
- Division of Pediatric and Public Health, University of North Carolina, Chapel Hill, NC, United States
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
- Division of Oral and Craniofacial Health Sciences, Adam School of Dentistry, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Buzzanca D, Alessandria V, Botta C, Seif Zadeh N, Ferrocino I, Houf K, Cocolin L, Rantsiou K. Transcriptome Analysis of Arcobacter butzleri Infection in a Mucus-Producing Human Intestinal In Vitro Model. Microbiol Spectr 2023; 11:e0207122. [PMID: 36622176 PMCID: PMC9927503 DOI: 10.1128/spectrum.02071-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Arcobacter butzleri is a foodborne pathogen belonging to the Arcobacteraceae family. This Gram-negative bacterium is found in water, food, and various organisms, including farm animals, clams, and fish. Moreover, A. butzleri has been isolated from human stool samples, where it was associated with gastrointestinal symptoms such as diarrhea. The present study focused on the transcriptome analysis of three A. butzleri strains isolated from human stools and displaying variable virulence potential in vitro. We used a mucus-producing human intestinal in vitro model (Caco-2/HT29-MTX-E12) to study the colonization and invasion abilities of the three A. butzleri strains. The ability of all three A. butzleri strains to colonize our in vitro model system was subsequently confirmed. Moreover, transcriptomics showed the upregulation of putative virulence genes. Among these genes, tonB, exbB, and exbD, which belong to the same operon, were upregulated in strain LMG 11119, which also had the greatest colonization ability. Moreover, genes not currently considered A. butzleri virulence genes were differentially expressed during cell model colonization. The main functions of these genes were linked to organic acid metabolism and iron transport and particularly to the function of the TonB complex. IMPORTANCE Recent advancements in the genomic characterization of A. butzleri revealed putative virulence genes and highlighted the possible pathogenic mechanisms used by this foodborne pathogen. It is therefore possible to study the transcriptomes of these bacteria to explore possible virulence mechanisms under conditions that mimic the infection process. The transcriptome and colonization/invasion analyses that we performed in this study enabled the evaluation of A. butzleri-mediated infection of the mucus-producing human intestinal in vitro model. We confirmed the upregulation of previously proposed virulence genes in the A. butzleri strains. In addition, we identified the differential expression of a number of other genes, which are not currently thought to be associated with virulence, in three A. butzleri strains during infection of mucus-producing human epithelial cells. Changes in the concentration of acetic acid and the upregulation of genes associated with organic acid metabolism during host-pathogen contact were also observed. These findings highlight the importance of previously unreported genes in the virulence mechanisms of A. butzleri.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Negin Seif Zadeh
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Gulumbe BH, Bazata AY, Bagwai MA. Campylobacter Species, Microbiological Source Tracking and Risk Assessment of Bacterial pathogens. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i2.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Campylobacter species continue to remain critical pathogens of public health interest. They are responsible for approximately 500 million cases of gastroenteritis per year worldwide. Infection occurs through the consumption of contaminated food and water. Microbial risk assessment and source tracking are crucial epidemiological strategies to monitor the outbreak of campylobacteriosis effectively. Various methods have been proposed for microbial source tracking and risk assessment, most of which rely on conventional microbiological techniques such as detecting fecal indicator organisms and other novel microbial source tracking methods, including library-dependent microbial source tracking and library-independent source tracking approaches. However, both the traditional and novel methods have their setbacks. For example, while the conventional techniques are associated with a poor correlation between indicator organism and pathogen presence, on the other hand, it is impractical to interpret qPCR-generated markers to establish the exact human health risks even though it can give information regarding the potential source and relative human risk. Therefore, this article provides up-to-date information on campylobacteriosis, various approaches for source attribution, and risk assessment of bacterial pathogens, including next-generation sequencing approaches such as shotgun metagenomics, which effectively answer the questions of potential pathogens are there and in what quantities.
Collapse
|
6
|
Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathog 2021; 17:e1009675. [PMID: 34748618 PMCID: PMC8601626 DOI: 10.1371/journal.ppat.1009675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/18/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection. The selective pressure of the major histocompatibility complex (MHC) on microbial communities, and the potential role of this interaction in driving parasite resistance has been largely neglected. Using a natural population of the primate Microcebus griseorufus, we provide correlative evidence of two outstanding findings: that MHCI and MHCII diversity shapes the composition of the gut microbiota; and that select taxa associated with MHC diversity predicted adenovirus and helminth infection status. Our study highlights the importance of incorporating the microbiome when investigating parasite-mediated MHC selection.
