1
|
Liu M, Yu J, Yang M, Cao L, Chen C. Adaptive evolution of chloroplast division mechanisms during plant terrestrialization. Cell Rep 2024; 43:113950. [PMID: 38489264 DOI: 10.1016/j.celrep.2024.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Despite extensive research, the origin and evolution of the chloroplast division machinery remain unclear. Here, we employ recently sequenced genomes and transcriptomes of Archaeplastida clades to identify the core components of chloroplast division and reconstruct their evolutionary histories, respectively. Our findings show that complete division ring structures emerged in Charophytes. We find that Glaucophytes experienced strong selection pressure, generating diverse variants adapted to the changing terrestrial environments. By integrating the functions of chloroplast division genes (CDGs) annotated in a workflow developed using large-scale multi-omics data, we further show that dispersed duplications acquire more species-specific functions under stronger selection pressures. Notably, PARC6, a dispersed duplicate CDG, regulates leaf color and plant growth in Solanum lycopersicum, demonstrating neofunctionalization. Our findings provide an integrated perspective on the functional evolution of chloroplast division machinery and highlight the potential of dispersed duplicate genes as the primary source of adaptive evolution of chloroplast division.
Collapse
Affiliation(s)
- Moyang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyan Cao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Van Etten J, Benites LF, Stephens TG, Yoon HS, Bhattacharya D. Algae obscura: The potential of rare species as model systems. JOURNAL OF PHYCOLOGY 2023; 59:293-300. [PMID: 36764681 DOI: 10.1111/jpy.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 05/28/2023]
Abstract
Model organism research has provided invaluable knowledge about foundational biological principles. However, most of these studies have focused on species that are in high abundance, easy to cultivate in the lab, and represent only a small fraction of extant biodiversity. Here, we present three examples of rare algae with unusual features that we refer to as "algae obscura." The Cyanidiophyceae (Rhodophyta), Glaucophyta, and Paulinella (rhizarian) lineages have all transitioned out of obscurity to become models for fundamental evolutionary research. Insights have been gained into the prevalence and importance of eukaryotic horizontal gene transfer, early Earth microbial community dynamics, primary plastid endosymbiosis, and the origin of Archaeplastida. By reviewing the research that has come from the exploration of these organisms, we demonstrate that underappreciated algae have the potential to help us formulate, refine, and substantiate core hypotheses and that such organisms should be considered when establishing future model systems.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Luiz Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Cerón-Romero MA, Fonseca MM, de Oliveira Martins L, Posada D, Katz LA. Phylogenomic Analyses of 2,786 Genes in 158 Lineages Support a Root of the Eukaryotic Tree of Life between Opisthokonts and All Other Lineages. Genome Biol Evol 2022; 14:evac119. [PMID: 35880421 PMCID: PMC9366629 DOI: 10.1093/gbe/evac119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Advances in phylogenomics and high-throughput sequencing have allowed the reconstruction of deep phylogenetic relationships in the evolution of eukaryotes. Yet, the root of the eukaryotic tree of life remains elusive. The most popular hypothesis in textbooks and reviews is a root between Unikonta (Opisthokonta + Amoebozoa) and Bikonta (all other eukaryotes), which emerged from analyses of a single-gene fusion. Subsequent, highly cited studies based on concatenation of genes supported this hypothesis with some variations or proposed a root within Excavata. However, concatenation of genes does not consider phylogenetically-informative events like gene duplications and losses. A recent study using gene tree parsimony (GTP) suggested the root lies between Opisthokonta and all other eukaryotes, but only including 59 taxa and 20 genes. Here we use GTP with a duplication-loss model in a gene-rich and taxon-rich dataset (i.e., 2,786 gene families from two sets of 155 and 158 diverse eukaryotic lineages) to assess the root, and we iterate each analysis 100 times to quantify tree space uncertainty. We also contrasted our results and discarded alternative hypotheses from the literature using GTP and the likelihood-based method SpeciesRax. Our estimates suggest a root between Fungi or Opisthokonta and all other eukaryotes; but based on further analysis of genome size, we propose that the root between Opisthokonta and all other eukaryotes is the most likely.