Collapse
|
7
|
Genomic Characterization of Fluoroquinolone-Resistant Thermophilic Campylobacter Strains Isolated from Layer Chicken Feces in Gangneung, South Korea by Whole-Genome Sequencing. Genes (Basel) 2021; 12:genes12081131. [PMID: 34440305 PMCID: PMC8391547 DOI: 10.3390/genes12081131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Thermophilic Campylobacter species of poultry origin have been associated with up to 80% of human campylobacteriosis cases. Layer chickens have received less attention as possible reservoirs of Campylobacter species. Initially, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of two archived Campylobacter isolates (Campylobacter jejuni strain 200605 and Campylobacter coli strain 200606) from layer chickens to five antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, tetracycline, and gentamicin) were determined using broth microdilution while the presence of selected antimicrobial resistance genes was performed by polymerase chain reaction (PCR) using specific primers. Whole-genome sequencing (WGS) was performed by the Illumina HiSeq X platform. The analysis involved antimicrobial resistance genes, virulome, multilocus sequence typing (MLST), and phylogeny. Both isolates were phenotypically resistant to ciprofloxacin (MIC: 32 vs. 32 µg/mL), nalidixic acid (MIC: 128 vs. 64 µg/mL), and tetracycline (MIC: 64 vs. 64 µg/mL), but sensitive to erythromycin (MIC: 1 vs. 2 µg/mL) and gentamicin (MIC: 0.25 vs. 1 µg/mL) for C. jejuni strain 200605 and C. coli strain 200606, respectively. WGS confirmed C257T mutation in the gyrA gene and the presence of cmeABC complex conferring resistance to FQs in both strains. Both strains also exhibited tet(O) genes associated with tetracycline resistance. Various virulence genes associated with motility, chemotaxis, and capsule formation were found in both isolates. However, the analysis of virulence genes showed that C. jejuni strain 200605 is more virulent than C. coli strain 200606. The MLST showed that C. jejuni strain 200605 belongs to sequence type ST-5229 while C. coli strain 200606 belongs to ST-5935, and both STs are less common. The phylogenetic analysis clustered C. jejuni strain 200605 along with other strains reported in Korea (CP028933 from chicken and CP014344 from human) while C. coli strain 200606 formed a separate cluster with C. coli (CP007181) from turkey. The WGS confirmed FQ-resistance in both strains and showed potential virulence of both strains. Further studies are recommended to understand the reasons behind the regional distribution (Korea, China, and Vietnam) of such rare STs.
Collapse
|
8
|
Aydin F, Abay M, Şahin O, Abay S, Karakaya E, Müştak İB, Müştak HK, Gümüşsoy KS, Kayman T. Species distribution, genetic diversity and antimicrobial susceptibility of Campylobacter isolates recovered from the preputial cavity of healthy rams in Turkey. J Appl Microbiol 2020; 129:1173-1184. [PMID: 32416023 DOI: 10.1111/jam.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022]
Abstract
AIMS Campylobacter sp. are important causes of reproductive disease in ruminants worldwide. Although healthy bulls are well-known carriers for infection of cows, the role of rams as a potential source for infecting ewes is unclear. This study aimed to determine prevalence, species distribution, genetic diversity and antimicrobial susceptibility profiles of Campylobacter sp. isolated from the preputial cavity of healthy rams. METHODS AND RESULTS The material of this prospective study comprised 191 swab samples taken from the preputial cavity of healthy rams. Enrichment and membrane filtration were employed for the isolation of Campylobacter. Presumptive isolates were confirmed as Campylobacter by phenotypic and molecular tests. 16S rRNA gene sequence analysis was used for the definitive identification of the isolates at species level, and genotyping was performed using pulsed-field gel electrophoresis (PFGE). The susceptibility of the Campylobacter sp. isolates to various antibiotics was determined by the disk diffusion test. In all, 27 of the 191 (14·13%) swab samples were found to be positive for Campylobacter sp. (28 isolates were recovered in total). Per phenotypic and genotypic analyses, one isolate was identified as Campylobacter mucosalis and the remaining 27 isolates were identified as Campylobacter sputorum bv. faecalis. The PFGE analysis of the C. sputorum biovar faecalis isolates produced 17 clusters and 24 different pulsotypes, indicating high genetic heterogeneity. All 28 isolates were found to be susceptible to all of the antibiotics tested. CONCLUSIONS Healthy rams may be an important reservoir of different Campylobacter species in the preputium. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated for the first time that healthy rams can carry different Campylobacter sp. including genetically diverse C. sputorum bv. faecalis and C. mucosalis in the preputial cavity. Further investigation on the potential implication of this finding on sheep reproductive health (e.g. infectious infertility, and abortion) and overall epidemiology of Campylobacter may be warranted.
Collapse
Affiliation(s)
- F Aydin
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - M Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - O Şahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - S Abay
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - E Karakaya
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - İ B Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - H K Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - K S Gümüşsoy
- Department of Microbiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - T Kayman
- Medical Microbiology Clinic, Şişli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
9
|
Bryant E, Shen Z, Mannion A, Patterson M, Buczek J, Fox JG. Campylobacter taeniopygiae sp. nov., Campylobacter aviculae sp. nov., and Campylobacter estrildidarum sp. nov., Novel Species Isolated from Laboratory-Maintained Zebra Finches. Avian Dis 2020; 64:457-466. [DOI: 10.1637/aviandiseases-d-20-00019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Erin Bryant
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Mary Patterson
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Jennifer Buczek
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| |
Collapse
|
10
|
Saha C, Mohanraju P, Stubbs A, Dugar G, Hoogstrate Y, Kremers GJ, van Cappellen WA, Horst-Kreft D, Laffeber C, Lebbink JH, Bruens S, Gaskin D, Beerens D, Klunder M, Joosten R, Demmers JAA, van Gent D, Mouton JW, van der Spek PJ, van der Oost J, van Baarlen P, Louwen R. Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA. SCIENCE ADVANCES 2020; 6:eaaz4849. [PMID: 32596446 PMCID: PMC7299616 DOI: 10.1126/sciadv.aaz4849] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/06/2020] [Indexed: 05/11/2023]
Abstract
CRISPR-Cas9 systems are enriched in human pathogenic bacteria and have been linked to cytotoxicity by an unknown mechanism. Here, we show that upon infection of human cells, Campylobacter jejuni secretes its Cas9 (CjeCas9) nuclease into their cytoplasm. Next, a native nuclear localization signal enables CjeCas9 nuclear entry, where it catalyzes metal-dependent nonspecific DNA cleavage leading to cell death. Compared to CjeCas9, native Cas9 of Streptococcus pyogenes (SpyCas9) is more suitable for guide-dependent editing. However, in human cells, native SpyCas9 may still cause some DNA damage, most likely because of its ssDNA cleavage activity. This side effect can be completely prevented by saturation of SpyCas9 with an appropriate guide RNA, which is only partially effective for CjeCas9. We conclude that CjeCas9 plays an active role in attacking human cells rather than in viral defense. Moreover, these unique catalytic features may therefore make CjeCas9 less suitable for genome editing applications.
Collapse
Affiliation(s)
- Chinmoy Saha
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Andrew Stubbs
- Clinical Bioinformatics, Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gaurav Dugar
- Institute of Molecular Infection Biology (IMIB)/Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
| | - Youri Hoogstrate
- Clinical Bioinformatics, Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gert-Jan Kremers
- Optical Imaging Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Deborah Horst-Kreft
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Charlie Laffeber
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joyce H.G. Lebbink
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Serena Bruens
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Duncan Gaskin
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, UK
| | - Dior Beerens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maarten Klunder
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Rob Joosten
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Jeroen A. A. Demmers
- Proteomics Center, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dik van Gent
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Johan W. Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Peter J. van der Spek
- Clinical Bioinformatics, Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, University of Wageningen, Wageningen, Netherlands
| | - Rogier Louwen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
11
|
Campylobacter portucalensis sp. nov., a new species of Campylobacter isolated from the preputial mucosa of bulls. PLoS One 2020; 15:e0227500. [PMID: 31923228 PMCID: PMC6953823 DOI: 10.1371/journal.pone.0227500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 01/31/2023] Open
Abstract
A new species of the Campylobacter genus is described, isolated from the preputial mucosa of bulls (Bos taurus). The five isolates obtained exhibit characteristics of Campylobacter, being Gram-negative non-motile straight rods, oxidase positive, catalase negative and microaerophilic. Phenotypic characteristics and nucleotide sequence analysis of 16S rRNA and hsp60 genes demonstrated that these isolates belong to a novel species within the genus Campylobacter. Based on hsp60 gene phylogenetic analysis, the most related species are C. ureolyticus, C. blaseri and C. corcagiensis. The whole genome sequence analysis of isolate FMV-PI01 revealed that the average nucleotide identity with other Campylobacter species was less than 75%, which is far below the cut-off for isolates of the same species. However, whole genome sequence analysis identified coding sequences highly homologous with other Campylobacter spp. These included several virulence factor coding genes related with host cell adhesion and invasion, transporters involved in resistance to antimicrobials, and a type IV secretion system (T4SS), containing virB2-virB11/virD4 genes, highly homologous to the C. fetus subsp. venerealis. The genomic G+C content of isolate FMV-PI01 was 28.3%, which is one of the lowest values reported for species of the genus Campylobacter. For this species the name Campylobacter portucalensis sp. nov. is proposed, with FMV-PI01 (= LMG 31504, = CCUG 73856) as the type strain.
Collapse
|
12
|
Abstract
Campylobacter is among the four main causes of gastroenteritis worldwide and has increased in both developed and developing countries over the last 10 years. The vast majority of reported Campylobacter infections are caused by Campylobacter jejuni and, to a lesser extent, C. coli; however, the increasing recognition of other emerging Campylobacter pathogens is urgently demanding a better understanding of how these underestimated species cause disease, transmit, and evolve. In parallel to the enhanced clinical awareness of campylobacteriosis due to improved diagnostic protocols, the application of high-throughput sequencing has increased the number of whole-genome sequences available to dozens of strains of many emerging campylobacters. This has allowed for comprehensive comparative pathogenomic analyses for several species, such as C. fetus and C. concisus These studies have started to reveal the evolutionary forces shaping their genomes and have brought to light many genomic features related to pathogenicity in these neglected species, promoting the development of new tools and approaches relevant for clinical microbiology. Despite the need for additional characterization of genomic diversity in emerging campylobacters, the increasing body of literature describing pathogenomic studies on these species deserves to be discussed from an integrative perspective. This review compiles the current knowledge and highlights future work toward deepening our understanding about genome dynamics and the mechanisms governing the evolution of pathogenicity in emerging Campylobacter species, which is urgently needed to develop strategies to prevent or control the spread of these pathogens.