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Miguel M Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Leonardo de Oliveira Martins
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Rappemonads are haptophyte phytoplankton. Curr Biol 2021; 31:2395-2403.e4. [PMID: 33773100 DOI: 10.1016/j.cub.2021.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 11/20/2022]
Abstract
Rapidly accumulating genetic data from environmental sequencing approaches have revealed an extraordinary level of unsuspected diversity within marine phytoplankton,1-11 which is responsible for around 50% of global net primary production.12,13 However, the phenotypic identity of many of the organisms distinguished by environmental DNA sequences remains unclear. The rappemonads represent a plastid-bearing protistan lineage that to date has only been identified by environmental plastid 16S rRNA sequences.14-17 The phenotypic identity of this group, which does not confidently cluster in any known algal clades in 16S rRNA phylogenetic reconstructions,15 has remained unknown since the first report of environmental sequences over two decades ago. We show that rappemonads are closely related to a haptophyte microalga, Pavlomulina ranunculiformis gen. nov. et sp. nov., and belong to a new haptophyte class, the Rappephyceae. Organellar phylogenomic analyses provide strong evidence for the inclusion of this lineage within the Haptophyta as a sister group to the Prymnesiophyceae. Members of this new class have a cosmopolitan distribution in coastal and oceanic regions. The relative read abundance of Rappephyceae in a large environmental barcoding dataset was comparable to, or greater than, those of major haptophyte species, such as the bloom-forming Gephyrocapsa huxleyi and Prymnesium parvum, and this result indicates that they likely have a significant impact as primary producers. Detailed characterization of Pavlomulina allowed for reconstruction of the ancient evolutionary history of the Haptophyta, a group that is one of the most important components of extant marine phytoplankton communities.
Collapse
|
5
|
Ettahi K, Lhee D, Sung JY, Simpson AGB, Park JS, Yoon HS. Evolutionary History of Mitochondrial Genomes in Discoba, Including the Extreme Halophile Pleurostomum flabellatum (Heterolobosea). Genome Biol Evol 2021; 13:evaa241. [PMID: 33185659 PMCID: PMC7900873 DOI: 10.1093/gbe/evaa241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
Data from Discoba (Heterolobosea, Euglenozoa, Tsukubamonadida, and Jakobida) are essential to understand the evolution of mitochondrial genomes (mitogenomes), because this clade includes the most primitive-looking mitogenomes known, as well some extremely divergent genome information systems. Heterolobosea encompasses more than 150 described species, many of them from extreme habitats, but only six heterolobosean mitogenomes have been fully sequenced to date. Here we complete the mitogenome of the heterolobosean Pleurostomum flabellatum, which is extremely halophilic and reportedly also lacks classical mitochondrial cristae, hinting at reduction or loss of respiratory function. The mitogenome of P. flabellatum maps as a 57,829-bp-long circular molecule, including 40 coding sequences (19 tRNA, two rRNA, and 19 orfs). The gene content and gene arrangement are similar to Naegleria gruberi and Naegleria fowleri, the closest relatives with sequenced mitogenomes. The P. flabellatum mitogenome contains genes that encode components of the electron transport chain similar to those of Naegleria mitogenomes. Homology searches against a draft nuclear genome showed that P. flabellatum has two homologs of the highly conserved Mic60 subunit of the MICOS complex, and likely lost Mic19 and Mic10. However, electron microscopy showed no cristae structures. We infer that P. flabellatum, which originates from high salinity (313‰) water where the dissolved oxygen concentration is low, possesses a mitochondrion capable of aerobic respiration, but with reduced development of cristae structure reflecting limited use of this aerobic capacity (e.g., microaerophily).