Collapse
Affiliation(s)
- Daniela Costa
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
13
|
Amer S, Kim S, Yun Y, Na KJ. Novel variants of the newly emerged Anaplasma capra from Korean water deer (Hydropotes inermis argyropus) in South Korea. Parasit Vectors 2019; 12:365. [PMID: 31345253 PMCID: PMC6659236 DOI: 10.1186/s13071-019-3622-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/19/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Anaplasma spp. are tick-borne Gram-negative obligate intracellular bacteria that infect humans and a wide range of animals. Anaplasma capra has emerged as a human pathogen; however, little is known about the occurrence and genetic identity of this agent in wildlife. The present study aimed to determine the infection rate and genetic profile of this pathogen in wild animals in the Republic of Korea. METHODS A total of 253 blood samples [198 from Korean water deer (Hydropotes inermis argyropus), 53 from raccoon dogs (Nyctereutes procyonoides) and one sample each from a leopard cat (Prionailurus bengalensis) and a roe deer (Capreolus pygargus)] were collected at Chungbuk Wildlife Center during the period 2015-2018. Genomic DNA was extracted from the samples and screened for presence of Anaplasma species by PCR/sequence analysis of 429 bp of the 16S rRNA gene marker. Anaplasma capra-positive isolates were genetically profiled by amplification of a longer fragment of 16S rRNA (rrs) as well as partial sequences of citrate synthase (gltA), heat-shock protein (groEL), major surface protein 2 (msp2) and major surface protein 4 (msp4). Generated sequences of each gene marker were aligned with homologous sequences in the database and phylogenetically analyzed. RESULTS Anaplasma capra was detected in blood samples derived from Korean water deer, whereas samples from other animal species were negative. The overall infection rate in tested samples was 13.8% (35/253) and in the water deer the rate was 17.8% (35/198), distributed along the study period from 2015 to 2018. Genetic profiling and a phylogenetic analysis based on analyzed gene markers revealed the occurrence of two distinct strains, clustered in a single clade with counterpart sequences of A. capra in the database. CONCLUSIONS Anaplasma capra infection were detected in Korean water deer in the Republic of Korea, providing insight into the role of wildlife as a potential reservoir for animal and human anaplasmosis. However, further work is needed in order to evaluate the role of Korean water deer as a host/reservoir host of A. capra.
Collapse
Affiliation(s)
- Said Amer
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.,Faculty of Science, Kafr El Sheikh University, Kafr El Sheikh, 33516, Egypt
| | - Sungryong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - YoungMin Yun
- College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ki-Jeong Na
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea. .,Chungbuk Wildlife Center, Chungbuk National University, Cheongju, Chungbuk, 28116, Republic of Korea.
| |
Collapse
|
14
|
Melo RT, Grazziotin AL, Júnior ECV, Prado RR, Mendonça EP, Monteiro GP, Peres PABM, Rossi DA. Evolution of Campylobacter jejuni of poultry origin in Brazil. Food Microbiol 2019; 82:489-496. [PMID: 31027810 DOI: 10.1016/j.fm.2019.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 01/29/2019] [Accepted: 03/07/2019] [Indexed: 11/26/2022]
Abstract
Campylobacter jejuni is the most common pathogen associated with foodborne diseases. Persistent presence of this pathogen contaminating the environment in slaughterhouses and chicken products have been reported worldwide. Although many efforts have been employed for reducing C. jejuni contamination, few studies have been conducted to understand the dynamics of C. jejuni in slaughterhouses over time. In this study, we evaluated the virulence, antibiotic resistance and genetic diversity profiles of 99 C. jejuni isolated from chilled chicken carcasses collected in Brazilian slaughterhouses during two distinct periods (2011-2012 and 2015-2016). The virulence profile was evaluated for the presence of flaA, ciaB, cadF, pldA and cdtABC genes. Antibiotic resistance was evaluated for amoxicillin-clavulanic acid, gentamicin, erythromycin and tetracycline. Genetic diversity was assessed using RAPD-PCR. The prevalence of C. jejuni was significantly reduced in 2015-2016 as well the number of antibiotic (and multidrug) resistant isolates, except for tetracycline. However, isolates from 2015 to 2016 showed higher prevalence of multiple virulence genes and genetic diversity profile compared to isolates from 2011 to 2012. During the studied period, stricter regulations to control pathogens in poultry farms and slaughterhouses were implemented in Brazil, which may have contributed to the profile variation observed due to changes of selective pressures on bacterial populations.
Collapse
Affiliation(s)
- Roberta T Melo
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil.
| | - Ana Laura Grazziotin
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Edson C Valadares Júnior
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Renata R Prado
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Eliane P Mendonça
- Laboratório de Biologia Molecular, Universidade de Uberaba, Av. Nenê Sabino 1801, Bairro Aeroporto, Uberaba, MG, 38055-500, Brazil
| | - Guilherme P Monteiro
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Phelipe A B M Peres
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| | - Daise A Rossi
- Laboratório de Epidemiologia Molecular, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Rua Ceara s/n, Bloco 2D, Sala 44, Bairro Umuarama, Uberlandia, MG, 38402-018, Brazil
| |
Collapse
|
15
|
Pacholewicz E, Buhler C, Wulsten IF, Kraushaar B, Luu HQ, Iwobi AN, Huber I, Stingl K. Internal sample process control improves cultivation-independent quantification of thermotolerant Campylobacter. Food Microbiol 2018; 78:53-61. [PMID: 30497608 DOI: 10.1016/j.fm.2018.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022]
Abstract
Quantification of Campylobacter is challenging and one major reason is the fact that bacteria lose cultivability due to cold or oxygen stress during storage at retail. Alternative live/dead discriminatory qPCR currently lacks standardization and might overestimate live cells in the presence of dead cells. In this study an internal sample process control (ISPC) was developed. The ISPC consists of a specified number of peroxide-killed C. sputorum cells to be added to each sample in order to monitor (i) the level of reduction of the signal from dead cells and (ii) DNA losses during sample processing. A species-specific fragment of the 16S rRNA gene of C. sputorum was selected as real-time PCR target, based on its similar size and gene copy number compared to the C. jejuni/coli/lari target and confirmed in an exclusivity study. Extension of the amplification oligonucleotides for the target of thermotolerant Campylobacter improved real-time PCR efficiency, rendering the method suitable for quantification according to international standards. Concordant PCR signal variation of both C. jejuni and C. sputorum targets in co-inoculated chicken rinses verified the suitability of the ISPC. This provides a crucial step towards implementation of cultivation-independent quantification for improved food safety of fastidious bacteria.
Collapse
Affiliation(s)
- Ewa Pacholewicz
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Christiane Buhler
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Imke F Wulsten
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Britta Kraushaar
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Huong Quynh Luu
- National Institute of Veterinary Research (NIVR), Hanoi, Viet Nam
| | - Azuka N Iwobi
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Kerstin Stingl
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany.
| |
Collapse
|
16
|
Reddy S, Zishiri OT. Genetic characterisation of virulence genes associated with adherence, invasion and cytotoxicity in Campylobacter spp. isolated from commercial chickens and human clinical cases. Onderstepoort J Vet Res 2018; 85:e1-e9. [PMID: 29781670 PMCID: PMC6238761 DOI: 10.4102/ojvr.v85i1.1507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/06/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022] Open
Abstract
Virulence-associated genes have been recognised and detected in Campylobacter species. The majority of them have been proven to be associated with pathogenicity. This study aimed to detect the presence of virulence genes associated with pathogenicity and responsible for invasion, expression of adherence, colonisation and production of the cytolethal distending toxin (cdt) in Campylobacter jejuni and Campylobacter coli. Commercial chicken faecal samples were randomly sampled from chicken farms within the Durban metropolitan area in South Africa. Furthermore, human clinical Campylobacter spp. isolates were randomly sampled from a private pathology laboratory in South Africa. Out of a total of 100 chicken faecal samples, 78% (n = 78) were positive for Campylobacter growth on modified charcoal cefoperazone deoxycholate and from the random laboratory collection of 100 human clinical isolates, 83% (n = 83) demonstrated positive Campylobacter spp. growth following culturing methods. These samples were screened for the presence of the following virulence genes: cadF, hipO, asp, ciaB, dnaJ, pldA, cdtA, cdtB and cdtC. As expected, the cadF gene was present in 100% of poultry (n = 78) and human clinical isolates (n = 83). Campylobacter jejuni was the main species detected in both poultry and human clinical isolates, whilst C. coli were detected at a significantly lower percentage (p < 0.05). Eight per cent of the C. jejuni from human clinical isolates had all virulence genes that were investigated. Only one C. coli isolate demonstrated the presence of all the virulence genes investigated; however, the pldA virulence gene was detected in 100% of the C. coli isolates in poultry and a high percentage (71%) in human clinical C. coli isolates as well. The detection of cdt genes was found at higher frequency in poultry than human clinical isolates. The high prevalence rates of virulence genes detected in poultry and human clinical isolates demonstrate their significance in the pathogenicity of Campylobacter species.