Collapse
Affiliation(s)
- Khaoula Ettahi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Duckhyun Lhee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Ji Yeon Sung
- Department of Oceanography, Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, South Korea
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jong Soo Park
- Department of Oceanography, Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, South Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
6
|
Russell S, Jackson C, Reyes-Prieto A. High Sequence Divergence but Limited Architectural Rearrangements in Organelle Genomes of Cyanophora (Glaucophyta) Species. J Eukaryot Microbiol 2020; 68:e12831. [PMID: 33142007 DOI: 10.1111/jeu.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
Cyanophora is the glaucophyte model taxon. Following the sequencing of the nuclear genome of C. paradoxa, studies based on single organelle and nuclear molecular markers revealed previously unrecognized species diversity within this glaucophyte genus. Here, we present the complete plastid (ptDNA) and mitochondrial (mtDNA) genomes of C. kugrensii, C. sudae, and C. biloba. The respective sizes and coding capacities of both ptDNAs and mtDNAs are conserved among Cyanophora species with only minor differences due to specific gene duplications. Organelle phylogenomic analyses consistently recover the species C. kugrensii and C. paradoxa as a clade and C. sudae and C. biloba as a separate group. The phylogenetic affiliations of the four Cyanophora species are consistent with architectural similarities shared at the organelle genomic level. Genetic distance estimations from both organelle sequences are also consistent with phylogenetic and architecture evidence. Comparative analyses confirm that the Cyanophora mitochondrial genes accumulate substitutions at 3-fold higher rates than plastid counterparts, suggesting that mtDNA markers are more appropriate to investigate glaucophyte diversity and evolutionary events that occur at a population level. The study of complete organelle genomes is becoming the standard for species delimitation and is particularly relevant to study cryptic diversity in microbial groups.
Collapse
Affiliation(s)
- Sarah Russell
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher Jackson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Royal Botanic Gardens Victoria, Melbourne, Vic., Australia
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
7
|
Abstract
Ever since its discovery, the double-stranded DNA contained in the mitochondria of eukaryotes has fascinated researchers because of its bacterial endosymbiotic origin, crucial role in encoding subunits of the respiratory complexes, compact nature, and specific inheritance mechanisms. In the last few years, high-throughput sequencing techniques have accelerated the sequencing of mitochondrial genomes (mitogenomes) and uncovered the great diversity of organizations, gene contents, and modes of replication and transcription found in living eukaryotes. Some early divergent lineages of unicellular eukaryotes retain certain synteny and gene content resembling those observed in the genomes of alphaproteobacteria (the inferred closest living group of mitochondria), whereas others adapted to anaerobic environments have drastically reduced or even lost the mitogenome. In the three main multicellular lineages of eukaryotes, mitogenomes have pursued diverse evolutionary trajectories in which different types of molecules (circular versus linear and single versus multipartite), gene structures (with or without self-splicing introns), gene contents, gene orders, genetic codes, and transfer RNA editing mechanisms have been selected. Whereas animals have evolved a rather compact mitochondrial genome between 11 and 50 Kb in length with a highly conserved gene content in bilaterians, plants exhibit large mitochondrial genomes of 66 Kb to 11.3 Mb with large intergenic repetitions prone to recombination, and fungal mitogenomes have intermediate sizes of 12 to 236 Kb.
Collapse
Affiliation(s)
- Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
8
|
Knopp M, Garg SG, Handrich M, Gould SB. Major Changes in Plastid Protein Import and the Origin of the Chloroplastida. iScience 2020; 23:100896. [PMID: 32088393 PMCID: PMC7038456 DOI: 10.1016/j.isci.2020.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Core components of plastid protein import and the principle of using N-terminal targeting sequences are conserved across the Archaeplastida, but lineage-specific differences exist. Here we compare, in light of plastid protein import, the response to high-light stress from representatives of the three archaeplastidal groups. Similar to land plants, Chlamydomonas reinhardtii displays a broad response to high-light stress, not observed to the same degree in the glaucophyte Cyanophora paradoxa or the rhodophyte Porphyridium purpureum. We find that only the Chloroplastida encode both Toc75 and Oep80 in parallel and suggest that elaborate high-light stress response is supported by changes in plastid protein import. We propose the origin of a phenylalanine-independent import pathway via Toc75 allowed higher import rates to rapidly service high-light stress, but with the cost of reduced specificity. Changes in plastid protein import define the origin of the green lineage, whose greatest evolutionary success was arguably the colonization of land. Chloroplastida evolved a dual system, Toc75/Oep80, for high throughput protein import Loss of F-based targeting led to dual organelle targeting using a single ambiguous NTS Relaxation of functional constraints allowed a wider Toc/Tic modification A broad response to high-light stress appears unique to Chloroplastida