Collapse
|
17
|
Updating the genomic taxonomy and epidemiology of Campylobacter hyointestinalis. Sci Rep 2018; 8:2393. [PMID: 29403020 PMCID: PMC5799301 DOI: 10.1038/s41598-018-20889-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/25/2018] [Indexed: 12/24/2022] Open
Abstract
Campylobacter hyointestinalis is a member of an emerging group of zoonotic Campylobacter spp. that are increasingly identified in both gastric and non-gastric disease in humans. Here, we discovered C. hyointestinalis in three separate classes of New Zealand ruminant livestock; cattle, sheep and deer. To investigate the relevance of these findings we performed a systematic literature review on global C. hyointestinalis epidemiology and used comparative genomics to better understand and classify members of the species. We found that C. hyointestinalis subspecies hyointestinalis has an open pangenome, with accessory gene contents involved in many essential processes such as metabolism, virulence and defence. We observed that horizontal gene transfer is likely to have played an overwhelming role in species diversification, favouring a public-goods-like mechanism of gene ‘acquisition and resampling’ over a tree-of-life-like vertical inheritance model of evolution. As a result, simplistic gene-based inferences of taxonomy by similarity are likely to be misleading. Such genomic plasticity will also mean that local evolutionary histories likely influence key species characteristics, such as host-association and virulence. This may help explain geographical differences in reported C. hyointestinalis epidemiology and limits what characteristics may be generalised, requiring further genomic studies of C. hyointestinalis in areas where it causes disease.
Collapse
|
18
|
Iraola G, Forster SC, Kumar N, Lehours P, Bekal S, García-Peña FJ, Paolicchi F, Morsella C, Hotzel H, Hsueh PR, Vidal A, Lévesque S, Yamazaki W, Balzan C, Vargas A, Piccirillo A, Chaban B, Hill JE, Betancor L, Collado L, Truyers I, Midwinter AC, Dagi HT, Mégraud F, Calleros L, Pérez R, Naya H, Lawley TD. Distinct Campylobacter fetus lineages adapted as livestock pathogens and human pathobionts in the intestinal microbiota. Nat Commun 2017; 8:1367. [PMID: 29118316 PMCID: PMC5678084 DOI: 10.1038/s41467-017-01449-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/15/2017] [Indexed: 12/31/2022] Open
Abstract
Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathogen.
Collapse
Affiliation(s)
- Gregorio Iraola
- Unidad de Bioinformática, Institut Pasteur Montevideo, 11400, Montevideo, Uruguay. .,Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay. .,Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, CB10 1SA, Hinxton, UK.
| | - Samuel C Forster
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, CB10 1SA, Hinxton, UK.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, CB10 1SA, Hinxton, UK
| | - Philippe Lehours
- Bordeaux Research in Translational Oncology, INSERM UMR1053, University of Bordeaux, 33076, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters, University of Bordeaux, 33076, Bordeaux, France
| | - Sadjia Bekal
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3Y3.,Départment de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, QC, Canada, H3T 1J4
| | - Francisco J García-Peña
- Departamento de Bacteriología, Laboratorio Central de Veterinaria de Algete (MAGRAMA), 28110, Algete, Spain
| | - Fernando Paolicchi
- Laboratorio de Bacteriología, EEA-INTA Balcarce, Balcarce, 7620, Argentina
| | - Claudia Morsella
- Laboratorio de Bacteriología, EEA-INTA Balcarce, Balcarce, 7620, Argentina
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, 07743, Jena, Germany
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, Taipei, 10617, Taiwan
| | - Ana Vidal
- Animal and Plant Health Association (APHA), Addlestone, KT15 3NB, UK
| | - Simon Lévesque
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3Y3
| | - Wataru Yamazaki
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Claudia Balzan
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Agueda Vargas
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, 97105-900, Brazil
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, 35122, Italy
| | - Bonnie Chaban
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatchewan, SK, Canada, S7N 5A2
| | - Laura Betancor
- Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, 11600, Uruguay
| | - Luis Collado
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Isabelle Truyers
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anne C Midwinter
- EpiLab, Infectious Disease Research Centre, Massey University, Palmerston North, 4442, New Zealand
| | - Hatice T Dagi
- Department of Microbiology, Faculty of Medicine, Selçuk University, Selçuklu, 42250, Turkey
| | - Francis Mégraud
- Bordeaux Research in Translational Oncology, INSERM UMR1053, University of Bordeaux, 33076, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters, University of Bordeaux, 33076, Bordeaux, France
| | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo, 11400, Montevideo, Uruguay.,Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, CB10 1SA, Hinxton, UK.
| |
Collapse
|
19
|
Barboza K, Cubillo Z, Castro E, Redondo-Solano M, Fernández-Jaramillo H, Echandi MLA. First isolation report of Arcobacter cryaerophilus from a human diarrhea sample in Costa Rica. Rev Inst Med Trop Sao Paulo 2017; 59:e72. [PMID: 29116292 PMCID: PMC5679684 DOI: 10.1590/s1678-9946201759072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022] Open
Abstract
Arcobacter cryaerophilus is an emerging enteropathogen and potential
zoonotic agent transmitted by food and water. In Costa Rica, this bacterium has not
been associated with cases of human gastroenteritis, even though it has been isolated
from farm animals, especially poultry. This paper reports the first isolation of
A. cryaerophilus from a human case of bloody watery diarrhea and
the virulence genes associated with this isolate.