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maria Handrich
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, HH-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
9
|
Price DC, Goodenough UW, Roth R, Lee JH, Kariyawasam T, Mutwil M, Ferrari C, Facchinelli F, Ball SG, Cenci U, Chan CX, Wagner NE, Yoon HS, Weber APM, Bhattacharya D. Analysis of an improved Cyanophora paradoxa genome assembly. DNA Res 2020; 26:287-299. [PMID: 31098614 PMCID: PMC6704402 DOI: 10.1093/dnares/dsz009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/30/2019] [Indexed: 12/12/2022] Open
Abstract
Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa. We also conducted a quick-freeze deep-etch electron microscopy (QFDEEM) analysis of C. paradoxa cells to investigate glaucophyte morphology in comparison to other organisms. Using the genome data, we generated a resolved 115-taxon eukaryotic tree of life that includes a well-supported, monophyletic Archaeplastida. Analysis of muroplast peptidoglycan (PG) ultrastructure using QFDEEM shows that PG is most dense at the cleavage-furrow. Analysis of the chlamydial contribution to glaucophytes and other Archaeplastida shows that these foreign sequences likely played a key role in anaerobic glycolysis in primordial algae to alleviate ATP starvation under night-time hypoxia. The robust genome assembly of C. paradoxa significantly advances knowledge about this model species and provides a reference for exploring the panoply of traits associated with the anciently diverged glaucophyte lineage.
Collapse
Affiliation(s)
- Dana C Price
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | - Robyn Roth
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Marek Mutwil
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Camilla Ferrari
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Fabio Facchinelli
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nicole E Wagner
- Department of Biochemistry and Microbiology, Rutgers, Rutgers University, New Brunswick, NJ, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Han X, Chang X, Zhang Z, Chen H, He H, Zhong B, Deng XW. Origin and Evolution of Core Components Responsible for Monitoring Light Environment Changes during Plant Terrestrialization. MOLECULAR PLANT 2019; 12:847-862. [PMID: 31009752 DOI: 10.1016/j.molp.2019.04.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 05/22/2023]
Abstract
Light serves as the source of energy as well as an information signal for photosynthetic plants. During evolution, plants have acquired the ability to monitor environmental light radiation and adjust their developmental patterns to optimally utilize light energy for photosynthesis. The mechanisms of light perception and signal transduction have been comprehensively studied in past decades, mostly in a few model plants, including Arabidopsis thaliana. However, systematic analyses of the origin and evolution of core components involved in light perception and signaling are still lacking. In this study, we took advantage of the recently sequenced genomes and transcriptomes covering all the main Archaeplastida clades in the public domain to identify orthologous genes of core components involved in light perception and signaling and to reconstruct their evolutionary history. Our analyses suggested that acclimation to different distribution of light quality in new environments led to the origination of specific light signaling pathways in plants. The UVR8 (UV Resistance Locus 8) signaling pathway originated during the movement of plants from the deeper sea to shallow water and enabled plants to deal with ultraviolet B light (UV-B). After acquisition of UV-B adaptation, origination of the phytochrome signaling pathway helped plants to colonize water surface where red light became the prominent light energy source. The seedling emergence pathway, which is mediated by a combination of light and phytohormone signals that orchestrate plant growth pattern transitions, originated before the emergence of seed plants. Although cryptochromes and some key components of E3 ubiquitin ligase systems already existed before the divergence of the plant and animal kingdoms, the coevolution and optimization of light perception and downstream signal transduction components, including key transcription factors and E3 ubiquitin ligase systems, are evident during plant terrestrialization.
Collapse
Affiliation(s)
- Xue Han
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Xin Chang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Haodong Chen
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China.
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| | - Xing Wang Deng
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Mekvipad N, Satjarak A. Evolution of organellar genes of chlorophyte algae: Relevance to phylogenetic inference. PLoS One 2019; 14:e0216608. [PMID: 31059557 PMCID: PMC6502327 DOI: 10.1371/journal.pone.0216608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
Protein-coding genes in organellar genomes have been widely used to resolve relationships of chlorophyte algae. The mode of evolution of these protein-coding genes affects relationship estimations, yet selection effects on genes commonly used as markers in phylogenetic analyses are insufficiently well understood. To gain more understanding about the effects of green algal organelle protein-coding genes on phylogenies, more information is needed about the mode of gene evolution. We used phylogenetic frameworks to examine evolutionary relationships of 58 protein-coding genes present in the organellar genomes of chlorophyte and streptophyte algae at multiple levels: organelle, biological function, and individual gene, and calculated pairwise dN/dS ratios of algal organellar protein-coding genes to investigate mode of evolution. Results indicate that mitochondrial genes have evolved at a higher rate than have chloroplast genes. Low dN/dS ratios indicating relatively high level of conservation indicate that nad2, nad5, atpA, atpE, psbC, and psbD might be particularly good candidates for use as markers in chlorophyte phylogenies. Chlorophycean atp6, nad2, atpF, clpP, rps2, rps3, rps4, and rps7 protein-coding sequences exhibited selective mutations, suggesting that changes in proteins encoded by these genes might have increased fitness in Chlorophyceae.
Collapse
|
12
|
Figueroa-Martinez F, Jackson C, Reyes-Prieto A. Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity. Genome Biol Evol 2019; 11:174-188. [PMID: 30534986 PMCID: PMC6330054 DOI: 10.1093/gbe/evy268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically “ancestral,” they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging Archaeplastida lineage, but the position of viridiplants as the first branching group was not rejected by the approximately unbiased test. Pairwise distances estimated from 19 different plastid genes revealed that the highest sequence divergence between glaucophyte genera is frequently higher than distances between species of different classes within red algae or viridiplants. Gene synteny and sequence similarity in the ptDNAs of the two Glaucocystis species analyzed is conserved. However, the ptDNA of Gla. incrassata contains a 7.9-kb insertion not detected in Glaucocystis sp. BBH. The insertion contains ten open reading frames that include four coding regions similar to bacterial serine recombinases (two open reading frames), DNA primases, and peptidoglycan aminohydrolases. These three enzymes, often encoded in bacterial plasmids and bacteriophage genomes, are known to participate in the mobilization and replication of DNA mobile elements. It is therefore plausible that the insertion in Gla. incrassata ptDNA is derived from a DNA mobile element.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,CONACyT-Universidad Autónoma Metropolitana Iztapalapa, Biotechnology Department, Mexico City, Mexico
| | - Christopher Jackson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
13
|
de Vries J, Gould SB. The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 2018; 131:jcs.203414. [PMID: 28893840 DOI: 10.1242/jcs.203414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids in plants and algae evolved from the endosymbiotic integration of a cyanobacterium by a heterotrophic eukaryote. New plastids can only emerge through fission; thus, the synchronization of bacterial division with the cell cycle of the eukaryotic host was vital to the origin of phototrophic eukaryotes. Most of the sampled algae house a single plastid per cell and basal-branching relatives of polyplastidic lineages are all monoplastidic, as are some non-vascular plants during certain stages of their life cycle. In this Review, we discuss recent advances in our understanding of the molecular components necessary for plastid division, including those of the peptidoglycan wall (of which remnants were recently identified in moss), in a wide range of phototrophic eukaryotes. Our comparison of the phenotype of 131 species harbouring plastids of either primary or secondary origin uncovers that one prerequisite for an algae or plant to house multiple plastids per nucleus appears to be the loss of the bacterial genes minD and minE from the plastid genome. The presence of a single plastid whose division is coupled to host cytokinesis was a prerequisite of plastid emergence. An escape from such a monoplastidic bottleneck succeeded rarely and appears to be coupled to the evolution of additional layers of control over plastid division and a complex morphology. The existence of a quality control checkpoint of plastid transmission remains to be demonstrated and is tied to understanding the monoplastidic bottleneck.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada, B3H 4R2
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
15
|
Dautermann O, Lohr M. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:879-891. [PMID: 28949044 DOI: 10.1111/tpj.13725] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
The epoxy-xanthophylls antheraxanthin and violaxanthin are key precursors of light-harvesting carotenoids and participate in the photoprotective xanthophyll cycle. Thus, the invention of zeaxanthin epoxidase (ZEP) catalyzing their formation from zeaxanthin has been a fundamental step in the evolution of photosynthetic eukaryotes. ZEP genes have only been found in Viridiplantae and chromalveolate algae with secondary plastids of red algal ancestry, suggesting that ZEP evolved in the Viridiplantae and spread to chromalveolates by lateral gene transfer. By searching publicly available sequence data from 11 red algae covering all currently recognized red algal classes we identified ZEP candidates in three species. Phylogenetic analyses showed that the red algal ZEP is most closely related to ZEP proteins from photosynthetic chromalveolates possessing secondary plastids of red algal origin. Its enzymatic activity was assessed by high performance liquid chromatography (HPLC) analyses of red algal pigment extracts and by cloning and functional expression of the ZEP gene from Madagascaria erythrocladioides in leaves of the ZEP-deficient aba2 mutant of Nicotiana plumbaginifolia. Unlike other ZEP enzymes examined so far, the red algal ZEP introduces only a single epoxy group into zeaxanthin, yielding antheraxanthin instead of violaxanthin. The results indicate that ZEP evolved before the split of Rhodophyta and Viridiplantae and that chromalveolates acquired ZEP from the red algal endosymbiont and not by lateral gene transfer. Moreover, the red algal ZEP enables engineering of transgenic plants incorporating antheraxanthin instead of violaxanthin in their photosynthetic machinery.