Collapse
Affiliation(s)
| | | | - Eduardo Castro
- Universidad de Ciencias Médicas (UCIMED), San José, Costa Rica
| | - Mauricio Redondo-Solano
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales y Laboratorio de Microbiología de Alimentos, San José, Costa Rica
| | | | - María Laura Arias Echandi
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales y Laboratorio de Microbiología de Alimentos, San José, Costa Rica
| |
Collapse
|
20
|
Fresia P, Jara R, Sierra R, Ferrés I, Greif G, Iraola G, Collado L. Genomic and clinical evidence uncovers the enterohepatic species Helicobacter valdiviensis as a potential human intestinal pathogen. Helicobacter 2017; 22. [PMID: 28799681 DOI: 10.1111/hel.12425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Helicobacter valdiviensis is a recently described enterohepatic species isolated from wild bird's fecal samples. Currently, its pathogenic potential and clinical significance are unknown mainly due to the lack of whole-genome sequences to compare with other helicobacters and the absence of specific screenings to determine its prevalence in humans. MATERIALS AND METHODS The species type strain (WBE14T ) was whole-genome-sequenced, and comparative analyses were carried out including the genomes from other Helicobacter species to determine the exact phylogenetic position of H. valdiviensis and to study the presence and evolution of virulence determinants. In parallel, stools from diarrheic patients and healthy individuals were screened by PCR to assess the clinical incidence of H. valdiviensis. RESULTS Helicobacter valdiviensis belongs to a monophyletic clade conformed by H. canadensis, H. pullorum, H. winghamensis, H. rodentium, and H. apodemus. Its predicted genome size is 2 176 246 bp., with 30% of G+C content and 2064 annotated protein-coding genes. The patterns of virulence factors in H. valdiviensis were similar to other enterohepatic species, but evidence of horizontal gene transfer from Campylobacter species was detected for key genes like those coding for the CDT subunits. Positive PCR results confirmed the presence of H. valdiviensis in 2 of 254 (0.78%) stools of patients with acute diarrhea while not a single sample was positive in healthy individuals. CONCLUSIONS Horizontal gene transfer has contributed to shape the gene repertory of H. valdiviensis, which codes for virulence factors conserved in other pathogens that are well-known human pathogens. Additionally, the detection of H. valdiviensisDNA in diarrheic patients supports its role as a potential emergent intestinal pathogen. Further, sampling efforts are needed to uncover the clinical relevance of this species, which should be accomplished by the isolation of H. valdiviensis from ill humans and the obtention of whole genomes from clinical isolates.
Collapse
Affiliation(s)
- Pablo Fresia
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Ronald Jara
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Sierra
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Ferrés
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Gonzalo Greif
- Unidad de Biología Molecular, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Gregorio Iraola
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Luis Collado
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
21
|
Cáceres A, Muñoz I, Iraola G, Díaz-Viraqué F, Collado L. Campylobacter ornithocola sp. nov., a novel member of the Campylobacter lari group isolated from wild bird faecal samples. Int J Syst Evol Microbiol 2017; 67:1643-1649. [DOI: 10.1099/ijsem.0.001822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Alberto Cáceres
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Ivo Muñoz
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Gregorio Iraola
- Bioinformatics Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | | | - Luis Collado
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
22
|
Diallo K, Gamougam K, Daugla DM, Harrison OB, Bray JE, Caugant DA, Lucidarme J, Trotter CL, Hassan-King M, Stuart JM, Manigart O, Greenwood BM, Maiden MCJ. Hierarchical genomic analysis of carried and invasive serogroup A Neisseria meningitidis during the 2011 epidemic in Chad. BMC Genomics 2017; 18:398. [PMID: 28532434 PMCID: PMC5441073 DOI: 10.1186/s12864-017-3789-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background Serogroup A Neisseria meningitidis (NmA) was the cause of the 2011 meningitis epidemics in Chad. This bacterium, often carried asymptomatically, is considered to be an “accidental pathogen”; however, the transition from carriage to disease phenotype remains poorly understood. This study examined the role genetic diversity might play in this transition by comparing genomes from geographically and temporally matched invasive and carried NmA isolates. Results All 23 NmA isolates belonged to the ST-5 clonal complex (cc5). Ribosomal MLST comparison with other publically available NmA:cc5 showed that isolates were closely related, although those from Chad formed two distinct branches and did not cluster with other NmA, based on their MLST profile, geographical and temporal location. Whole genome MLST (wgMLST) comparison identified 242 variable genes among all Chadian isolates and clustered them into three distinct phylogenetic groups (Clusters 1, 2, and 3): no systematic clustering by disease or carriage source was observed. There was a significant difference (p = 0.0070) between the mean age of the individuals from which isolates from Cluster 1 and Cluster 2 were obtained, irrespective of whether the person was a case or a carrier. Conclusions Whole genome sequencing provided high-resolution characterization of the genetic diversity of these closely related NmA isolates. The invasive meningococcal isolates obtained during the epidemic were not homogeneous; rather, a variety of closely related but distinct clones were circulating in the human population with some clones preferentially colonizing specific age groups, reflecting a potential age-related niche adaptation. Systematic genetic differences were not identified between carriage and disease isolates consistent with invasive meningococcal disease being a multi-factorial event resulting from changes in host-pathogen interactions along with the bacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3789-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre pour les Vaccins en Développement, Bamako, Mali. .,Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK.
| | | | | | - Odile B Harrison
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK
| | - James E Bray
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK
| | | | - Jay Lucidarme
- Vaccine Evaluation Unit, Public Health England, Manchester, UK
| | - Caroline L Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - James M Stuart
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | | - Martin C J Maiden
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, OX1 3SY, Oxford, UK
| |
Collapse
|
23
|
Piccirillo A, Niero G, Calleros L, Pérez R, Naya H, Iraola G. Campylobacter geochelonis sp. nov. isolated from the western Hermann's tortoise (Testudo hermanni hermanni). Int J Syst Evol Microbiol 2016; 66:3468-3476. [DOI: 10.1099/ijsem.0.001219] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Giulia Niero
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo, Uruguay
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Gregorio Iraola
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad de Bioinformática, Institut Pasteur Montevideo, Uruguay
| |
Collapse
|
24
|
Chaves-Moreno D, Plumeier I, Kahl S, Krismer B, Peschel A, Oxley APA, Jauregui R, Pieper DH. The microbial community structure of the cotton rat nose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:929-935. [PMID: 26306992 DOI: 10.1111/1758-2229.12334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 06/04/2023]
Abstract
The cotton rat nose is commonly used as a model for Staphylococcus aureus colonization, as it is both physiologically and anatomically comparable to the human nares and can be easily colonized by this organism. However, while the colonization of the human anterior nares has been extensively studied, the microbial community structure of cotton rat noses has not been reported so far. We describe here the microbial community structure of the cotton rat (Sigmodon hispidus) nose through next-generation sequencing of 16S rRNA gene amplicons covering the V1-V2 region and the analysis of nearly full length 16S rRNA genes of the major phylotypes. Roughly half of the microbial community was composed of two undescribed species of the genus Campylobacter, with phylotypes belonging to the genera Catonella, Acholeplasma, Streptobacillus and Capnocytophaga constituting the predominant community members. Thus, the nasal community of the cotton rat is uniquely composed of several novel bacterial species and may not reflect the complex interactions that occur in human anterior nares. Mammalian airway microbiota may, however, be a rich source of hitherto unknown microbes.
Collapse
Affiliation(s)
- Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology, Eberhard-Karls-University, Geschwister-Scholl-Platz, 72074, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology, Eberhard-Karls-University, Geschwister-Scholl-Platz, 72074, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andrew P A Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| |
Collapse
|
25
|
Ramirez-Hernandez A, Rupnow J, Hutkins RW. Adherence Reduction of Campylobacter jejuni and Campylobacter coli Strains to HEp-2 Cells by Mannan Oligosaccharides and a High-Molecular-Weight Component of Cranberry Extract. J Food Prot 2015; 78:1496-505. [PMID: 26219363 DOI: 10.4315/0362-028x.jfp-15-087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Campylobacter infections are a leading cause of human bacterial gastroenteritis in the United States and are a major cause of diarrheal disease throughout the world. Colonization and subsequent infection and invasion of Campylobacter require that the bacteria adhere to the surface of host cells. Agents that inhibit adherence could be used prophylactically to reduce Campylobacter carriage and infection. Mannan oligosaccharides (MOS) have been used as a feed supplement in livestock animals to improve performance and to replace growth-promoting antibiotics. However, MOS and other nondigestible oligosaccharides may also prevent pathogen colonization by inhibiting adherence in the gastrointestinal tract. In addition, plant extracts, including those derived from cranberries, have been shown to have antiadherence activity against pathogens. The goal of this study was to assess the ability of MOS and cranberry fractions to serve as antiadherence agents against strains of Campylobacter jejuni and Campylobacter coli. Adherence experiments were performed using HEp-2 cells. Significant reductions in adherence of C. jejuni 29438, C. jejuni 700819, C. jejuni 3329, and C. coli 43485 were observed in the presence of MOS (up to 40 mg/ml) and with a high-molecular-weight fraction of cranberry extract (up to 3 mg/ml). However, none of the tested materials reduced adherence of C. coli BAA-1061. No additive effect in adherence inhibition was observed for an MOS-cranberry blend. These results suggest that both components, MOS and cranberry, could be used to reduce Campylobacter colonization and carriage in livestock animals and potentially limit human exposure to this pathogen.
Collapse
Affiliation(s)
- Alejandra Ramirez-Hernandez
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919, USA
| | - John Rupnow
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919, USA
| | - Robert W Hutkins
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919, USA.
| |
Collapse
|