Collapse
Affiliation(s)
- Oliver Dautermann
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Martin Lohr
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| |
Collapse
|
16
|
Dittami SM, Heesch S, Olsen JL, Collén J. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. JOURNAL OF PHYCOLOGY 2017; 53:731-745. [PMID: 28509401 DOI: 10.1111/jpy.12547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/19/2017] [Indexed: 05/03/2023]
Abstract
Marine-freshwater and freshwater-marine transitions have been key events in the evolution of life, and most major groups of organisms have independently undergone such events at least once in their history. Here, we first compile an inventory of bidirectional freshwater and marine transitions in multicellular photosynthetic eukaryotes. While green and red algae have mastered multiple transitions in both directions, brown algae have colonized freshwater on a maximum of six known occasions, and angiosperms have made the transition to marine environments only two or three times. Next, we review the early evolutionary events leading to the colonization of current habitats. It is commonly assumed that the conquest of land proceeded in a sequence from marine to freshwater habitats. However, recent evidence suggests that early photosynthetic eukaryotes may have arisen in subaerial or freshwater environments and only later colonized marine environments as hypersaline oceans were diluted to the contemporary level. Although this hypothesis remains speculative, it is important to keep these alternative scenarios in mind when interpreting the current habitat distribution of plants and algae. Finally, we discuss the roles of structural and functional adaptations of the cell wall, reactive oxygen species scavengers, osmoregulation, and reproduction. These are central for acclimatization to freshwater or to marine environments. We observe that successful transitions appear to have occurred more frequently in morphologically simple forms and conclude that, in addition to physiological studies of euryhaline species, comparative studies of closely related species fully adapted to one or the other environment are necessary to better understand the adaptive processes.
Collapse
Affiliation(s)
- Simon M Dittami
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| | - Svenja Heesch
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| | - Jeanine L Olsen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Jonas Collén
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| |
Collapse
|
17
|
Satjarak A, Burns JA, Kim E, Graham LE. Complete mitochondrial genomes of prasinophyte algae Pyramimonas parkeae and Cymbomonas tetramitiformis. JOURNAL OF PHYCOLOGY 2017; 53:601-615. [PMID: 28191642 DOI: 10.1111/jpy.12521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Mitochondria are archetypal eukaryotic organelles that were acquired by endosymbiosis of an ancient species of alpha-proteobacteria by the last eukaryotic common ancestor. The genetic information contained within the mitochondrial genome has been an important source of information for resolving relationships among eukaryotic taxa. In this study, we utilized mitochondrial and chloroplast genomes to explore relationships among prasinophytes. Prasinophytes are represented by diverse early-diverging green algae whose physical structures and genomes have the potential to elucidate the traits of the last common ancestor of the Viridiplantae (or Chloroplastida). We constructed de novo mitochondrial genomes for two prasinophyte algal species, Pyramimonas parkeae and Cymbomonas tetramitiformis, representing the prasinophyte clade. Comparisons of genome structure and gene order between these species and to those of other prasinophytes revealed that the mitochondrial genomes of P. parkeae and C. tetramitiformis are more similar to each other than to other prasinophytes, consistent with other molecular inferences of the close relationship between these two species. Phylogenetic analyses using the inferred amino acid sequences of mitochondrial and chloroplast protein-coding genes resolved a clade consisting of P. parkeae and C. tetramitiformis; and this group (representing the prasinophyte clade I) branched with the clade II, consistent with previous studies based on the use of nuclear gene markers.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln drive, Madison, Wisconsin, USA
| | - John A Burns
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, USA
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, USA
| | - Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln drive, Madison, Wisconsin, USA
| |
Collapse
|
18
|
de Vries J, Stanton A, Archibald JM, Gould SB. Streptophyte Terrestrialization in Light of Plastid Evolution. TRENDS IN PLANT SCIENCE 2016; 21:467-476. [PMID: 26895731 DOI: 10.1016/j.tplants.2016.01.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 05/21/2023]
Abstract
Key steps in evolution are often singularities. The emergence of land plants is one such case and it is not immediately apparent why. A recent analysis found that the zygnematophycean algae represent the closest relative to embryophytes. Intriguingly, many exaptations thought essential to conquer land are common among various streptophytes, but zygnematophycean algae share with land plants the transfer of a few plastid genes to the nucleus. Considering the contribution of the chloroplast to terrestrialization highlights potentially novel exaptations that currently remain unexplored. We discuss how the streptophyte chloroplast evolved into what we refer to as the embryoplast, and argue this was as important for terrestrialization by freshwater algae as the host cell-associated exaptations that are usually focused upon.
Collapse
Affiliation(s)
- Jan de Vries
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany
| | - Amanda Stanton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G, Martin WF. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 2015; 524:427-32. [PMID: 26287458 DOI: 10.1038/nature14963] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/20/2015] [Indexed: 01/11/2023]
Abstract
Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.
Collapse
Affiliation(s)
- Chuan Ku
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Shijulal Nelson-Sathi
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mayo Roettger
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Filipa L Sousa
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Peter J Lockhart
- Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - David Bryant
- Department of Mathematics and Statistics, University of Otago, Dunedin 9054, New Zealand
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana 43107, Israel
| | - James O McInerney
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.,Michael Smith Building, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Giddy Landan
- Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
20
|
Becker B, Doan JM, Wustman B, Carpenter EJ, Chen L, Zhang Y, Wong GKS, Melkonian M. The Origin and Evolution of the Plant Cell Surface: Algal Integrin-Associated Proteins and a New Family of Integrin-Like Cytoskeleton-ECM Linker Proteins. Genome Biol Evol 2015; 7:1580-9. [PMID: 25977459 PMCID: PMC4494055 DOI: 10.1093/gbe/evv089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The extracellular matrix of scaly green flagellates consists of small organic scales consisting of polysaccharides and scale-associated proteins (SAPs). Molecular phylogenies have shown that these organisms represent the ancestral stock of flagellates from which all green plants (Viridiplantae) evolved. The molecular characterization of four different SAPs is presented. Three SAPs are type-2 membrane proteins with an arginine/alanine-rich short cytoplasmic tail and an extracellular domain that is most likely of bacterial origin. The fourth protein is a filamin-like protein. In addition, we report the presence of proteins similar to the integrin-associated proteins α-actinin (in transcriptomes of glaucophytes and some viridiplants), LIM-domain proteins, and integrin-associated kinase in transcriptomes of viridiplants, glaucophytes, and rhodophytes. We propose that the membrane proteins identified are the predicted linkers between scales and the cytoskeleton. These proteins are present in many green algae but are apparently absent from embryophytes. These proteins represent a new protein family we have termed gralins for green algal integrins. Gralins are absent from embryophytes. A model for the evolution of the cell surface proteins in Plantae is discussed.
Collapse
Affiliation(s)
- Burkhard Becker
- Biozentrum Köln, Botanical Institute, Universität zu Köln, Germany
| | - Jean Michel Doan
- Biozentrum Köln, Botanical Institute, Universität zu Köln, Germany
| | - Brandon Wustman
- Biozentrum Köln, Botanical Institute, Universität zu Köln, Germany
| | - Eric J Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Li Chen
- BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China
| | - Yong Zhang
- BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|